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Inmoving environment, the positions of moving objects cannot be located accurately. Apart from themeasuring instrument errors,
movement of the objects is the main factor contributing to this uncertainty. This uncertainty makes dominant relationship of data
instable, which will affect skyline operator. In this paper, we mainly study the continuous probabilistic skyline query for uncertain
moving objects in road network. The query point is deemed to be stationary while moving objects are treated as targets with
uncertainty described by a probability density function. After defining the notion of dominant probability and probabilistic skyline,
we put forward a novel algorithm to deal with continuous probabilistic skyline query on road network. Firstly, we compute the
dominant probability and skyline probability to get initial permanent p-skyline set.Then we define events to predict the time when
dominant relationship between moving objects may change. Furthermore, we track and calculate events to update the probabilistic
skyline in an incremental way. Two pruning strategies are proposed to cancel invalid events and objects in a bid to diminish search
space. Finally, an extensive experimental evaluation on real datasets shows that probabilistic skyline sets in road network can be
updated by the proposed algorithm. It demonstrates both efficiency and effectiveness.

1. Introduction

Skyline query aims to find a subset where all objects are not
dominated by any other object in the dataset, helping users
inmulticriteria decisionmaking, datamining and visualizing
for database, and so forth.

In mobile database, a moving object reports its position
and velocity to database service through wireless communi-
cation interface. Because of time delay and other technical
limitations, the position obtained usually deviates fromactual
one. The deviation causes what is called uncertainty, which
leads to instability of dominant relationship between objects.
In real world, objects are restricted in road network, such
as track, road, or highway. Position uncertainty of moving
objects including its environment should be considered in
skyline operation.

Until recently, a lot of work on skyline query had been
focused on a static dataset, where the distances from query
point to target objects are invariant. With rapid development
of GPS technology and mobile devices, the location-based
service (LBS) [1], which is pervasive in daily life, is becoming

one of the most important applications in spatiotemporal
database. However, in moving environment, moving objects
whose position is detected by GPS system alternately are
always in motion. Delay or error of the sensor in GPS,
especially the self-motion of moving objects, makes the
location of moving objects uncertain. Despite the existing
uncertainty, the position is often treated as being accurate to
be queried inmany studies [2, 3]. Study on continuous skyline
query on moving objects was first proposed by Huang et al.
[4]. In his work, position of moving objects is considered as
the data with certainty.

In fact, because of the sensors’ error and the objects’
movement, the position of objects in moving environment is
uncertain and vague. Recently, a few researchers have been
aware of this imprecision and made some contributions [5–
7]. In our approach, the location of query object is exactly
known as a stationary object, but the location of moving
target objects is characterized by a certain distribution instead
of a precise point. For example, a weapon-related crime takes
place somewhere, which is located in point 𝑂, as Figure 1
shows. Police cars should be dispatched to intervene. The
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adequate police strength including the number of policemen
and equipment in the dispatched car is needed. Also a car
as near to the crime scene as possible is another factor for
consideration in order to arrive in time. In Figure 1, table
shows the parameters of each police car, including position of
the cars, number of policeman, equipment level, and network
distance to the query point 𝑂, where the value of equipment
level is used to quantify the level of equipment, with greater
value corresponding to higher level. If the police cars are
treated as certain points, cars 𝐴 and 𝐸 are skyline objects.
However, the cars are moving quickly, so their positions are
uncertain to some extent. For example, suppose that the true
position of car 𝐴 is at point 𝐴󸀠, where the distance from 𝐴󸀠
to 𝑂 is 130 instead of 125, and car 𝐵’s actual position is at
point 𝐵󸀠 whose distance to 𝑂 is 125. In this case, car 𝐵 can
dominate car 𝐴, so car 𝐴 is not skyline object. Because of
road network limitation, the uncertain area is represented as
a line centered on its acquired location, as Figure 1 shows. In
order to simplify this scene, probability density function 𝑓(𝑡)
assumes uniform distribution and the police car 𝐵 is possible
to be skyline object.

In this paper, we address the problem of continuous
probabilistic skyline query for uncertain moving objects in
road network. In our study case, the query object stays still,
while the target objects are moving with uncertainty which
is characterized by both a closed uncertainty region and a
probability density function (pdf). The main contributions
are as follows.

(1) Probabilistic skyline on uncertain moving object in
road network is introduced as a new important issue
in decision support or navigation systems.

(2) By analyzing the dominant relationship between
moving objects in uncertain position environment,
the dominant probability and skyline probability are
defined in case the query is stationary with targets
moving.

(3) Based on trigger events which are presented to track
the change of dominant relationship, a novel algo-
rithm Probabilistic Skyline query with Uncertainty
in Road network (PSUR) is proposed to deal with
the dynamic skyline query with uncertainty. A series
of pruning strategies are introduced to optimize and
fasten this incremental algorithm.

(4) A great deal of experiments on two truth datasets are
conducted to analyze the uncertain region, numbers
of static dimensions, velocity of moving objects,
and dataset size that affect the algorithm. Contrast
experiments from literature [8] are made to validate
the proposed PSUR. The experimental results show
that PSUR is effective and efficient.

The rest of this paper is organized as follows. In Section 2,
we summarize the related work of skyline computation.
In Section 3, after describing basic notion of skyline and
uncertain model for moving objects, we define dominant
probability and probabilistic skyline. Section 4 introduces
trigger events to track how dominant probability relationship
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Figure 1: An example of skyline query for uncertain data.

varies when objects are moving with uncertainty. Two prun-
ing strategies are adopted to reduce the search space. Section 5
describes PSUR algorithm to update 𝑝-skyline set. Section 6
gives experimental evaluation on two real datasets. Finally,
the conclusion is reached in Section 7.

2. Related Work

Skyline queries are hot areas of current database research
which recently have attracted more and more attention. It is
introduced into relational database firstly by Borzsony et al.
[9] with two proposed processing algorithms Block-Nested-
loops algorithm (BNL) and Extended Divide & Conquer
algorithm (D&C). As an improved method of BNL proposed
byDr.Chomicki et al. Sort-Filter-Skyline algorithm (SFS) [10]
constructs the multidecision dominative order chains for the
ordered data.NNalgorithm [11], based onR-tree, searches the
nearest neighbor recursively. It speeds up the skyline query
by reducing the comparison numbers of BNL among objects.
Nevertheless, it will cost more time and space in searching
subspace repeatedly. Overcoming this limitation, the sorted
R-tree based BBS [12] is proposed. It is one of the best skyline
query methods in centralized datasets.

In recent years, skyline query has been extended to
the dynamic datasets. The R-tree based I-Eager and I-Lazy
algorithms were brought forth by Tao and Papadias [13] who
firstly studied how to update and maintain the skyline results
in dynamic datasets.. Tian et al. [14] introduced GICSC
updating skyline query sets dynamically which better fits for
low dimension metrics. Kontaki et al. [15] exerted efforts to
maintain 𝑘-dominant skyline objects with maximum user’s
preference. Huang et al. [4] probed into the continuous
skyline query for certain moving objects. It assumes that all
points including the query point move in a predictable way.
After analyzing dominating relationship between points in
the space, Huang presented a continuous tracking algorithm-
CSQ to maintain skyline sets dynamically.

In sensor networks andmoving environment, the charac-
ters of the objects are not exactly known due to the limitations
of measuring equipment and objects’ movement. A lot of
work has focused on uncertain data. The authors in [5] stud-
ied the execution of probabilistic range and nearest-neighbor
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queries in mobile environment. The author in [16] focused
on the situation in which the location of a query object is not
exactly known. In research of skyline query field, Fiedler [17]
firstly proposed skyline operator on uncertain data in his dis-
sertation. Pei et al. [18] proposed a probabilistic skylinemodel
formultiinstance data, where each object is part of the skyline
with a certain probability. They presented two algorithms
BUM and TDM to study skyline query on uncertain data of
the possible worldmodel (PWM). Lian andChen [19] studied
reverse-skyline query.Theymodeled the probabilistic reverse
skyline query on uncertain data, in both monochromatic
and bichromatic case, and proposed two effective pruning
methods, MPRS and BPRS, to reduce the search space of
query processing. Zhang et al. [20] explored how to maintain
skyline sets when uncertain data are updated. An AR-tree is
constructed for all uncertain data, and the maintenance is
inserting, deleting, and updating on this AR-tree.The authors
in [21] designed partitioning method to compute skyline
probabilities for discrete data with uncertainty. The authors
in [8] investigated skyline probabilities with a parametric
form pdf (e.g., a Gaussian function or a Gaussian mixture
model). The authors in [22] proposed a sliding window
skyline model to study the execution of the probabilistic
skyline query over uncertain data streams [23]. The authors
studied a new problem of range-based skyline queries. Two
novel algorithms I-SKY and N-SKY were presented to solve
the probabilistic and continuous range-based skyline queries.

In road network, Huang and Jensen [24] assumed that
the user’s movement is constrained to a road network. The
authors defined route nearest-neighbour skyline queries to
consider the computation efficiency. Deng et al. [25] studied
multisource skyline query in road networks. Three different
road networks ofmultisource querymethods were presented.
The authors in [26] proposed a new method to process
continuous skyline in road network based on precomputing
the shortest range data of targets. The authors in [27]
introduced route skyline computation in a multiattribute
graph. Top routes are computed iteratively in an efficient way
and pruning technique is adopted in order to reduce the
search space. The authors in [28] focused on extracting the
path skylines and proposed PathSL to generate an optimal
skyline for moving objects.

In spite of much work focusing on uncertainty of skyline
queries or route skyline queries, there is little work completed
for skyline query concerning uncertainty of moving objects.
The authors in [4, 22–25] ignored the uncertainty of moving
objects, while the authors [8, 18, 21] dealt with discrete data
with independent dominant relationship between objects. It
is the first time to compute continuous probabilistic skyline
query with regard to uncertainty of moving objects in road
network.

3. The Probabilistic Skyline for Uncertain
Moving Objects

3.1. Skyline on Certain Points. Suppose that the point set
is 𝑆 = {𝑠

1
, 𝑠
2
, . . . , 𝑠Num}, where Num is the number

of points, each point in an 𝑛-dimensional numeric space

Table 1

Position of police car A B C D E
Number of policemen 6 6 6 4 5
Equipment level 3 3 2 3 2
Network distance to 𝑂 125 130 140 155 90

𝐷 = {𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
}. The original concept of skyline is based

on the notion of dominance. Let 𝑋 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
), 𝑌 =

(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
), 𝑋 ∈ 𝑆, 𝑌 ∈ 𝑆, if ∀𝑖, 𝑥

𝑖
≤ 𝑦
𝑖
(1 ≤ 𝑖 ≤ 𝑛), and

∃𝑗, satisfy 𝑥
𝑗
< 𝑦
𝑗
(1 ≤ 𝑗 ≤ 𝑛), then 𝑋 is said to dominate

𝑌, donated by 𝑋 ≺ 𝑌. Given a set of objects 𝑆, an object 𝑋 is
a skyline point if there is not any other point dominating 𝑋.
The skyline on 𝑆 is the set of all skyline points.

3.2. Uncertain Model for Moving Objects. After Wolfson
et al. [1] firstly studied the uncertainty of moving objects,
a lot of work has focused on this field [5–7]. An uncertain
region [5] of a moving object𝑀𝑖 at time 𝑡, denoted by 𝑈𝑖(𝑡),
is a closed irregular region with a velocity V⃗ such that the
recorded location 𝑂

𝑖
can be found only inside this region.

The pdf represents the probability density distribution of an
object in its uncertain region. The uncertainty pdf [5] of an
object𝑀𝑖, denoted by 𝑓(𝑜

𝑖
), is a pdf of 𝑂

𝑖
, that has a value of

0 outside 𝑈𝑖(𝑡).

3.3.TheDominant Probability. Whatwemainly study on is as
follows. There is a set of moving target objects whose centers
are 𝑂 = {𝑜

1
, 𝑜
2
, . . . , 𝑜Num} ∈ 𝑅

𝑛 and a stationary object 𝑞 as
a query point to continuously compute updated probabilistic
skyline dataset.

Dissimilar to the traditional skyline query, in moving
environment, the spatial location is changing with time. All
attributes are divided into dynamic attributes and static ones.
Let us suppose that there are 𝑚 dynamic attributes, 𝑘 static
attributes, and 𝑛 attributes where 𝑛 = 𝑚 + 𝑘. For each object
𝑂
𝑖
= (𝑥
𝑖

1
, 𝑥
𝑖

2
, . . . , 𝑥

𝑖

𝑑
)
𝑇, the static attributes construct a vector

denoted by𝑂𝑆
𝑖
= (𝑥
𝑖

𝑆1
, 𝑥
𝑖

𝑆2
, . . . , 𝑥

𝑖

𝑆𝑘
)
𝑇, while the dynamic ones

are made up of a vector 𝑂𝑑
𝑖
= (𝑥
𝑖

𝑑1
, 𝑥
𝑖

𝑑2
, . . . , 𝑥

𝑖

𝑑𝑚
)
𝑇, where

𝑛 = 𝑘+𝑚. For instance, in Figure 1, the number of police and
equipment level belong to static attributes because they are
invariant in our study case. However, the distance from𝑂

𝑖
to

𝑞 is varying continuously with police car𝑂
𝑖
moving. In order

to simplify the description, dynamic attributes are supposed
to include only spatial position (Table 1).

Definition 1 (dominant probability). Let 𝑂
𝑖
, 𝑂
𝑗
be two mov-

ing objects with uncertainty and 𝑞 be a stationary query point.
Then probability that 𝑂

𝑗
dominates 𝑂

𝑖
is

𝑝 (𝑜
𝑗
≺ 𝑜
𝑖
)

= ∫
𝑈𝑟𝑂𝑗

∫
𝑈𝑟𝑂𝑖

𝑓
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𝑖
) 𝑓
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𝑗
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𝑗
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,

(1)

where 𝑓
𝑂𝑖
( ⃗𝑥
𝑖
) and 𝑓

𝑂𝑗
( ⃗𝑥
𝑗
) are probability density function of

object 𝑂
𝑖
and 𝑂

𝑗
, ⃗𝑥
𝑗
∈ 𝑈𝑟(𝑂

𝑗
), ⃗𝑥
𝑖
∈ 𝑈𝑟(𝑂

𝑖
), and function
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Figure 2: Dominant probability.

isdom ( ⃗𝑥
𝑗
, ⃗𝑥
𝑖
) = {

1 dist( ⃗𝑥𝑗 ,𝑞)≤dist( ⃗𝑥𝑖 ,𝑞)
0 otherwise , dist( ⃗𝑥

𝑗
, 𝑞) is

Euclidean distance between 𝑥
𝑗
and 𝑞.

According to the definition of dominance in (1), we
maintain that 𝑂

𝑗
can have dominance probability on 𝑂

𝑖
only

if the static attributes of 𝑂
𝑗
dominate the static ones of 𝑂

𝑖
.

As shown in Figure 2, for arbitrary point 𝑥
𝑗
in 𝑈𝑟(𝑂

𝑗
), each

point 𝑥
𝑖
in𝑈𝑟(𝑂

𝑖
) that satisfies dist( ⃗𝑥

𝑗
, 𝑞) ≤ dist( ⃗𝑥

𝑖
, 𝑞)will be

dominated by 𝑥
𝑗
, as the hatched area shows.

3.4. The Skyline Probability

Definition 2 (skyline probability). The skyline probability of
object 𝑂

𝑖
is the likelihood that object 𝑂

𝑖
is not dominated by

any other object and is defined below:

Pr (𝑜
𝑖
) = Pr( ∧

𝑂𝑗∈𝑂

𝑂
𝑗
! ≺ 𝑂
𝑖
)

= ∫
𝑈𝑟𝑂𝑖

𝑓
𝑂𝑖
( ⃗𝑥
𝑖
)

×∏(1 − ∫𝑓
𝑂𝑗
( ⃗𝑥
𝑗
) isdom ( ⃗𝑥

𝑖
, ⃗𝑥
𝑗
) 𝑑𝑜
𝑗
)𝑑𝑜
𝑖
,

(2)

where 𝑓
𝑂𝑖
( ⃗𝑥
𝑖
) and 𝑓

𝑂𝑗
( ⃗𝑥
𝑗
) are probability density function of

object 𝑂
𝑖
and 𝑂

𝑗
, respectively, ⃗𝑥

𝑗
∈ 𝑈𝑟(𝑂

𝑗
), ⃗𝑥
𝑖
∈ 𝑈𝑟(𝑂

𝑖
).

Definition 3 (𝑝-skyline). Let 𝑝 ∈ [0 ⋅ ⋅ ⋅ 1] be a threshold. The
𝑝-skyline is the set of objects for which the following property
holds:

𝑆
𝜏
= {𝑂
𝑖
∈ 𝑂 | Pr (𝑂

𝑖
) ≥ 𝑝} . (3)

3.5. UncertainModel in RoadNetwork. The road network can
be treated as a nondirection graph 𝐺 = ⟨𝑉, 𝐸,𝑊⟩, where 𝑉 is
node set representing crossroad, 𝐸 is edge representing roads
between two crossroads, and𝑊 is length of 𝐸.
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Figure 3: Uncertain model in road network.

In road network, the objects are limited movement, so
the uncertain domain is denoted by a line segment with 𝑓(𝑡)
distribution, which 𝑓(𝑡) is pdf, as Figure 3 shows.

Denote 𝑑(V, V󸀠) by the shortest path between nodes V and
V󸀠. 𝑑(V, V󸀠) = ∞ if there exists no path from V to V󸀠. In road
network, the distance is represented by shortest path.

Definition 4 (minimum distance function). The minimum
distance between uncertain object 𝑂

𝑖
to query 𝑞 at time 𝑡 is

denoted by 𝑑min(𝑞, 𝑜𝑖) = 𝑑(𝑞, 𝑜𝑖) − 𝑟.

Definition 5 (maximum distance function). The maximum
distance between uncertain object 𝑂

𝑖
to query 𝑞 at time 𝑡 is

denoted by 𝑑max(𝑞, 𝑜𝑖) = 𝑑(𝑞, 𝑜𝑖) + 𝑟.

In continuous movement, the dominant relationship of
two objects will change. For two moving objects 𝑂

𝑖
and 𝑂

𝑗
,

𝑝 (𝑜
𝑗
≺ 𝑜
𝑖
)

=

{{{{{{{{{{{

{{{{{{{{{{{

{

1

𝑑max (𝑞, 𝑜𝑗) ≤ 𝑑min (𝑞, 𝑜𝑖)

0

𝑑min (𝑞, 𝑜𝑗) ≥ 𝑑max (𝑞, 𝑜𝑖)

∫
𝑈𝑟𝑂𝑗

∫
𝑈𝑟𝑂𝑖

𝑓
𝑂𝑖
( ⃗𝑥
𝑖
) 𝑓
𝑂𝑗
( ⃗𝑥
𝑗
) isdom ( ⃗𝑥

𝑗
, ⃗𝑥
𝑖
) 𝑑𝑜
𝑖
𝑑𝑜
𝑗

𝑑min (𝑞, 𝑜𝑗) < 𝑑max (𝑞, 𝑜𝑖) ,

𝑑max (𝑞, 𝑜𝑗) > 𝑑min (𝑞, 𝑜𝑖) .

(4)

The maximum and minimum distance functions maybe
intersect with each other among moving objects. Two dis-
tance functions of object𝑂

𝑖
and𝑂

𝑗
are given in Figure 4.The

maximum distance of 𝑂
𝑖
is less than the minimum distance

of 𝑂
𝑗
prior to time 𝑡

1
, so 𝑂

𝑗
cannot dominate 𝑂

𝑖
. 𝑂
𝑗
might

begin to dominate𝑂
𝑖
from 𝑡

1
to 𝑡
2
, as the hatched area shows,

so does it from 𝑡
3
to 𝑡
4
, and from 𝑡

5
to 𝑡
6
.

4. Tracking by Events

Theprobabilistic skyline set is updated in an incremental way.
The key step is how to predict the time when the dominant
relationship changes. It’s hard to know the accurate timewhen
𝑝-skyline just change. But we can estimate period of time
during which the 𝑝-skyline may change.

4.1. Trigger Events. As shown in Figure 4, from time 𝑡
1
to

time 𝑡
2
, the dominant relationship between 𝑂

𝑖
and 𝑂

𝑗
might

change, because the maximum distance of 𝑂
𝑖
is greater than

the minimum distance of 𝑂
𝑗
. So we call the time between
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𝑡
1
and 𝑡

2
an event. An event on 𝑂

𝑖
can be presented as

𝑒V𝑒𝑛𝑡(𝑜
𝑖
, 𝑜
𝑗
) = ⟨𝑜

𝑖
, 𝑜
𝑗
, 𝑠 𝑡𝑖𝑚𝑒, 𝑒 𝑡𝑖𝑚𝑒⟩, where 𝑂

𝑖
and 𝑂

𝑗
are

two objects whose dominant relationshipmay be variedwhen
𝑠 𝑡𝑖𝑚𝑒 and 𝑒 𝑡𝑖𝑚𝑒 are start time and end time of the event,
respectively.

4.2. The Pruning Strategy for Events. By analyzing
relationship of objects we know that if static characters
of any two objects 𝑂

𝑖
and 𝑂

𝑗
have dominant relationship,

supposing that 𝑂𝑆
𝑗
≺ 𝑂
𝑆

𝑖
, an event maybe occur. With the

query object moving, a considerable amount of events will
occur. In order to improve effectiveness of our algorithm, we
propose a series of event pruning strategies.

Pruning Strategy 1. If the dominant relationship in static
attributes between two moving objects 𝑂

𝑖
and 𝑂

𝑗
does

not exist, the intersection of those two distance functions
will cause no variation to 𝑝-skyline set. In this case, the
intersection will not cause any event.

Proof. Suppose ⃗𝑜
𝑖
= (𝑥
𝑖

1
, 𝑥
𝑖

2
, . . . , 𝑥

𝑖

𝑑
), ⃗𝑜
𝑗
= (𝑥
𝑗

1
, 𝑥
𝑗

2
, . . . , 𝑥

𝑗

𝑑
),

whose static characters are ⃗
𝑜
𝑆

𝑖
= (𝑥
𝑖

𝑠1
, 𝑥
𝑖

𝑠2
, . . . , 𝑥

𝑖

𝑠𝑘
) and ⃗

𝑜
𝑆

𝑗
=

(𝑥
𝑗

𝑠1
, 𝑥
𝑗

𝑠2
, . . . , 𝑥

𝑗

𝑠𝑘
), respectively. It is known that the static char-

acters of𝑂
𝑖
and𝑂

𝑗
do not possess any dominant relationship,

so ∃𝑘
𝑝
, 𝑘
𝑞
, 𝑥
𝑖

𝑘𝑝
> 𝑥
𝑗

𝑘𝑝

and 𝑥𝑖
𝑘𝑞
< 𝑥
𝑗

𝑘𝑞

. Even considering
their dynamic attributes, the dominant relationship does not
exist at any time. In conclusion, if the dominant relationship
in static attributes between two objects does not exist, the
intersection of their distance functions will not cause any
change for their dominant probability. Events cannot take
place.

Pruning Strategy 2. Suppose ∃𝑜
𝑖
, 𝑜
𝑗
, 𝑝(𝑜
𝑗
≺ 𝑜
𝑖
) = 1.

Event(𝑖, 𝑗, 𝑡begin, 𝑡end) is an event interrelated to 𝑂
𝑖
and 𝑂

𝑗
.

If ∃event(𝑂
𝑖
, 𝑂
𝑘
, 𝑡
󸀠

begin, 𝑡
󸀠

end) (0 < 𝑘 < Num and 𝑘 ̸= 𝑖)

and 𝑡󸀠begin < 𝑡begin, the computation for event(𝑂
𝑖
, 𝑂
𝑘
,

𝑡
󸀠

begin, 𝑡
󸀠

end) is invalid before 𝑡begin. However, if 𝑡
󸀠

end < 𝑡begin,
event(𝑖, 𝑘, 𝑡󸀠begin, 𝑡

󸀠

end) is also invalid.

Proof. Because 𝑝(𝑜
𝑗
≺ 𝑜
𝑖
) = 1, it is known that 𝑝(𝑜

𝑖
≺ 𝑜
𝑗
) = 0

prior to time 𝑡begin. The update for event(𝑂
𝑖
, 𝑂
𝑘
, 𝑡
󸀠

begin, 𝑡
󸀠

end) is
invalid. It is also invalid when 𝑡󸀠end < 𝑡begin.

5. Continuous Probabilistic Skyline
Queries Algorithm

5.1. Initialization. The initialization framework is presented
in this section. Each object has static and dynamic attributes,
so we should compute the dominance relation on static
attributes firstly. For two objects 𝑂

𝑖
and 𝑂

𝑗
, 𝑂
𝑗
might

dominate 𝑂
𝑖
only when 𝑜𝑆

𝑗
≺ 𝑜
𝑆

𝑖
(Algorithm 1). In order to

compute fast, static skyline set denoted by 𝑆static is introduced
if only the dominant relationship for static characters is
considered.

In any case objects move, 𝑆static always belongs to skyline.
In initialization step, the moving path and distance function
of each moving object need to be precomputed according to
the information of road network and moving objects, apart
from 𝑆static.

5.2. PSUR Algorithm. Not all skyline probability of objects
will change at one moment. If maximum/minimum distance
function of one object cuts that of others in Cartesian
coordinates, skyline probability of this object maybe vary
(Algorithm 2). In other words, trigger events include all
possible variations of 𝑝-skyline for each moving object.

In order to simplify the problem, we suppose that all
moving objects preserve their velocity with uniform speed.
If not, the precomputing cannot be processed in advance.
All events should be recomputed again. The movement of
moving objects to query point can be picked up with its
shortest path to query point. The intersecting time for the
distance function can be recomputed and put into event
queue sorted by time in ascending order. For each time,
skyline probabilities of moving objects under trigger events
need to be updated.

5.3. Algorithm Analysis and Discussion. The cost incurred
by our method consists of three components: initialization,
events computing, and updating by tracking.

In initialization period, computing static dominant rela-
tionship will cost 𝑂(𝑑 ⋅ 𝑛(𝑛 − 1)/2), where 𝑑 is static
dimensional degree.Themost cost is skyline probability com-
putation. The famous Simpson integration method, which is
introduced to compute skyline probability of each moving
objects Num, and time interval 𝑡. Probabilistic 𝑂((Len/ℎ)2),
where Len is uncertain segment length and ℎ is step width
of Simpson, so the cost of skyline probability of each moving
object is𝑂((Len/ℎ)2(𝑛−1)). After skyline probability compu-
tation, judgment for 𝑝-skyline objects will cost 𝑂(𝑛). Above
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Input: one query object, 𝑛moving objects;
Output: Initialization 𝑝-skyline;
(1) 𝑆static = NULL
(2) for any point 𝑜

𝑖
in 𝑂

(3) compute path(𝑜
𝑖
); //get the moving path of objects

(4) compute distance(𝑜
𝑖
); //computing distance function

(5) 𝑂
𝑖
= NULL

(6) for any point 𝑜
𝑗
(𝑗! = 𝑖) in 𝑂

(7) compare(𝑜𝑆
𝑗
, 𝑜𝑆
𝑖
); //ensure whether 𝑂

𝑗
dominate 𝑂

𝑖
in static attributes;

(8) if 𝑜𝑆
𝑗
≺ 𝑜
𝑆

𝑖

(9) flag(𝑜
𝑗
, 𝑜
𝑖
) = 1;

(10) push 𝑜
𝑗
into the 𝑂

𝑖
;

(11) else
(12) flag(𝑜

𝑗
, 𝑜
𝑖
) = 0;

(13) if the 𝑂
𝑖
= NULL

(14) 𝑆static = 𝑆static ∪ 𝑜𝑖;

Algorithm 1: Initialization.

Input: the set of moving objects𝐷, query point 𝑞, 𝑝 is the probabilistic threshold, the time interval [𝑡
𝑠
, 𝑡
𝑒
].

Output: the 𝑝-Skyline at any time instant 𝑡 within [𝑡
𝑠
, 𝑡
𝑒
].

(1) initialization();
(2) // compute events;
(3) for any point 𝑜

𝑖
in 𝑂

(4) for each point 𝑜
𝑗
in 𝑂
𝑖

(5) compute begin time s time and end time e time of each event;
(6) if s time ≤ 𝑡

𝑒
&& e time ≥ 𝑡

𝑠

(7) push it into 𝑄
𝑒
; //valid event;

(8) //handle events;
(9) time = 𝑡

𝑠
, 𝐿
𝑝
= 𝐿
𝑠

(10) while (time ≤ 𝑡
𝑒
)

(11) while (𝑄
𝑒
!= NULL)

(12) 𝑒 = 𝑄
𝑒
⋅ erase(); // pop queue’s head;

(13) while (𝑒 ⋅ 𝑡begin ≤ time)
(14) 𝑄handle ⋅ push back(𝑒); // push 𝑒 into queue;
(15) 𝑒 = 𝑄

𝑒
⋅ erase();

(16) handle(𝑄handle); //update 𝑄𝑒 and 𝑆𝑝
(17) time++;

Algorithm 2: PSUR algorithm.

all, time cost in initialization is𝑂(𝑑⋅𝑛(𝑛−1)/2+(Len/ℎ)2(𝑛−
1) + 𝑛).

In second step, the worst cost of comparison for static
dominant relationship between objects is 𝑂(𝑛(𝑛 − 1)/2). The
interaction time for arbitrary two moving objects’ distance
function will cost𝑂(𝛿

1
), where 𝛿

1
is constant.Thus it will cost

𝑂(𝛿
1
⋅ 𝑛(𝑛 − 1)/2) in this period.

Handling events generates at most 𝑛(𝑛 − 1)/2. In the
worst case, each event is valid in time period [𝑡

𝑠
, 𝑡
𝑒
], and

this requires (𝑡
𝑒
− 𝑡
𝑠
) times to deal with events. In every

processing, skyline probability related to trigger events will
cost 𝑂((Len/ℎ)2(𝑛 − 1)), while update computing for event
is 𝑂(𝛿

2
), where 𝛿

2
is constant. The total cost in this period is

𝑂((Len/ℎ)2(𝑛−1)⋅(𝑡
𝑒
−𝑡
𝑠
) ⋅𝑛(𝑛−1)/2+𝛿

2
⋅ (𝑡
𝑒
−𝑡
𝑠
) ⋅𝑛(𝑛−1)/2).

In conclusion, the total cost is added together for these
three periods, which is equivalent to 𝑂(𝑛2).

6. Experimental Evaluation

6.1. Datasets. Two real road networks are used to test the
effect and efficiency of the proposed algorithm PSUR. One
is the famous seashore city Oldenburg in Germany, which
includes 6105 nodes and 7036 edges. The other is Cixi city of
China, which contains 244 intersection nodes and 407 edges,
much smaller than the first one.We assume that the uncertain
area is segment along the road. Two distributions of uniform
and Gaussian distribution for probability density function
are adopted because these two functions are by far the most
important and commonly used in statistics. Moving objects
are generated randomly. Baseline and priority algorithms
proposed in [8] are used to compare with our method PSUR
to verify efficiency and effect. The main parameters are
segment length Len, static dimension number 𝑑, numbers of
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Figure 5: Numbers of moving objects effects of the performance in
Cixi city (𝑑 = 5, Len = 10 and 𝑡 = 20).

moving objects Num, and time interval 𝑡, and probabilistic
threshold 𝑝 is 0.5 in all experiments.

We conducted our experiments on desktop PC running
on Windows XP professional. The PC has Intel Core 2Duo
2.93GHz and 3GB RAM memory. All experiments were
coded in Visual C++ 2008.

6.2. Numbers of Moving Objects. In this experiment, suppose
𝑑 = 5, Len = 10, and 𝑡 = 20. Figure 5 shows performance
of PSUR versus baseline and priority [8] when numbers
of moving objects vary on Cixi’s road network, both in

Table 2: Event size in Cixi road network (𝑑 = 5, Len = 10, 𝑡 = 20).

Numbers of moving
objects

Event size before
pruning

Event size after
pruning

50 669 35

100 2721 95

200 10389 205

300 35009 400

400 62723 514

500 96890 736

Table 3: Event size in Oldenburg road network (𝑑 = 5, Len = 10,
𝑡 = 20).

Numbers of moving
objects

Event size before
pruning

Event size after
pruning

50 245 5

100 455 15

200 1557 41

300 3945 131

400 6464 236

500 9951 367

uniform distribution and Gaussian distribution. Likewise,
Figure 10 demonstrates the performance on road network
in Oldenburg. The figures show that runtime increases with
object’s numbers whichever the model is. No matter what
model is used, uniform or Gaussian, the cost in the same
dataset is similar. Among these three methods, the response
time of our algorithm is only one-tenth of the other two
methods. It is because baseline and priority need recompute
the probabilistic skyline set at each time while PSUR is an
incremental method.

If there is the same number of moving objects in two
real networks, the density of moving objects in Cixi is
bigger than that in Oldenburg, because Cixi is smaller than
Oldenburg. Therefore the chances for interaction of moving
objects in Cixi are more those that in Oldenburg. Trigger
events generated in Cixi are evidently more than those in
Oldenburg, as Tables 2 and 3 show. The density of moving
objects leads to this difference, because it is more sparsely
distributed in Oldenburg than in Cixi for the same number
of objects. As a result, by observing the performance between
two city networks under the same data model, such as
Figures 5(a) and 6(a), it is noted that the runtime in the
smaller city Cixi costs a little more than that in Oldenburg.

The pruning strategy has done effective work on event
size, as Tables 2 and 3 show. Event size will grow with
the number of moving objects, because the number of the
intersection of distance function rises.

6.3. The Effect of Uncertain Segment Length. In this section,
parameters are as follows: Num = 50, 𝑑 = 5 and 𝑡 = 20.
Figures 7 and 8 show performance of three algorithms when
segment length of uncertainty varies on Cixi road network
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Figure 6: Numbers of moving objects effect of the performance in Oldenburg city (𝑑 = 5, Len = 10 and 𝑡 = 20).
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Figure 7: Segment length effects of the performance in Cixi city (Num = 50, 𝑑 = 5, 𝑡 = 20).

andOldenburg city, respectively, both in uniformdistribution
and Gaussian distribution.

Themagnitude of the uncertain lengthmay also affect the
performance of algorithm PSUR. It is seen that the longer
the segment length is, the more runtime is required. If the
length becomes much longer, for any two objects 𝑂

𝑖
and 𝑂

𝑗
,

the probability that Pr(𝑂
𝑗
≺ 𝑂
𝑖
) ̸= 0, Pr(𝑂

𝑗
≺ 𝑂
𝑖
) ̸= 1 happen

becomes greater. According to the definition of event, the size
of event queue will increase, so will the times to track and
handle events. The calculation of dominance probability and

skyline probability grows with this increasing probability, so
that the cost will go up.

It is shown that the segment length of uncertainty affects
event’s size, as shown in Tables 4 and 5. With increase of
segment length, the number of events becomes great.

6.4. The Effect of Static Attribute Dimensionality. We will
discuss the effect that multidimensional attributes impact on
our algorithm over real road network. The result is shown
in Figures 9 and 10. It is known that the higher dimension
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Figure 8: Segment length effects of the performance in Oldenburg city (Num = 50, 𝑑 = 5, 𝑡 = 20).
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Figure 9: Static attribute dimensionality effects of the performance in Cixi city (Num = 50, Len = 20, 𝑡 = 20).

results in less run-time. This is because the computation of
dominance relation on static attributes is carried out only
once at the beginning. The higher the static dimensions are,
the less objects that dominant 𝑜

𝑖
are.The less the time cost on

computation of initializing adjacency list and event queue is,
the less the total runtime is.

Tables 6 and 7 show the event size changes with static
dimensionality of PSUR. Unlike preceding two experiments,
in this case, when static dimensionality 𝑑 increases, the event

size reduces instead of increasing. This is due to the fact that,
when 𝑑 increases, the number of moving objects which have
dominant relationship in static dimensionality decreases.The
distance function will interact less, so will valid events.

6.5. The Effect of Time Span. Baseline and priority are
somewhat static algorithms. They need to recompute skyline
probability for each moving object, so runtime is propor-
tional to the time span.However, as a dynamicmethod, PSUR
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Figure 10: Static attribute dimensionality effects of the performance in Oldenburg city (Num = 50, Len = 20, 𝑡 = 20).
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Figure 11: Time span effects of the performance in Cixi city (𝑑 = 5, Len = 20, Num = 100).

can update the 𝑝-skyline set by tracking event size to decide
which one might vary, so the time cost is approximately the
same as in each timestamp, which savesmore time than other
two algorithms. Figures 11 and 12 show this evidence.

Tables 8 and 9 show the event size changes with time span
length of PSUR. It is obvious that the event size grows with
increasing time span length. Nevertheless, the difference is
not significant. The runtime of PSUR varies a little in Figures
11 and 12.

7. Conclusion

To the best of our knowledge, this is the first work to
compute probabilistic skyline queries for uncertainty in road
network. In this paper, we have addressed the problem of
continuous probabilistic skyline query for moving objects.
Firstly attributes of objects are divided into static and
dynamic to define dominant probability and skyline proba-
bility with continuous data. In order to update the skyline
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Figure 12: Time span effects of the performance in Oldenburg city (𝑑 = 5, Len = 20, Num = 100).

Table 4: Event size in Cixi road work (𝑑 = 5; Num = 50; 𝑡 = 20).

Segment length Event size before
pruning

Event size after
pruning

2 1029 39
10 1597 51
20 2264 82
40 3387 113
60 4147 137
100 4450 144

Table 5: Event size in Oldenburg road work (𝑑 = 5; Num = 50;
𝑡 = 20).

Segment length Event size before
pruning

Event size after
pruning

2 190 2
10 245 5
20 306 6
40 461 7
60 611 7
100 890 16

set continuously, trigger events are introduced to compute
varying skyline probability of objects. Two pruning ways are
proposed to save search space and speed up this computation.
At last, the continuous probabilistic skyline query algorithm
with uncertainty in road network named PSUR is proposed.
Finally, a series of experiments are devised to verify the
effectiveness and efficiency of PSUR. The results of our

Table 6: Event size in Cixi road network (Len = 20; Num = 50;
𝑡 = 20).

Static
dimensionality 𝑑

Event size before
pruning

Event size after
pruning

2 543 97

3 558 72

4 665 37

5 519 21

6 620 10

7 625 5

Table 7: Event size in Oldenburg road network (Len = 20; Num =
50; 𝑡 = 20).

Segment length Event size before
pruning

Event size after
pruning

2 101 41
10 118 14
20 121 7
40 124 6
60 128 4
100 122 2

experimental study for different scales of datasets on two
real road networks are very encouraging. The investigation
demonstrates that the proposed updating method is more
effective and efficient than periodic methods.
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Table 8: Event size in Cixi road network (Len = 20; Num = 100;
𝑑 = 5).

Time span length Event size before
pruning

Event size after
pruning

5 1029 39
10 1597 51
20 2264 82
50 3387 113
80 4147 137
100 4450 144

Table 9: Event size in Oldenburg road network (Len = 20; Num =
100; 𝑑 = 5).

Segment length Event size before
pruning

Event size after
pruning

5 359 9
10 481 13
20 583 15
50 714 20
80 830 24
100 914 28
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