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Data aggregation techniques have been widely used in wireless sensor networks (WSNs) to solve the energy constraint problems
of sensor nodes. They can conserve the significant amount of energy by reducing data packet transmission costs. However, many
data aggregation applications require privacy and integrity protection of the real data while transmitting data from the sensing
nodes to a sink node. The existing schemes for supporting both privacy and integrity, that is, iCDPA, and iPDA, suffer from high
communication cost, high computation cost, and data propagation delay. To resolve the problems, we propose a signature-based
data security technique for protecting sensitive data aggregation in WSNs. To support privacy-preserving data aggregation and
integrity checking, our technique makes use of the additive property of complex numbers. Out of two parts of a complex number,
the real part is used to hide the sampled data of a sensor node from its neighboring nodes and adversaries, whereas the imaginary
part is used for data integrity checking at both data aggregators and the sink node. Through a performance analysis, we prove
that our privacy-preserving data aggregation scheme outperforms the existing schemes up to 50% in terms of communication and

computation overheads as well as up to 3 times in terms of integrity checking and data propagation delay.

1. Introduction

Wireless sensor networks (WSNs) have been widely studied
in ubiquitous computing environment. The WSNs can be
applied to various types of applications, such as environment
management and military monitoring [1-4]. However, the
sensor nodes that form WSNs have resource constraints such
as limited power, slow processor, and less memory. For these
reasons, it is essential to improve the energy efliciency of
sensor nodes (or WSN) in order to enhance the quality
of application service [5-10]. The first issue of WSNs is to
reduce energy consumption in WSNs. Because the amount of
energy consumption for communication is the greatest, it is
important to reduce communication overhead. For reducing
communication cost, transmitting the required and partially
processed data is more meaningful than sending a large
amount of raw data. In general, sending raw data causes
the energy consumption of sensor nodes because duplicated
messages are sent to the same node, called implosion, as well
as neighboring nodes receive the duplicated messages if two
nodes share the same observing region, called overlapping.

In recent years, data aggregation has been actively used to
combine data coming from many sensor nodes. An extension
of this approach is in-network aggregation which aggregates
data progressively as data are passed through the network
[11-14]. In-network data aggregation can reduce the number
of data transmissions and the number of nodes involved in
gathering data from a WSN.

The second issue of WSNs is how to preserve sensitive
measurements where data privacy becomes an important
aspect from an adversary [15]. In many scenarios, the con-
fidentiality of transported data can be considered critical. For
instance, data from sensors might measure patients’ health
information such as heartbeat and blood pressure details.
In addition, a future application might measure household
details such as power and water usage, thus computing
average trends and making local recommendations. Since
sensitive data is transported wirelessly among sensor nodes,
it is typically prone to interception and eavesdropping. It
is mandatory to maintain the data privacy of sensor nodes
even from other trusted participating sensor nodes of the
WSNs. Asaresult, even though private data are overheard and
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FIGURE : Classification of the privacy preserving-data aggregation techniques for WSNs.

decrypted by adversaries, it is necessary to prevent recovering
the sensitive information of a sensor node [16-18].

The last issue of WSNs is data integrity [19-21]. In
communication, data integrity is simply defined as main-
taining consistency and correctness of messages (message
without modification by adversaries). In other words, it is
ensured that the received data is not altered in transit either
by an adversary or by noise in the data collecting node,
that is, sink node. Data pollution due to the noise is an
unintentional process and it can be handled by using some
existing mechanisms like cyclic redundancy checking (CRC).
Hence, the integrity checking due to the unintentional data
pollution is out of the scope of this research. On the other
hand, the mechanisms like CRC are unable to cope with
the intentional data pollution by an adversary because the
adversary can generate the same CRC of the source node
after modifying the data. As data aggregation result is used
for making critical decisions, the aggregation result must be
verified before accepting it. For this reason, it is required to
design a data protocol for WSNs which can ensure that the
aggregated result has not been polluted (manipulation of data
by an adversary) on the way to the sink node.

Since data privacy and integrity protection processes
consume a significant amount of precious resource (i.e.,
limited power) of sensor nodes, they shorten the lifetime of
the WSNs. Therefore, it is necessary to devise a light-weight
technique, which can achieve data privacy and integrity
protection efficiently. However, the existing work needs much
resource consumption of sensor nodes due to generating
unnecessary messages in the network. For this reason, in
this paper, we propose a resource-efficient data security
technique that can aggregate sensitive data while protecting
data integrity in WSNs. Our technique protects from the leak
of the sensed data by using the algebraic properties of the
complex numbers. Our technique not only ensures that no
trend about the sensitive data of a sensor node is released to
any other nodes and adversaries, but also can aggregate and
hide data for data privacy during transmissions to the data
sink. Out of two parts of a complex number, the real part
is used to hide the sampled data of a sensor node from its
neighboring nodes and adversaries, whereas the imaginary

part is used for data integrity. Before transmitting data to a
parent node, every sensor node transforms its sampled data
into a complex number form. The real part is generated by
combining the sampled data with a unique private seed and
the imaginary part is generated by appending an imaginary
unit to the modified sampled data. Thus, our technique
prevents from recovering sensitive information even though
private data are overheard and decrypted by adversaries
or other trusted participants. For strong data security, our
technique can be built on the top of the existing secure
communication protocols like [22]. Moreover, our technique
can be applied to any type of WSNs regardless of network
topology since it is a general approach.

The rest of the paper is organized as follows. In Section 2,
we present some related work. Section 3 describes our
integrity-protecting sensitive data aggregation technique.
Simulation results are shown in Section 4. Along with some
future research directions, we finally conclude our work in
Section 5.

2. Related Work

In this section, we present related work for privacy-preserv-
ing data aggregation schemes. Figure 1 illustrates the classifi-
cation of the privacy-preserving data aggregation techniques
for WSNs. These techniques are broadly categorized into
two categories: homogeneous techniques and heterogeneous
ones. They are categorized based on the type of nodes in
the WSNSs, particularly the type of data aggregating nodes
(aggregators). The aggregators can either be special (more
powerful) nodes or regular sensor nodes. Moreover, the
techniques are further divided into five groups: perturbation
in homogeneous technique, shuffling, privacy homomor-
phism, perturbation in heterogeneous, and hybrid. First, the
perturbation technique is also known as data customization.
In this technique, every sensor node uses encryption key
and/or seeds (private or public) generated by randomization
techniques [23, 24] in order to hide the sampled data before
transmitting them to a parent node. The perturbation in
homogeneous technique include iCPDA [21], Conti et al’s
scheme [25], DADPP [26], PHA [27], and HP2S [28, 29],
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while the perturbation technique in heterogeneous includes
Sheng and Li’s scheme [30]. Second, in the shuffling tech-
nique, every sensor node slices its data into the fixed number
(J) of data pieces and sends a data piece to the selected J — 1
number of neighboring sensor nodes. The remaining one
piece of data is kept with it. After that, every sensor node
assembles the received data pieces including its own piece of
data and sends the assembled data to a parent node. SMART
[16] and iPDA [19] belong to the shuffling techniques. Third,
the privacy homomorphism technique has a special feature
that allows arithmetic operations to be performed on cipher-
text without decryption. This technique is fast and resource-
efficient for privacy-preserving data aggregation, but it has a
limitation that it performs only addition and multiplication
operations. Before the sensed data are sent to the aggregators,
they are encrypted by using the respective keys of sensor
nodes and they are added or multiplied without decryption.
The CDA [31], AH scheme [32], and our scheme belong to
the privacy homomorphism techniques. Finally, the hybrid
technique achieves privacy-preserving data aggregation for
WSNs by combining the previous techniques. PIA [33] is only
the hybrid technique in this literature.

In the previous section, we addressed three important
considerations for WSNs, which are energy consumption,
data privacy, and data integrity. However, iPDA and iCPDA
are the only works to support both privacy preservation and
data integrity for WSNs; we provide the detailed explanation
of iPDA and iCPDA in Section 2.1.

2.1. Privacy Preserving Data Aggregation Scheme with Data
Integrity. He et al. proposed iPDA [19] and iCPDA [21]
schemes for WSNs to support privacy-preserving data aggre-
gation as well as data integrity. In the iPDA scheme, they pro-
tect data integrity by designing two node-disjoint aggregation
trees rooted at the query server where each node belongs
to a single aggregation tree. In this technique, first, every
sensor node slices its private data randomly into L pieces and
L — 1 pieces are encrypted and sent to the randomly selected
sensor nodes of the aggregation tree keeping one piece at
the same sensor node. The same process is independently
done for each sensor node using another aggregation tree.
Then, all the sensor nodes which received data slices from
multiple sensor nodes decrypt the slices using their shared
keys and sum the received data slices including their own.
After that, each sensor node sends the sum value to its parent
from the respective aggregation tree. In the same way, the
sum data from another set of sensor nodes are transmitted
to the query server through another aggregation tree. In the
end, the aggregated data from two node-disjoint aggregation
trees reach to the base station where the aggregated data
from both aggregation trees are compared. If the difference
of the aggregated data from the two aggregation trees does
not deviate from the predefined threshold value the query
server accepts the aggregation result; otherwise, it rejects the
aggregated result by considering it as polluted data. However,
there are some shortcomings in the iPDA. First of all, during
protecting data privacy it generates high traffics in the WSN.
As a result, communication cost is significantly increased

in the iPDA. Secondly, all sensor nodes use secret keys
to encrypt all of their data slices before sending to their
respective 2(L — 1) number of sensor nodes. So, every sensor
node has computation overhead of decrypting all the slices
they received before aggregating them.

In the iCPDA, three rounds of interactions are required.
Firstly, each node sends a seed to other cluster members.
Next, each node hides its sensory data via the received seeds
and sends the hidden sensory data to each cluster member.
Then, each node adds its own hidden data to the received
hidden data and sends the calculated results to its cluster
head which calculates the aggregation results via inverse and
multiplication of matrix. To enforce data integrity, cluster
members check the transmitted aggregated data of the cluster
head. There are some disadvantages of iCPDA. Firstly, the
communication overhead of iCPDA increases quadratically
with the cluster size. Secondly, the computational overhead
of CPDA increases quickly with the increase of the cluster
size which introduces large matrix, whereas lower cluster size
introduces lower privacy-preserving efficacy.

Both iPDA and iCPDA support very weak data integrity
checking because if any node modifies its sampled value 30
to 300 and uses the value 300 for aggregation process none
of both methods can detect such misbehavior in the network.
Hence, in this paper, we propose a new, efficient (in terms of
communication overhead and data propagation delay), and
general (in terms of supporting network topology) scheme in
order to support data privacy and achieve integrity assurance
in data aggregation for WSNs. Our scheme is based on the
algebraic properties of the complex numbers and it not only
ensures that no trend about sensitive data of a sensor node is
released to any other nodes and adversaries but also provides
data integrity checking of the aggregated value of sensor data.

3. Integrity-Protecting Sensitive Data
Aggregation Technique

To overcome the previously mentioned shortcomings of
the iPDA and iCPDA, in this section, we propose a new
energy-efficient data aggregation scheme for preserving data
privacy in WSNs. Our scheme exploits an additive property
of complex number to aggregate the sensed data in WSNG.
Our assumption is that we only focus on additive aggregation
function (SUM), like the iCPDA and iPDA. This is because
other aggregation functions, such as average, count, variance,
and standard deviation, can be obtained by using the additive
aggregation function [34]. In our scheme, out of two parts of
a complex number (a+bi), the real part (a) is used to hide the
sampled data of a sensor node from its neighboring nodes and
adversaries, whereas the imaginary part (bi) is used for data
integrity checking at both data aggregators and the sink node.
Before transmitting data to a parent node, every sensor node
transforms its sampled data into a complex number form. The
real part is generated by combining the sampled data with a
unique private seed and the imaginary part is generated by
appending an imaginary unit to the modified sampled data.
For this, the sampled value is first mingled with a private seed
and then the result (a) is combined with another real number
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TABLE 1: Real ID of 8 sensor nodes with signature.

SN Node-ID 2-Byte signature

1 2°=1 0000000000000001
2 2 =2 0000000000000010
3 22 =4 0000000000000100
4 2’ =38 0000000000001000
5 2* =16 0000000000010000
6 2° =32 0000000000100000
7 26 = 64 0000000001000000
8 27 =128 0000000010000000

having i (bi) to generate a complex number form (¢ = a + bi).
The real number with i (bi) is the absolute difference between
the previous sample data and the current sample data of a
node. Note that during network deployment, a Master Device
(MD) [35] securely provides a unique real number as a seed
to every sensor node of the WSNs after establishing a pairwise
secret key with them. Since the MD is an offline server, it
shares this information only with the query server for future
reference. Thus, the seed of each sensor node is private in
the network. Data can be aggregated in upper levels during
their transmissions to the query server by using the algebraic
properties of complex numbers. Our scheme can check the
integrity of the aggregated data at both data aggregators and
the sink node at the same time.

The proposed privacy and integrity preserving technique
is performed through five steps. In the first step, we assign a
special type of positive integer 2" (where n = 0 to Bn x 8 —
1, such that Bn is the number of free bytes available in the
payload) to every sensor node as node ID. This is because the
binary value of every integer of 2" type has only one high bit
(1). In addition, the position of the high bit for all integers of
this type is unique. The sink node knows a data contributing
sensor node through the signature of Node-ID as shown in
Table 1. The Node-ID of a sensor node is used to generate a
signature of a fixed length. A signature is a fixed size bit stream
of binary numbers for a given integer. Signature of a senor
node ID can be generated by using the technique presented
in the work [36]. We can determine the length of the signature
based on the size of a given WSN. When the size of the WSN
increases we can increase the length of the signature up to
the Bn bytes. In other words, different size WSNs can have
signatures of different lengths. The detail of using signatures
has been presented in our previous work [37].

When the network receives an SQL-like query for SUM
aggregation function, in the second step, the sampled sensi-
tive data ds of each sensor node is, first, concealed in a by
combining with a unique seed (sr) which is a private real
number. The seeds can be selected from an integer range
(i.e., space between lower bound and upper bound). By
increasing the size of the range, we can further increase the
level of the data privacy. Hence, our approach can support
data privacy feature strongly. To support data integrity, an
integer value b—the difference of the previous sensed value
and the current sensed value of the sensor node—with i is
appended to the a by using genCpxNum() function to form a
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complex number C = a + bi, where a and b are real numbers
called the real part and the imaginary part of the complex
number, respectively, as shown in Table 2. Complex numbers
can be added, subtracted, multiplied, and divided by formally
applying associative, commutative, and distributed laws of
algebra. For the first round, the complex number (value of
b) is zero. In Table 2, for instance, the reading 17 of node
5 is encrypted into 46 + 3i. The reading 17 is added to 29,
which is a private seed of node 5 and the mask value 46
is calculated. Then, assuming that 3i is the difference value
of previous reading and current reading of node 5, the 3i is
appended to the result 46 to get 46 + 3i which is a complex
number form of the 17 after data customization process. Node
5 includes its signature, that is, 00000101, when it transmits
the data as (00000101, 46 + 3i). We assumed that any sensor
node cannot be compromised before sending first round data
to the sink node. Every source sensor node keeps the original
sensed value d of the current round to deduce b in the next
round which is updated in each round of data transmission.
Next, the source node encrypts the customized data R}, that
is, R, = a+ bi, and the signature of the node by using a secret
key Kx, y [22] and transmits the cipher text C; to its parent.
The term Kx, y denotes a pairwise symmetric key shared by
nodes x and y, where the node x encrypts data by using a
key Kx, y and the node y decrypts the data by using the key
Kx, y. In this way, our algorithm converts the sampled data
into an encrypted complex number form. Hence, it not only
protects the transmitting trend of private data but also does
not let neighboring sensor nodes and adversaries to recover
sensitive data even though they overheard and decrypted the
sensitive data.

In the third step, the parent sensor node (i.e., data
aggregator) decrypts the received data by using respective
pairwise symmetric keys of its child sensor nodes. For each
child node, the parent node computes the difference value (b')
of the two real units by using the stored previous data and the
received current data of the child node. For the first round, the
value of b’ is also zero. For this, the parent node always keeps
the record of the previously received data from each of the
child nodes and it updates the previous data by current one in
every round. To support local integrity checking, the parent
node first compares just computed difference value with the
currently received difference value (imaginary unit) from the
child node and then compares the difference value with local
threshold §. If the imaginary unit of the child’s current data
is equal to the computed difference value and the imaginary
unit is not greater than &, then the parent node accepts the
data of the child node. Otherwise, the parent node rejects
the data of the child sensor node considering it as polluted
data. For example, we assume that the value for § is set to 2
for local integrity checking. Because a parent node checks the
integrity of its’ child nodes, node 4 checks the local integrity
of the node 8. In Figure 1, since the imaginary part of node 8
is 2, which is less than or equal to §, node 4 accepts the data
of node 8. On the other hand, node 5 will be rejected by its
parent node 2 because imaginary part of node 5 is greater than
0. In the same way, the parent node assures the data integrity
of child nodes. After that the parent node adds the data of
child nodes including its own by using additive property
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TaBLE 2: Customized data creation for each node.

SN Reading (ds) Real seed (sr) (I;Aisﬁsvil‘:) Biﬁfere(f;;; Comi)‘llei ngber
1 16 40 56 2i 56 + 2i
2 14 51 65 0i 65 + 0i
3 19 32 51 i 51+i
4 21 23 44 i 44 + i
5 17 29 46 3i 46 + 3i
6 18 33 51 i 51+
7 13 39 52 2i 52 +2i
8 15 67 82 2i 82 +2i

of complex number to produce an intermediate result R'.
At the same time, it superimposes signatures (SSig) of the
contributed nodes by performing bitwise OR operation on
the bit-streams of the node IDs and forwards the encrypted
intermediate result “C,” towards the sink node. Since this
approach needs just one bit to carry an ID of a sensor node
it is 16 times scalable than the existing work CMT [34] where
plaintexts (2-byte each) are used for carrying IDs of sensor
nodes by simply concatenating them. Note that different types
of application can have different value for the threshold 6.
Thus, our algorithm supports local integrity checking which
enforces to provide consistent data from child nodes. The
above process continues at all nodes of the upper levels of
the network until the whole partially aggregated data of the
network reach to the sink node.

In the fourth step, when the sink node receives all
intermediate result sets C,, (partially aggregated encrypted
customized data with superimposed signature) from the 1-
hop child nodes, it decrypts them by using respective pairwise
symmetric keys and computes the final aggregation SUM,
from C,,. Since SUM, is of complex number form and the
sensed data has been concealed in the real unit by using
private seeds, identifying the information of the contributed
sensor nodes is necessary to deduce actual SUM value. In the
last step, the sink node first knows data contributing nodes
by checking the high bits (1s) of the received superimposed
signature by performing bitwise AND operation with the
prestored signature files or superimposed signature of the
Node-IDs of the all nodes of the network. For this, it
separates SUM, into real unit SUM,; and imaginary unit
SUM, . Because the sampled data of sensor nodes has
been concealed within the real unit, the sink node computes
the actual aggregated result SUM by subtracting (an inverse
operation of masking, step 2) SUM;y (a freshly computed
sum value of the private seeds of the contributed source
nodes) from SUM,;. The final result SUM is always accurate
and reliable because of the following two reasons. First, a
complex number is an algebraic expression and hence the
underlying algebra gives the accurate result of the aggregated
sensor data. Second, since the private seeds are fixed integer
values (i.e., seeds are not random numbers) after collecting
data by the sink node a complex number subtracts exactly the
same values that have been added to the sensor data during
data hiding process by every source node. At the same time,

before accepting the SUM, the sink node performs global
integrity checking of SUM to assure whether the SUM, has
been polluted by an adversary in transit or not. For this,
like parent nodes, the sink node also computes the difference
value (B') of the two real units by using the stored previous
data and the received current data from the network. The
sink node first compares just computed difference value B'i
with the currently received difference value, that is, SUM,,
from the network and then compares the difference value
(SUM,;) with global threshold A (for every application, the
maximum value for A = § x N, where N is the total number
of nodes in a network). If the imaginary unit SUM,,, of the
current data from the network is equal to the just computed
difference value B'i and the SUM,;,, is not larger than A, then
the sink node accepts the data of the network and returned
the actual SUM to the query issuer. Otherwise, the sink node
rejects the SUM considering it as forged/polluted data by
adversary or other nodes. For example, as shown in Figure 2,
we assume that a local integrity threshold per node & equals
to 2i and the maximum value for a global threshold (A) is
calculated as A = § x N = 2i x 8 = 16i. Since a sensor node
5 does not participate in data collection, the global integrity
checking value A can be computed as § x N = 2ix7 = 14i. In
this scenario, the received data is considered as a consistent
one and is accepted by the sink node, (1) because the value
computed at the sink node, that is, 9i, is the same as the
one received from the network and (2) the value is less than
the global integrity checking value, that is, 9i < 14i. The
overall algorithm that performs sensitive data aggregation
and integrity checking is illustrated in Algorithm 1.

4. Performance Evaluation

In this section, we present simulation results of our scheme
by comparing it with iPDA and iCPDA schemes in terms
of communication overhead and integrity checking. For
this, we use TOSSIM [38] simulator running over TinyOS
[39] operating system and GCC compiler. We consider 100
sensor nodes distributed randomly in 100 m x 100 m area. As
presented in directed diffusion [40], we use such parameters
as receiving power dissipation of 395 mW and transmitting
power dissipation of 660 mW. Moreover, MATLAB 7.6.0.324
(R2008a) is used to get execution time required for data
customization and data aggregation.
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FIGURE 2: Superimposing signatures and addition of customized sensor readings in a multihop WSN (6 = 2).
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4.1. Data Aggregation. Figure 3 shows communication over-
head in terms of the number of messages generated in a
WSN with respect to varying number of sensor nodes. As
expected, the number of messages in the iPDA, iCPDA, and
our schemes increases when the number of sensor nodes
increases. This is because every sensor node in the WSN is
capable of sensing data and when the number of source nodes
increases, the number of messages also naturally increases in
all of the three schemes. However, our scheme outperforms
the iPDA and iCPDA schemes because the existing schemes
generate unnecessary messages in the network. The reason is
that in our scheme each sensor node can customize its data
by itself and it does not need to generate extra messages in the
network for data privacy and integrity checking. On the other
hand, the iPDA and iCPDA schemes generate six messages
and four messages, respectively, for privacy preservation and
integrity checking. Due to many messages exchanged among
the nodes, the existing schemes cause high data collisions.
That is to say, the number of messages generated in the
network increases drastically as the number of sensor nodes
becomes larger. iPDA and iCPDA schemes consume much
energy for successful data transmission, compared with our
scheme.

The messages generated in the WSN are finally consumed
by the sink node. For this, message transmission and message
reception processes are involved. Both processes require
significant amount of energy. Figure 4 shows communication
overhead in terms of energy dissipation by the iPDA, iCPDA,
and our schemes with respect to varying number of sensor
nodes in the WSN. As expected, the dissipated energy by
all three schemes increases when the number of sensor
nodes increases. This is because every message generated
in the network requires some amount of energy to reach
the sink node. However, the power consumption by our
scheme is always lower than that of iPDA and iCPDA
schemes. The reason is that the iPDA and iCPDA schemes
generate too many unnecessary messages in the WSN while
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Input: An aggregated WSN and SUM aggregation query
Output: SUM aggregation result
Step 1. Assign node ID and generate signature of the ID
for all sensor nodes {
ID=2" //wheren=0,1,2,...
ID = Signature(2"); n=n+1;}

for all sensor nodes {
sense ds;
a = mask(ds, sr); // sr is a unique private seed
RQ = genCmpxNum(a, bi);
C; = Enc(K,,,, (ID, R)));
transmit(Cj);}
customized data
for every intermediate aggregators {
for all received customized data {
Dre(K,, ., (C)));
If (bi ! = b'i AND bi > 8) //local integrity checking
{reject C I3 inform_Sink();}
Else {
SSig = Superimpose(ID;, ..
R =SUM(R},...,R});
C, = Enc(K,, (SSig, R));
transmit(C, );} } }
Step 4. Compute aggregation result at the sink node
for all receive(C,,){Drc(K, (C)));
SUM, = add (IR}, ..., IR});}

., IDy);

sink
fetch_Nodes_IDs();
Node_IDs = SuperSig && SSig;
SUM, = disjoin (SUM,p, SUM,py,);
SUM,; = Compute (sum of real seeds of contributed nodes);
SUM = SUM,z— SUM,;;
If (SUM,;y; = B'i AND SUM,,,, < A)/* global integrity
checking "/
{return SUM;}
Else {reject SUM;}

Step 2. Create customized data from the data of the source nodes

Step 3. Local integrity checking and applying additive property of complex numbers to get intermediate result of the

Step 5. Identify contributed sensor nodes, extract actual SUM of the sensors data and check global data integrity at the

AvrGoriTHM I: Algorithm for SUM aggregation with privacy-preservation and integrity checking.

achieving integrity protection and privacy preservation in
data aggregation. And also every sensor node becomes
active for longer time to communicate all the messages.
However, in our scheme, every sensor node can achieve both
integrity protection and privacy preservation by comparing
the current complex number with the previous one. Hence,
the energy consumption of our scheme is reduced by 80% and
60% over the iPDA and iCPDA, respectively.

Table 3 shows the computation overhead of data aggrega-
tion. The result shows that iCPDA has the worst performance
on the computation overhead for privacy-preserving data
aggregation. The reason is that the iCPDA uses a time-
consuming encryption method with two seeds to achieve
data privacy. On the other hand, the computation cost of our
scheme is about two times and 83 times faster than those
of the iPDA and iCDPA, respectively. It is shown that our
scheme reduces a significant amount of resource (CPU time)

usage for achieving private data aggregation. This is because
our scheme reduces the number of communication messages
by using the additive property of a complex number.

4.2. Data Integrity. Figure 5 shows data propagation delay in
terms of average time required by sampled data of sensor
nodes to reach to the sink node considering data privacy
and integrity checking. During this process, a sensor node
in iPDA and iCPDA has to communicate (i.e., transmit and
receive) at least six and four messages, respectively. Hence,
sensor nodes in both iPDA and iCPDA need more active time
to perform all communications than our scheme resulting in
very high data propagation delay in the existing work. In this
way, dutycycling, which is the percent of time that an entity
spends in an active state as a fraction of the total time [41], is
also increased in the existing schemes. The iCPDA generates
less number of messages than the iPDA but has complex
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TaBLE 3: Computational overhead for data customization and
aggregation.

Protocols Execution time (in sec)
iPDA 0.005924
iCPDA 0.219325
Our scheme 0.002632

computation for privacy preservation and longer size message
than that of the iPDA. Moreover, in iCPDA, the sampled
data of sensor nodes is sent to the opposite direction (data is
transmitted from the cluster head to the cluster members) of
the sink node for privacy preservation process. Therefore, the
iCPDA has the worst performance among the three schemes.
On the other hand, every sensor node in our scheme sends
only one message (the aggregated data) to its parent node
because it checks the integrity of the sensed data without the
communication of other sensor nodes.

Figure 6 provides the performance of three schemes in
terms of the detection ratio of polluted messages for integrity
checking. It is shown that our scheme can detect all polluted
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messages, whereas iPDA and iCPDA can detect less than 30%
of polluted messages. The reason is that every node in our
scheme checks the integrity of its incoming data received
from the lower-level nodes. On the other hand, only the sink
node can check the integrity of the aggregated data in iPDA,
whereas only the sink node and the cluster heads can perform
the integrity checking in iCPDA.

5. Conclusion

In this paper, we proposed an eflicient and general scheme
in order to aggregate sensitive data protecting data integrity
for private data generating environments such as patients’
health monitoring application. For maintaining data privacy,
our scheme applies the additive property of complex numbers
where sampled data are customized and given the form of
complex number before transmitting towards the sink node.
As a result, it protects the trend of private data of a sensor
node from being known by its neighboring nodes including
data aggregators in WSNs. Moreover, it is still difficult for
an adversary to recover sensitive information even though
data are overheard and decrypted. Meanwhile, data integrity
is protected by using the imaginary unit of complex-number-
form customized data at the cost of just two extra bytes.
Through simulation results, we have shown that our scheme
is much more efficient in terms of communication and
computation overheads, data propagation delay, and integrity
checking than the iPDA and iCPDA schemes.

As future work, we will provide more simulation results
by designing data integrity and sensitive data-preserving
scheme under collusive attacks. Moreover, we will improve
our privacy-preserving data aggregation scheme to support
MAX and MIN aggregations.
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