
Research Article
A Blocking-Aware Scheduling for Real-Time Task
Synchronization Using a Leakage-Controlled Method

Mu-Yen Chen,1 Da-Ren Chen,1 and Shu-Ming Hsieh2

1 Department of Information Management, National Taichung University of Science and Technology, Taichung City 404, Taiwan
2Department of Computer Science and Information Engineering, Hwa Hsia Institute of Technology, New Taipei City 235, Taiwan

Correspondence should be addressed to Da-Ren Chen; danny@nutc.edu.tw

Received 3 October 2013; Accepted 18 December 2013; Published 13 February 2014

Academic Editor: Hwa-Young Jeong

Copyright © 2014 Mu-Yen Chen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Due to the importance of power dissipation in the wireless sensor networks and embedded systems, real-time scheduling has
been studied in terms of various optimization problems. Real-time tasks that synchronize to enforce mutually exclusive access to
the shared resources could be blocked by lower priority tasks. While dynamic voltage scaling (DVS) is known to reduce dynamic
power consumption, it causes increased blocking time due to lower priority tasks that prolong the interval overwhich a computation
is carried out. Additionally, processor slowdown to increase execution time implies greater leakage energy consumption. In this
paper, a leakage-controlledmethod is proposed, which decreases both priority inversion and power consumption. Based on priority
ceiling protocol (PCP) and a graph reduction technique, this method can decrease more energy consumption and avoid priority
inversion for real-time tasks.

1. Introduction

Power consumption of IC devices can be briefly classified into
(1) static power consumption which consists of the power
used when the transistor is not in the switching process
and (2) dynamic power consumption which consists of the
power used to charge the load capacitance and logic states of
the device. In the last two decades, complementary metal-
oxide semiconductor (CMOS) has emerged as a dominant
technology due to its low static power dissipation. Leakage
power in CMOS circuits is due to subthreshold current that
flows through the transistors and contributes to a significant
portion of the total power consumption. Figure 1 illustrates
the trend at lower nodes that leakage power becomes almost
comparable to active power. For 90 nm and below technolo-
gies, leakage is the main factor which dominates over the
dynamic power and contributes to almost or more than 50%
of total power dissipation.

There have been multiple techniques used in the past to
reduce the power dissipation of embedded systems and have
been implemented successfully through the different levels of
design abstraction. At the system level, there are two primary

ways to reduce power consumption: processor slowdown and
shutdown. Slowdown techniques such as dynamic voltage
scaling (DVS) are preferred due to the assumptions of
low leakage power dissipation and quadratic dependence
of power on voltage level. However, energy savings based
on DVS come at the cost of increased execution time,
which implies greater leakage power consumption. With the
repaid increase in device leakage power due to the scaling
down of technology nodes, the leakage power has been a
major concern in the system design. Device scheduling is
the key factor to have the best tradeoff between the power
and characteristics such as resource sharing and system
utilization.

Many previous works have addressed DVS based on
performance requirements to minimize the dynamic power
consumption [1–13]. While techniques to optimize the total
static and dynamic power consumption have been pro-
posed, they are still based on the ideal system environ-
mentwithout considering resource synchronization problem.
Recently, researchers have started exploring energy-efficient
scheduling with the considerations of leakage current [4–
6, 14–16]. To reduce the leakage power, a system might be

Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2014, Article ID 428230, 9 pages
http://dx.doi.org/10.1155/2014/428230

2 International Journal of Distributed Sensor Networks

0

20

40

60

80

100

120

140

160

To
ta

l c
hi

p
po

w
er

 (W
)

0.25 𝜇m 0.18𝜇m 0.13𝜇m 0.90 nm 0.65 nm
Technology node

Leakage power
Active power

Figure 1: Leakage versus dynamic power trend [1, 19, 20].

turned off (to enter a dormant mode) when not used. For
periodic real-time tasks, Jejurikar et al. [6] and Lee et al.
[14] proposed energy-efficient scheduling on a uniprocessor
by procrastination scheduling to decide when to turn off
the system. Jejurikar and Gupta [5, 15] further considered
real-time tasks that might complete earlier than its worst-
case execution time (WCET) by extending the algorithms
presented in [6]. For DVS processor with aperiodic real-
time tasks, Irani et al. [4] proposed a 3-approximation
algorithm to minimize leakage current on the uniprocessor
with continuous available speeds. It guarantees to derive a
solution with the energy consumption at most three times
energy consumption of an optimal solution. For aperiodic
real-time tasks without DVS, Baptiste [17] developed an
algorithm that minimized the energy consumption resulting
from the leakage current and the overhead to turn on/off
the system. In the periodic real-time task systems, Quan et
al. [13] and Niu and Quan [16] proposed a leakage-aware
method that expands all the jobs in the hyperperiod of the
given tasks and calculates their latest starting time on the
fly.The computation overheads produced by their algorithms
might be too much to be applied in an online scheduling. In
addition to considering the leakage current of the processor,
leakage power consumption produced by system devices was
also considered in [18] as well as their preemption control [9].
The objectives of the above methods are proposed to reduce
the system power and do not consider other advantages or
purposes of leakage-aware techniques. For example, one can
shut down aprocessor before the beginning of a lower priority
task that intents to lock a shared resource required earlier by
a higher priority task.

Work-demanded analysis has been extensively inves-
tigated in real-time systems in which sporadic tasks are
jointly scheduled with periodic tasks [3, 7–9, 11, 12, 15, 21].
The purpose of work-demanded analysis is to improve the
response times of aperiodic tasks or to increase their accep-
tance ratio. It also benefits the power-saving on both DVS

and leakage-aware methods. Pillai and Shin [12] proposed a
cycle-conserving rate-monotonic (ccRM) scheduling scheme
that contains offline and online algorithms. The offline
algorithm computes the worst-case response time of each
task and derives the maximum speed needed to meet all task
deadlines. It recomputes the task utilization by comparing
the actual time for completed tasks with WCET schedule.
In other words, when a task completes early, they have to
compare the used actual processor cycles to a precomputed
worst-case execution time schedule. This WCET schedule
is also called canonical schedule [22] whose length could
be the least common multiplier of task periods. ccRM is
a conservative method, as it only considers possible slack
time before the next task arrival (NTA) of current job.
Gruian proposed a DVS method for offline task stretching
and online slack distribution [3]. The offline part of this
method consists of two separate techniques. One focuses
on the intratask stochastic voltage scheduling that employs
a task-execution length probability function. The second
technique computes stretching factors by using a response
time analysis. It is similar to Pillar and Shin’s offline technique,
but instead of adopting a stretching factor for all tasks
before NTA, Gruian assigns different stretching factor to
the individual task within the longest task period. Kim et
al. [8] proposed a greedy online algorithm called the low-
power work-demand analysis (lpWDA) that derives slack
from low-priority tasks, as opposed to the method in [3, 12]
that gains slack time from high-priority tasks.This algorithm
also balances the gap in voltage levels between high-priority
and low-priority tasks. Its analysis interval limited by the
longest of task periods is longer than NTA. Thus, lpWDA
gains more energy saving than the previous rate-monotonic
(RM) DVS schemes applying NTA. Therefore, these slack
reclamation methods are applicable not only to increase
energy-saving and schedulability but also to the newmethods
on different scheduling criteria. For example, slack time can
also be applied to avoid priority inversion incurred by task
synchronization.

Though power-aware real-time scheduling problems are
well studied, relatively few works of them considered task
synchronization problems. Most embedded real-time appli-
cations have to share the resources such as I/O devices
or database and mutually exclusive access to these shared
objects. Concurrent access to shared data may result in data
inconsistency. Mechanisms that force tasks to execute in
a certain order so that data consistency is maintained are
known as synchronization protocols. If a lower priority job
has access to a resource, a higher priority job requesting the
resource is blocked and canmiss its deadline.Therefore, real-
time task synchronization is developed to achieve data con-
sistencywith as little loss in schedulability as possible. Priority
ceiling protocol (PCP) [23, 24] is a synchronization protocol
for shared resources to avoid deadlock and unbounded
priority inversion due to wrong nesting of critical sections.
In PCP, each resource is assigned a priority ceiling, which is a
priority equal to the highest priority of any task which may
lock the resource. PCP has the interesting and very useful
property that no task can be blocked for longer than the
duration of the longest critical section of any lower-priority

International Journal of Distributed Sensor Networks 3

task. The recent related work is an extension of PCP in
frequency inheritance. Zang and Chanson [25] proposed a
dual-speed (DS) algorithm: one is for the execution of a
task when it is not blocked, and the other is adopted to
execute the task in the critical section when it is blocked.
Jejurikar and Gupta [26] compute two slowdown factors,
which can be classified into static slowdown, computed
offline based on task properties, and dynamic slowdown,
computed using online task execution information. Chen and
Kuo [2] proposed a DVS method using frequency locking
concept which can be used to render energy-efficient to the
existing real-time task synchronization protocols. However,
DVS may decelerate the blocking tasks in the critical section
and receive additional priority inversion which increases the
difficulties of predictability of the schedule.

In this paper, we propose a blocking-aware task synchro-
nizationmethod, which decreases both priority inversion and
energy-consumption of the processor. Graph theories have
been applied in the scheduling which transforms an existing
resource allocation graph (bipartite graph) to a weighted-
directed graph (WDG). Our idea is based on PCP and
available slack time in the schedule. We use WDG to analyze
and present the available slack time, preemption points, and
the lengths of priority inversions.The timing and its duration
for switching processor status can be computed by traversing
the WDG in which lower-priority tasks have intention to
lock on some resources.The proposedmethod can utilize the
existing work-demanded analysis methods such as lpWDA
[8] and Gruian’s methods [3] to squeeze additional slack time
from lower priority tasks so as to further decrease priority
inversion.

The remainder of this paper is organized as follows.
Section 2 explains our system model. The motivations and
basic idea on the task synchronization method are proposed
in Section 3. Section 4 describes the proposed algorithm
and its example. We present the performance evaluation in
Section 5. Section 6 gives conclusions and their future work.

2. System Model

2.1. Task Model. This paper studies periodic real-time tasks
that are independent during the runtime. Let T be the set
of input periodic tasks and 𝑛 denotes the number of tasks.
Each task 𝜏

𝑖
is an infinite sequence of task instances, referred

to as jobs. The jth invocation (job) of task 𝜏
𝑖
is denoted as 𝐽

𝑖,𝑗

whose actual start time is denoted as 𝑆(𝐽
𝑖,𝑗
). A three-tuple 𝜏

𝑖
=

{𝑇
𝑖
, 𝐷
𝑖
, 𝐶
𝑖
} represents each task, where 𝑇

𝑖
is the period of the

task, 𝐷
𝑖
is the relative deadline with 𝐷

𝑖
= 𝑇
𝑖
, and 𝐶

𝑖
denotes

the worst-case execution time (WCET). The period length of
task 𝑇

𝑖
is unique in order to have each task a unique priority

index in the rate-monotonic (RM) scheduling. Notation 𝑠
𝑖,𝑗

denotes the available slack time for job 𝐽
𝑖,𝑗
.

2.2. Power Model. All tasks are scheduled on a single pro-
cessor which supports two modes: dormant mode and active
mode. When the processor is switched to the dormant
mode, the power-consumption of the processor is assumed
𝑆dorm = 0 by scaling the static power consumption [27], while

the system clock and chipset retain necessary functions to
support motoring and waking up processor properly. When
executing the jobs, the processor has to be in the active mode
with speed 𝑆active. A processor shutdown and wakeup have
a higher overhead than the inherent energy/delay cost of
turning on the processor. The processor loses the cache and
register contents, when it switched to the deepest dormant
mode. Therefore, prior to shutdown, all statuses of processor
must be saved or flushed to main memory, resulting in
an additional overhead. On wakeup, components such as
data and instruction caches, data and translation look aside
buffers, (TLBs) have to be initialized. This results in extra
memory accesses and hence additional energy consumption.
Let 𝐸sw and 𝑡sw denote energy and time overhead, respec-
tively, for switching from dormant mode to active mode.
Based on the idle power consumption, when processor is idle
in the active mode, the processor executes NOP instruction
at processor speed 𝑆idle for low-power consumption referred
to as P(𝑆idle). When processor is idle and the idle interval is
longer than break-even time 𝐸sw/𝑃(𝑆idle), turning it to the
dormant mode is worthwhile.

2.3. Resource Access Model. We assume that semaphores
are used for task synchronization. All tasks are assumed
to be preemptive, while the access to the nonpreemptive
shared resources must be serialized. Therefore, a task can
be blocked by lower priority tasks. When a task has been
granted access to a shared resource, it is said to be executing
in its critical section [24]. The kth critical section of task 𝜏

𝑖

is denoted as 𝑧
𝑖,𝑘

which is properly nested. Each task knows
the relative start time to access the required shared resources
and their required WCETs. With the given information in
[28], we can compute the maximum blocking time for a task.
In the different resource synchronization protocol such as
PCP [23], each job might suffer from a different amount of
blocking time from lower-priority task due to access conflict.
The goal of this paper is to propose a leakage-aware task
synchronization protocol based on PCP, which reduces the
priority inversion and energy-consumption of the processor.
We propose a data structure called weighted directed graph
(WDG) which expresses possible priority inversion online.
By traversing WDG, we can postpone the intention to
locking on the resources invoked by lower-priority tasks and
therefore minimize the priority inversions.

3. Motivating Example

Suppose that we have three jobs 𝐽
1
, 𝐽
2
, and 𝐽

3
and three shared

data structures protected by the binary semaphores 𝑧
0
, 𝑧
1
,

and 𝑧
2
in the system. In accordance with PCP, the sequence

of events is depicted in Figure 2(a). A line at a lower level
indicates that the corresponding job is blocked or preempted
by a higher-priority job while the processor mode is active. A
line raised to a higher level denotes that the job is executing,
and the absence of a line denotes that the job has not yet
been initiated or has completed. A bold line at low level
denotes that the processor has been switched in dormant
mode. Suppose the following.

4 International Journal of Distributed Sensor Networks

(i) At time 𝑡
0
, 𝐽
3
is initiated and locks semaphore 𝑧

2
at 𝑡󸀠
0
.

(ii) At time 𝑡
1
, 𝐽
2
is initiated and preempts 𝐽

3
.

(iii) At time 𝑡
2
, 𝐽
2
cannot lock 𝑧

2
and 𝐽

3
inherits the

priority of job 𝐽
2
and resumes execution.

(iv) At time 𝑡
3
, 𝐽
3
successfully enters its nested critical

section 𝑧
1
.

(v) At time 𝑡
4
, 𝐽
1
preempts 𝐽

3
within 𝑧

1
and executes its

noncritical section code.
(vi) At time 𝑡

5
, 𝐽
1
attempts to enter its critical section 𝑧

0

and is blocked by 𝐽
3
due to priority ceiling.

(vii) At time 𝑡
6
, 𝐽
3
exits its critical section 𝑧

1
and 𝐽

1
is

awakened.
(viii) At time 𝑡

7
, 𝐽
1
completes its execution and 𝐽

3
resumes

its execution of 𝑧
2
due to its inherited priority.

(ix) At time 𝑡
8
, 𝐽
3
exits its critical section 𝑧

2
and returns to

its original priority, and 𝐽
2
is awakened.

The blocking intervals introduced by primitive PCP are
[𝑡
2
, 𝑡
4
], [𝑡
5
, 𝑡
6
], and [𝑡

7
, 𝑡
8
].

This study is motivated by the significant priority inver-
sion that is incurred from task synchronization. When the
available static slack time (unused time in the WCET sched-
ule) or dynamic slack (occurred in the early-completed task)
is larger than break-even time, the lower-priority task intent
to lock a semaphore can be postponed until the start time
of a higher-priority task. A practical approach is to postpone
the task execution by switching processor to dormant mode.
During the sleeping time, system still has awareness of the
arrival of other jobs and awakes processor at proper time.
The example in Figure 2(b) postpones the request of lower-
priority task intent to lock a semaphore. At time 𝑡

1
, 𝐽
3
has

available slack in interval [𝑡
11
, 𝑡
12
] with length longer than

break-even time. When a system is conscious that 𝐽
3
has

intent to lock 𝑧
2
, it computes the upcoming start time of

higher priority tasks that might be blocked by 𝐽
3
according

to PCP. In the example, only 𝐽
2
could be blocked by 𝐽

3
due

to 𝑧
1
and 𝑧

2
, and the length of interval [𝑡

1
, 𝑡
2
] is less than

the available slack, that is, [𝑡
10
, 𝑡
11
] in Figure 2(a). Therefore,

processor can be switched to dormant mode at time 𝑡
1
until

the start time of 𝐽
2
. At time 𝑡

2
, processor becomes active

and 𝐽
2
preempts 𝐽

3
such that 𝐽

3
is still unable to lock 𝑧

2
,

and thus 𝐽
2
could lock 𝑧

2
at time 𝑡

3
. Additionally, the 𝐽

2
’s

noncritical section also is not blocked by 𝐽
3
because 𝐽

3
cannot

inherit the priority of 𝐽
2
due to failure in locking 𝑧

2
at 𝑡
1
.

Comparing to the result of Figure 2(a), this idea can reduce
(maximum) priority inversion of intervals [𝑡

2
, 𝑡
4
], [𝑡
5
, 𝑡
6
],

and [𝑡
7
, 𝑡
8
]. Table 1 presents the length of blocking time in a

systematic way [28]. It lists only the nonzero elements; all the
other elements are zero, since jobs are not blocked by higher
priority jobs. The elements labeled with “∗” in this table are
zero as well.

4. Latency Locking PCP

In this study, PCP is extended with the concept of latency
locking, referred to as LL-PCP. The idea is to perform

t0 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

Time

z2 locked

z2unlockedz1unlocked

z2unlocked

Blocked byJ2

(Attempt to lock z2)

󳰀

(Attempt to lock z2)

Blocked by J2

z0 locked z1 locked

z2 locked z1 locked

J1

J2

J3

(a)

Unable to lock z2

z0
z1

z2

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

z2 locked

z2 locked

z1 locked z2unlockedz2unlocked

z2unlocked

J1

J2

J3

Sleep

z0 locked z1 locked

Time

(b)

Figure 2: The task synchronization of (a) primitive PCP and (b)
latency locking method.

preanalysis of possible priority inversion and available slack
time in the schedule. LL-PCP derives the best timing and
duration for switching processor to dormant mode and thus
reduces priority inversion. To understand and control the
sequence of intent to lock resources, tasks are organized as a
weighted directed graph (WDG) reduced from the resource
allocation bipartite graph in [28]. In the bipartite graph, each
indirect edge is labeled with the time required to access the
resources. Let 𝐺 = (𝑈,𝑉, 𝐸) denote a bipartite graph whose
partition of vertices has two subsets 𝑈 and 𝑉 ⋅ 𝐸 denotes the
set of edges of𝐺, and𝑈 denotes a task setT. LetWDG(T, 𝐴)
denote a weighted directed graph whose vertices in T ⊆ 𝑈
are arranged according to their task indices. For each edge
𝑒
𝑢,V ∈ 𝐸, 𝜏𝑢 ∈ 𝑈, and 𝑧V ∈ 𝑉, the set of arcs 𝐴 in WDG are
generated as follows.

Step 1. For any pair of vertices 𝜏
𝑥
, 𝜏
𝑦
∈ 𝑈, and 𝑥 > 𝑦, a solid

arc 𝑎(𝑥, 𝑦) ∈ 𝐴 is directed from 𝜏
𝑥
to 𝜏
𝑦
if there exist two or

more edges 𝑒
𝑥,V and 𝑒𝑦,V in 𝐺, where 𝑧V ∈ 𝑉.

Step 2. For any pair of vertices 𝜏
𝑥
, 𝜏
𝑤
∈ 𝑈, and𝑥 > 𝑤, a dotted

arc 𝑎(𝑥, 𝑤) ∈ 𝐴 is directed from 𝜏
𝑥
to 𝜏
𝑤
if there exists a vertex

𝜏
𝑦
∈ 𝑈, 𝑤 > 𝑦, and 𝜏

𝑥
and 𝜏
𝑦
satisfy Step 1.

Step 3. In WDG, for any pair of vertices with multiple arcs,
eliminate the dotted arcs having the same blocking time as
that of one of their solid arcs.

International Journal of Distributed Sensor Networks 5

Table 1: Example illustrating the computation of blocking times.

Directly blocked by Priority-inher blocked by
𝐽
2

𝐽
3

𝐽
2

𝐽
3

max
𝐽
1

3 3
𝐽
2
∗ 4 ∗ 3 4

𝐽
3
∗ ∗ ∗ ∗ ∗

Different from the bipartite graph, each vertex in the
WDG corresponds to a task but resource. A task 𝜏

𝐿
directly

blocking a higher-priority task 𝜏
𝐻
is represented by a solid arc

𝑎(𝜏
𝐿
, 𝜏
𝐻
) from task vertex 𝜏

𝐿
to 𝜏
𝐻
, while an indirect block

is represented by a dotted arc. In Figure 3(a), the bipartite
graph is derived from Figure 2(a) and can be reduced to the
WDG in Figure 3(b). The maximum priority inversion of 𝐽

2

is composed of a direct and indirect blocking incurred by 𝐽
3
.

The values of these two arcs can be combined because the
indirect blocking is due to priority inheritance of job 𝐽

1
. We

may label each arc by a 3-tuple; the first element of each 3-
tuple gives the actual starting time of higher-priority tasks
and is defined as 𝑆(𝜏

𝐻
), while the second element gives the

locking time of 𝜏
𝐿
on semaphore 𝑧 and is denoted as 𝐿(𝜏

𝐿
, 𝑧).

The last element specifies the duration of the maximum
priority inversion and is denoted as 𝐼(𝜏

𝐿
, 𝜏
𝐻
). The first two

elements are updated during runtime while the third element
is derived according to PCP. The example of the 3-tuple
labels is illustrated in Figure 3(b). In accordance with the
parameters, the proposed evaluation functions are defined as
shown in Algorithm 1.

Definition 1 (expected sleeping interval, ESI). In order to
prevent job 𝐽

𝐿
from blocking job 𝐽

𝐻
, the expected sleep

interval for 𝐽
𝐿
is defined as

ESI
𝐿,𝐻
= [𝐿 (𝐽

𝐿
, 𝑧) , 𝑆 (𝐽

𝐻
)) − ⋃

∀𝜏𝜆∈J,𝜆<𝐿

𝑁𝐶
[𝐿,𝐻]

𝜆
, (1)

where𝑁𝐶[𝐿,𝐻]
𝜆

denotes the set of noncritical-section intervals
of job 𝐽

𝜆
in interval [𝐿(𝐽

𝐿
, 𝑧), 𝑆(𝐽

𝐻
)). The length of ESI

𝐿,𝐻
is

denoted as

𝛼
𝐿,𝐻
= 𝑆 (𝐽

𝐻
) − 𝐿 (𝐽

𝐿
, 𝑧) − ∑

∀𝜏𝜆∈𝐼,𝜆<𝐿

󵄨
󵄨
󵄨
󵄨
󵄨
𝑁𝐶
[𝐿,𝐻]

𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
. (2)

Definition 2 (reduction of priority inversion time, RPI). The
expected reduction of priority inversion time due to the
processor sleeping in the ESI

𝐿,𝐻
is defined. The value of RPI

is derived from

𝛽
𝐿,𝐻
= 𝐼 (𝜏

𝐿
, 𝜏
𝐻
) − 𝛼
𝐿,𝐻
. (3)

According to (1), (2), and (3), we define a reward function
for each arc in WDG.

Definition 3. A reward function for each arc in WDG is
defined as

𝑅𝐸𝑊(𝜏
𝐿
, 𝜏
𝐻
) =

𝛽
𝐿,𝐻

𝛼
𝐿,𝐻

. (4)

The reward for an arc referred to the reduction of priority
inversion time if the processor is switched to sleep during the
interval ESI

𝐿,𝐻
. Whenever a new job 𝐽

𝑖
arrives, the value of

REW(𝜏
𝐿
, 𝜏
𝑖
) with respect to each arc is refreshed. The larger

the value of REW, the longer the priority inversion in the
schedule will be avoided. For example, in Figure 3(b), the
values of 𝛼

3,1
and 𝛼

3,2
are, respectively, 𝑡

4
− 𝑡
󸀠

0
and 𝑡
1
− 𝑡
󸀠

0
,

and the values of 𝛽
3,1

and 𝛽
3,2

are, respectively, 3 − (𝑡
4
− 𝑡
󸀠

0
)

and 7 − (𝑡
1
− 𝑡
󸀠

0
). In accordance with (4), the values of

REW(3,1) and REW(3,2) are (3 − (𝑡
4
− 𝑡
󸀠

0
))/(𝑡
4
− 𝑡
󸀠

0
) and

(7 − (𝑡
1
− 𝑡
󸀠

0
))/(𝑡
1
− 𝑡
󸀠

0
). Assuming that available slack for

𝜏
3
is larger than the value of (𝑡

1
− 𝑡
󸀠

0
), the processor decides to

sleep in the duration of [𝑡󸀠
0
, 𝑡
1
].

By updating the information of arcs inWDG during run-
time, we can traverse the vertices of WDG by following the
current job andmake decisions on switching the processor to
active or dormant mode. Additionally, the values of ESI can
be updated on the fly according to the dynamic slack time due
to early completion of a job. Also, the arcs corresponding to
the unused resources due to early completion can be removed
from this job vertex.

5. Experimental Results

To evaluate the effectiveness of the proposed scheduling
method, we implemented the following techniques and
derived their energy consumption.

(i) Primitive PCP: all tasks are executed at maximum
speed and use PCP for accessing the shared resources
[23].

(ii) P-PCP: all tasks are scheduled using procrastination
technique under fixed priority [5].

(iii) DVS-PCP: all tasks are scheduled according to the
RM-DVS scheduling based on the slowdown factor
proposed in [26].

(iv) LL-PCP: all tasks are scheduled according to the
proposed method.

We use the processor power model in [5] and consider
energy overhead of shutdown required by on-chip cache.
With an energy cost of 13 nJ [15] per memory write, the cost
of flushing the data cache is computed as 85 uJ. On wakeup,
we assume a cost of 98uJ total energy overhead. Additionally,
we assume that cache energy overhead to actual charging of
circuit logic requires 300 uJ, and the total cost is 85 + 98 +
300 = 483 uJ. In the experiment, we consider 2000 task sets,
and each set contains up to 12 randomly generated tasks. Each
task was assigned a random period and WCET in the range
[10ms, 125ms] and [0.5ms, 10ms], respectively, to reflect
real life real-time applications. A set of shared resources and
its mapping to a set of tasks are generated randomly. For
simplicity, the number of resources is less than or equal to
the number of tasks of the corresponding task set and all
resources are mutually exclusive accessed by those tasks.

In Figure 4, the comparison of the energy consumption
of the techniques is as a function of the number of task,

6 International Journal of Distributed Sensor Networks

Input: a set of task 𝑇, a set of resources 𝑅.
(Offline part)

(1) Reduce bipartite graph to WDG (𝑇, 𝐴);
(2) Compute the value of 𝐼 (𝜏

𝐿
, 𝜏
𝐻
) with respect to each arc

𝑎 (𝜏
𝐿
, 𝜏
𝐻
) in WDG.

(Online part)

On arrival of a job Ji
(3) Identify a set of tasks 𝑇

𝐻
containing higher

priority task 𝜏
𝐻
than that of 𝐽

𝑖
;

(4) Update the value of REW(𝜏
𝑖
, 𝜏
𝐻
) for each

arc 𝑎(𝜏
𝑖
, 𝜏
𝐻
) in WDG and 𝜏

𝐻
∈ 𝑇
𝐻
;

(5) Construct a set 𝐴󸀠
𝑖
of outgoing arcs of 𝜏

𝑖
,

𝐴
󸀠

𝑖
= {𝑎(𝜏

𝑖
, 𝜏
𝐻
) | 𝛼
𝑖,𝐻
≥

𝐸SW

𝑃(𝑆idle)
}

(6) Compute the static available slack 𝑠
𝐻
for

each job in 𝑇
𝐻
;

(7) Compare each 𝑠
𝐻
to the corresponding 𝛼

value of the arcs in 𝐴󸀠
𝑖
;

(8) Construct an arc set 𝐴󸀠󸀠
𝑖
⊂ 𝐴
󸀠

𝑖
where 𝐴󸀠󸀠

𝑖

= {𝑎(𝜏
𝑖
, 𝜏
𝑥
) | 𝑠
𝐻
≥ 𝛼
𝑥,𝑖
, 𝑎(𝜏
𝑖
, 𝜏
𝑥
) ∈ 𝐴󸀠

𝑖
and 𝜏

𝑥
∈ 𝑇
𝐻
};

(9) Search for an arc 𝑎(𝜏
𝑖
, 𝜏
𝑥
) in 𝐴󸀠󸀠

𝑖
with the

maximum value of REW(𝜏
𝑖
, 𝜏
𝑥
) where 𝜏

𝑥
∈ 𝑇
𝐻
;

(10) IF the processor is in active mode THEN
switch the processor to dormant mode until time
𝑆(𝜏
𝑥
);

On the beginning of one of the intervals in ESIL,x
(11) Switching the processor to 𝑆dorm until the

end of the interval;
On turning the processor to the active mode at time t
(12) Schedule the highest priority job in the

ready queue; On early-completion of a job at time 𝑡;
(13) Compute dynamic slack time due to early completion;

Algorithm 1: LL-PCP algorithm.

2

1

2

3

4

J1

J2

J3

z0

z1

z2

(a)

3

3
4

J1

J2

J3
(t4 0, t

󳰀
, 3)

(t1 0, t
󳰀
, 3)

(t1 0, t
󳰀
, 4)

(b)

Figure 3: Graph reduction from (a) bipartite graph to (b) WDG.

International Journal of Distributed Sensor Networks 7

120

110

105

100

P-PCP
Primitive PCP DVS-PCP

LL-PCP

Av
er

ag
e e

ne
rg

y
co

ns
um

pt
io

n
(%

)

2 4 6 8 10 12

Tasks

Figure 4: Comparison of energy consumption in the different
number of tasks, utilization = 50%.

and the energy consumption of all techniques is normalized
to LL-PCP. As the number of task increases, primitive PCP
starts consuming more energy than other methods. When
the number of tasks is greater than four, DVS-PCP starts
consumingmore energy due to the dominance of leakage and
speed switching.The leakage is derived from frequent priority
inversion due to increased resource contentions. We see that
the LL-PCP results in an up to an additional 4.5% gains over
DVS-PCP when the number of tasks is not less than 10.

In Figure 5, the energy consumption of the techniques is
as a function of the processor utilization at maximum speed.
When the processor utilization increases, DVS technique
starts consuming more energy. As the processor utilization
is low, DVS-PCP presents significant energy savings. There
are idle intervals in these techniques and could be utilized
by applying dynamic reclamation methods [3, 8, 12] for more
energy gains. These idle intervals can be used for processor
shutdown to compare the benefits of our procrastination
scheme. Both P-PCP and LL-PCP are procrastination scheme
and their energy consumptions outperform that of preemp-
tive PCP through shutdown. Additionally, P-PCP and LL-
PCP are not sensitive to the change in processor utilization
because they are leakage-awaremethods.We see that LL-PCP
leads to up to 6% energy gains over P-PCP and an average of
5% energy savings compared to DVS-PCP.

Figure 6 shows the comparison of the length of prior-
ity inversion normalized to LL-PCP, as a function of the
number of tasks. In consideration of task synchronization,
priority inversions directly affect the feasibility of real-time
scheduling because they usually postpone actual finish time
of higher-priority tasks and would result in deadline misses.
When the number of tasks increases, primitive PCP, P-PCP,
and DVS-PCP result in increasing priority inversion longer
than that of LL-PCP. The main reason is that the number of
increases of nonpreemptive resources and access conflictions
among the tasks would produce additional short idle periods

P-PCP
Primitive PCP DVS-PCP

LL-PCP

120

125

110

105

100

Av
er

ag
e e

ne
rg

y
co

ns
um

pt
io

n
(%

)

10 20 30 40 50 60 70 80 90

Utilization (%)

Figure 5: Comparison of energy consumption in the different
processor utilization, 6 tasks.

and switching time that also hamper timely completion of the
tasks. LL-PCP reduces an additional 4.8% priority inversion
over DVS-PCP at 12 tasks in each task set.

The comparison of the length of priority inversion of the
techniques is shown in Figure 7, as a function of the processor
utilization at maximum speed. As the processor utilization
increases, preemptive PCP, P-PCP, and DVS-PCP result in
less increasing priority inversion than that of LL-PCP. The
reason is that, in accordance with (4), when the value of 𝛼

𝐿,𝐻

increases and 𝛽
𝐿,𝐻

remains unchanged, the returned values
of their REW function also increases. Obviously, increasing
the WCET of each task does not affect the length of priority
inversion (i.e., the value of 𝛽

𝐿,𝐻
) but increases the value of

𝛼
𝐿,𝐻

, and therefore the value of REW(⋅, ⋅) is increased. In
accordance with our algorithm, REW(⋅, ⋅) affects LL-PCP not
to switch lower-priority task to dormant mode and therefore
produces some priority inversion. However, as the processor
utilization is low, there are idle intervals in the schedules and
they can be used by LL-PCP to reduce priority inversion.
Nevertheless, LL-PCP still outperforms other techniques at
any utilization.

The average performance of the abovementioned meth-
ods is presented in Table 2 as the setting to the range of
processor utilization and the number of tasks in each task
set is [10%∼90%] and 6, respectively. The proposed method
still outperforms primitive PCP, P-PCP, and DVS-PCP with
regard to both energy consumption and priority inversion.

The proposed method may have additional offline pro-
cessing time comparing to other methods. With respect to
time complexity, the proposed method takes O(𝑛2) time
during the offline processing because of the required data
structures of WDG where n denotes the number of tasks.
However, other methods that required analytical function to
predict blocking time have to construct a blocking time table
similar to Table 1 which also takes O(𝑛2) time. When using

8 International Journal of Distributed Sensor Networks

10

120

8

110

2 4

105

100

6 12

Tasks

Le
ng

th
 o

f p
rio

rit
y

in
ve

rs
io

n
(%

)

P-PCP
Primitive PCP DVS-PCP

LL-PCP

Figure 6: Comparison of priority inversion in the different number
of tasks, utilization = 50%.

P-PCP
Primitive PCP DVS-PCP

LL-PCP

120

110

105

100

504010 20 30 60 8070 90

Utilization(%)

Le
ng

th
 o

f p
rio

rit
y

in
ve

rs
io

n
(%

)

Figure 7: Comparison of priority inversion in the different proces-
sor utilization, 6 tasks.

the existing slack-reclamation methods such as the algo-
rithms in [3, 8, 22], the time complexities of the online
parts of primitive PCP, P-PCP,DVS-PCP, and LL-PCP require
O(n log n) time. In LL-PCP, the time complexities of each step
are discussed as follows. Step (3) in the algorithm searching
for the tasks with respect to job 𝐽

𝑖
takes O(n) time. Step (4)

updating the REW values of the arcs incident from 𝜏
𝑖
takes

O(n) time. Similarly, step (5) constructing an outgoing arc set
with respect to 𝜏

𝑖
requires O(n). In steps (6) and (7), the time

complexity depends on slack-reclamationmethods applied in
current schedule and takesmaximumO(n log n) [7–9, 18, 22].
Steps (7) and (8) comparing the values of the arcs in 𝐴󸀠

𝑖
and

constructing a new arc set 𝐴󸀠󸀠
𝑖
with respect to 𝜏

𝑖
requireO(n)

Table 2: Comparisons of average energy consumption and priority
inversion.

Primitive PCP P-PCP DVS-PCP LL-PCP
Energy consumption 100% 87.7% 86% 82%
Priority inversion 100% 97.2% 86.8% 84%

time. Finally, in step (9), searching an arc 𝑎(𝜏
𝑖
, 𝜏
𝑥
) in𝐴󸀠󸀠

𝑖
with

the maximum value of REW(𝜏i, 𝜏x) requires O(n) time, and
step 10 takes constant time to switch the processor mode.
Therefore, the time complexity of the online part of LL-PCP
is O(n log n).

6. Conclusions

This paper reduces priority inversion of real-time task syn-
chronization with speed/voltage switching overhead consid-
eration. The objective is to minimize the priority inversion
of a given task set and reduce the leakage energy, provided
that the schedulability of tasks is guaranteed. By traversing
the vertex in WDG, the scheduling decisions can be done
efficiently during the runtime.

For further study, we shall explore the minimization
issues of energy consumption on dynamic priority assign-
ment, for example, the Earliest Deadline First Scheduling
with Stack Resource Policy [28]. Future research and exper-
iments in these areas may benefit several mobile system
designs.

Conflict of Interests

The authors declare that there is no conflict of interests
with any financial organization regarding the experimental
process and discussion in the paper.

Acknowledgment

The authors would like to thank the National Science Council
of the Republic of China, Taiwan, for financially supporting
this research under NSC 102-2221-E-025-003, NSC 102-2622-
E-025-001-CC3, and NSC-101-2622-E-025-002-CC3.

References

[1] D. Duarte, N. Vijaykrishnan, M. J. Irwin, and Y. F. Tsai,
“Impact of technology scaling and packaging on dynamic
voltage scaling techniques,” in Proceedings of the 15th Annual
IEEE International ASIC/SOC Conference, September 2002.

[2] J.-J. Chen and T.-W. Kuo, “Procrastination for leakage-aware
rate-monotonic scheduling on a dynamic voltage scaling pro-
cessor,” in Proceedings of the ACM SIGPLAN/SIGBED Confer-
ence on Languages, Compilers, and Tools for Embedded Systems
(LCTES ’06), pp. 153–162, Ottawa, Canada, June 2006.

[3] F. Gruian, “Hard real-time scheduling for low-energy using
stochastic data and DVS processors,” in Proceedings of the Inter-
national Symposium on Low Electronics and Design (ISLPED
’01), pp. 46–51, Huntington Beach, Calif, USA, August 2001.

International Journal of Distributed Sensor Networks 9

[4] S. Irani, S. Shukla, andR.Gupta, “Algorithms for power savings,”
in Proceedings of the 14th Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 37–46, Baltimore, Md, USA, 2003.

[5] R. Jejurikar and R. Gupta, “Procrastination scheduling in
fixed priority real-time systems,” in Proceedings of the ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES ’04), pp. 57–65, June 2004.

[6] R. Jejurikar, C. Pereira, and R. Gupta, “Leakage aware dynamic
voltage scaling for real-time embedded systems,” in Proceedings
of the 41st Design Automation Conference, pp. 275–280, June
2004.

[7] W. Kim, J. Kim, and S. L. Min, “A dynamic voltage scaling
algorithm for dynamic-priority hard real-time systems using
slack time analysis,” inProceedings of theDesignAutomation and
Test in Europe (DATE ’02), pp. 788–797, August 2002.

[8] W. Kim, J. Kim, and S. L. Min, “Dynamic voltage scaling algo-
rithm for fixed-priority real-time systems using work-demand
analysis,” in Proceedings of the 2003 International Symposium on
Low Power Electronics and Design (ISLPED ’03), pp. 396–401,
ACM Press, New York, NY, USA, August 2003.

[9] W. Kim, J. Kim, and S. L. Min, “Preemption-aware dynamic
voltage scaling in hard real-time systems,” in Proceedings of the
2004 International Symposium on Lower Power Electronics and
Design (ISLPED ’04), pp. 393–398, August 2004.

[10] W. Y. Liang, P. T. Lai, and C.W. Chiou, “An energy conservation
DVFS algorithm for the android operating system,” Journal of
Convergence, vol. 1, no. 1, pp. 93–100, 2010.

[11] B. Mochocki, X. S. Hu, and G. Quan, “Transition-overhead-
aware voltage scheduling for fixed-priority real-time systems,”
ACM Transactions on Design Automation of Electronic Systems,
vol. 12, no. 2, Article ID 1230803, 2007.

[12] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for
low power embedded operating systems,” in Proceedings of the
18th ACM Symposium on Operating Systems Principles (SOSP
’01), pp. 89–102, ACM Press, New York, NY, USA, 2001.

[13] G. Quan, L. Niu, X. S. Hu, and B. Mochocki, “Fixed priority
scheduling for reducing overall energy on variable voltage
processors,” in Proceedings of the 25th IEEE International Real-
Time Systems Symposium (RTSS ’04), pp. 309–318, December
2004.

[14] Y. H. Lee, K. P. Reddy, and C. M. Krishna, “Scheduling tech-
niques for reducing leakage power in hard real-time systems,”
in Proceedings of the 15th Euromicro Conference on Real-Time
Systems (ECRTS’ 03), pp. 105–112, 2003.

[15] R. Jejurikar and R. Gupta, “Dynamic slack reclamation with
procrastination scheduling in real-time embedded systems,” in
Proceedings of the 42nd Design Automation Conference (DAC
’05), pp. 111–116, New York, NY, USA, June 2005.

[16] L. Niu and G. Quan, “Reducing both dynamic and energy
consumption for hard real-time systems,” in Proceedings of
the International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems, pp. 140–148, September 2004.

[17] P. Baptiste, “Scheduling unit tasks to minimize the number of
idle periods: a polynomial time algorithm for offline dynamic
power management,” in Proceedings of the 17th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA ’06), pp. 364–
367, January 2006.

[18] R. Jejurikar and R. Gupta, “Dynamic voltage scaling for sys-
temwide energy minimization in real-time embedded systems,”
in Proceedings of the International Symposium on Lower Power
Electronics and Design (ISLPED ’04), pp. 78–81, August 2004.

[19] “International Technology Roadmap for Semiconductors,”
2002, http://public.itrs.net.

[20] S. Borkar, “Design challenges of technology scaling,” IEEE
Micro, vol. 19, no. 4, pp. 23–29, 1999.

[21] H. Huang, M. Fan, and G. Quan, “On-line leakage-aware
energy minimization scheduling for hard real-time systems,” in
Proceedings of the 17thAsia and South PacificDesignAutomation
Conference (ASP-DAC ’12), pp. 677–682, Sydney, Australia,
February 2012.

[22] H. Aydin, R. Melhem, D. Mossé, and P. Mejia-Alvarez, “Power-
aware scheduling for periodic real-time tasks,” IEEE Transac-
tions on Computers, vol. 53, no. 5, pp. 584–600, 2004.

[23] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance
protocols: an approach to real-time synchronization,” IEEE
Transactions on Computers, vol. 39, no. 9, pp. 1175–1185, 1990.

[24] A. P. Silberschatz, B. Galvin, and G. Gagne, Operating System
Concepts, John Willey and Sons,, 2011.

[25] F. Zhang and S. T. Chanson, “Processor voltage scheduling for
real-time tasks with non-preemptible sections,” in Proceedings
of the 23rd Proceedings IEEE Real-Time Systems Symposium
(RTSS ’02), pp. 235–245, Austin, Tex, USA, December 2002.

[26] R. Jejurikar and R. Gupta, “Energy-aware task scheduling with
task synchronization for embedded real-time systems,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 25, no. 6, pp. 1024–1036, 2006.

[27] J. A. Butts and G. S. Sohi, “Static power model for architects,”
in Proceedings of the 33rd Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 191–201, Monterey, Calif,
USA, December 2000.

[28] J. W. S. Liu, Real-Time Systems, Prentice Hall, Upper Saddle
River, NJ, USA, 2000.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

