
Research Article
Distributed and Parallel Path Query Processing
for Semantic Sensor Networks

Sung-Jae Jung,1,2 Dong-Min Seo,1 Seungwoo Lee,1 Hwan-Min Kim,1 and Hanmin Jung1,2

1 Department of Computer Intelligence Research, Korea Institute of Science and Technology Information (KISTI),
245 Daehak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea

2Department of Knowledge and Information Science, University of Science and Technology, Korea (UST),
217 Gajeong-ro, Yuseong-gu, Daejeon 305-350, Republic of Korea

Correspondence should be addressed to Hanmin Jung; jhm@kisti.re.kr

Received 30 August 2013; Accepted 29 October 2013; Published 9 January 2014

Academic Editor: Hwa-Young Jeong

Copyright © 2014 Sung-Jae Jung et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As the sensor networks are broadly used in diverse range of applications, SemanticWeb technologies have been adopted as a means
to manage the huge amount of heterogeneous sensor nodes and their observation data. Large amount of sensor data are annotated
with spatial, temporal, and thematic semantic metadata. As a consequence, efficient query processing over large RDF graph is
becoming more important in retrieving contextual information from semantic sensor data. In this paper we propose a novel path
querying scheme which uses RDF schema information. By utilizing the class path expressions precalculated from RDF schema, the
graph search space is significantly reduced. Compared with the conventional BFS algorithm, the proposed algorithm (bidirectional
BFS combined with class path lookup approach) achieves performance improvement by 3 orders of magnitude. Additionally, we
show that the proposed algorithm is efficiently parallelizable, and thus, the proposed algorithm returns graph search results within
a reasonable response time on even much larger RDF graph.

1. Introduction

Sensor networks are used in wide range of applications such
as weather monitoring, environmental monitoring, military
surveillance, medical science for patient health care, and bio-
chemical detection [1–3]. As sensors have been increasingly
adopted by a diverse array of disciplines [4–6], heterogeneous
standards based on different hardwares, softwares, and pro-
tocols have been introduced. As a consequence, Semantic
Web technologies have been proposed as a means to manage
the huge amount of heterogeneous sensor nodes and their
observation data [2, 3]. The combination of sensor networks
and ontologies can bring significantly added value to intel-
ligently process the raw data into meaningful information
[7]. By annotating sensor data with spatial, temporal, and
thematic semantic metadata, one can retrieve contextual
information from the annotated sensor data [3]. This study
aims to introduce a novel path querying scheme which can
efficiently extract situational knowledge from semantically
annotated sensor data.

In the field of generic Semantic Web technology, sev-
eral relationship finding services have been proposed.
Microsoft coauthor path (http://academic.research.microsoft
.com/VisualExplorer), Relfinder [8], and OntoRelfinder [9]
are the examples of relationship finding services which
retrieve relationships between two given objects of interest
from Resource Description Framework (RDF) graph. RDF is
a language for representing information about resources in
the World Wide Web. By generalizing the concept of a “Web
resource,” RDF can also be used to represent information
about things that can be identified on the Web [10]. RDF
describes a particular resource using a set of RDF statements
of the form subject, predicate, object triples, also known
as subject, property, value. The subject is the resource, the
predicate is the characteristic being described, and the object
is the value for that characteristic [11].

The relationship finding services are provided on the basis
of path query processing.The path query processing provides
the users with meaningful information even when they do

Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2014, Article ID 438626, 11 pages
http://dx.doi.org/10.1155/2014/438626

2 International Journal of Distributed Sensor Networks

not have comprehensive understanding on the structure
of the ontology schema to which they issue a query. The
path queries are also applicable to sensor network data as
long as the data are represented in RDF graph. In order
to show that path queries are applicable to semantically
annotated sensor networks, we composed an example of
weather sensor network. Figure 1 shows a descriptive example
of sensor network and its observation data. Many sensors are
deployed in sensor network area and they monitor weather
conditions periodically. Every time a sensormonitors a value,
it generates an observation instance which holds measured
data and a time instance. The weather conditions can be air
temperature, relative humidity, dew point, wind speed and
direction, and so on. Figure 2 shows the simplified ontology
schema and instances of Linked Sensor Data [12]. Linked
Sensor Data is an RDF dataset containing descriptions of
∼20,000 weather stations in the United States and their
weather observations. In fact, the example shown in Figure 1
is composed based on the Linked Sensor Data [12]. Thus,
the ontology model in Figure 2 illustrates the situation in the
example very well.

By retrieving paths between a source node and destina-
tion ones, meaningful information can be provided to users.
For example, a path query. “Retrieve all the paths between
an instance of location, Yuseong-gu, and the measured data
whose value is 37.5∘C” returns a set of resulting paths such
as “The sensor “S001” deployed in Yuseong-gu have observed
air temperature whose value is 37.5∘C.” The path query can
be processed by traversing the instance graph from the node
“Yuseong-gu” to the node “Measured data 37.5∘C.” One of
the advantages of the path query is that because the path
query searches every possible path between the nodes given
from the query, one does not need to write an SPARQL
query. In general, writing a relevant SPARQL query requires
the comprehensive understanding of schema of the ontology
to which the SPARQL query is issued. Thus, path query
processing sometimes finds unknown relationships between
the two given nodes on an RDF graph whose schema is quite
more complicated.

Despite the advantage of the path query, the path query
processing requires computationally expensive graph search
operations which involve multiple self-joins. In this study we
adopt the way OntoRelfinder [9] precalculates and materi-
alizes class paths, but we propose a different path querying
scheme that utilizes the precalculated class paths. In this
paper we propose a novel RDF path querying scheme which
utilizes bidirectional BFS algorithm combined with class
path lookup scheme to reduce search space in path query
processing. The contributions of this study are summarized
as follows.

(i) We propose a novel RDF graph searching algorithm
based on ontology schema information.

(ii) We show that the proposed algorithm is efficient and
scalable.

(iii) We propose a system architecture for distributed
parallel RDF graph searching.

The rest of this paper is organized as follows. In Section 2, we
describe related works. In Sections 3 and 4, we describe our
approach to reduce search space by utilizing the class path
information and propose the system architecture where our
querying scheme is parallelized. In Section 5, we describe the
results of the performance test. In Section 6, we describe the
conclusion and future works.

2. Related Works

Path query processing is a common operation on RDF data
which requires recursive subject-object self-join, a compu-
tationally expensive operation. In a triple schema, a path
query requires (𝑛−1) self-joins, where 𝑛 is the length of
the path [13]. Abadi and Marcus [13] materialized path
expressions to reduce self-joins in path query processing.
They precalculated the selected path expressions and stored
the result in vertically partitioned two-column tables. Similar
approaches were proposed by Matono and Amagasa [14]
and Kim et al. [15]. However, these approaches have the
generality drawbacks, because materializing all possible path
expressions is not a viable approach [16].

OntoRelfinder [9] also precalculates and materializes
path expressions, but the scope is within the triples of
the RDF schema classes. Excluding instance triples from
precomputing scope enables the OntoRelfinder system to
precalculate and store all possible RDF schema class path
expressions, which they called class path, into a distinct
relational table. A set of SPARQL query is generated by
using the class paths. When a user query is given such as
“find the relationship between the two objects,” the set of
class paths which connects the two classes of the two given
objects is retrieved from the relational table. In case the
RDF schema is not simple enough, OntoRelfinder might
generate more SPARQL queries than it can handle within
a reasonable response time. OntoRelfinder invokes as many
DBMS calls as the number of class paths. No matter how
efficient each SPARQL query is, the repeated DBMS calls can
cause accumulated parsing overhead. The main difference
between OntoRelfinder and the proposed approach is in
the way the precalculated set of class paths is utilized. As
explained in Section 3, the proposed querying scheme looks
up the set of class paths while it traverses the instance graph
in order to determine which neighbor node is qualified to
be enqueued for the next step BFS search. As a consequence
of discarding unpromising nodes, the search space is signifi-
cantly narrowed down.

3. Path Query Processing Based on
RDF Schema Information

The proposed approach is a kind of heuristic graph search
algorithm that can significantly save the search cost by using
ontology schema information. In order to reduce graph
search space by using the materialized class path, we propose
an algorithm that ismodified fromBreadth First Search (BFS)
algorithm, namely, BFS combined with class path lookup
scheme.

International Journal of Distributed Sensor Networks 3

S002

S453

Yuseong-guS001

S024

Sensor station

Location

2013.08.11.13:00
Measure data Time instance

S030

S003

S004

S005

37.5∘C

Air Temp Observation 201308111300

Observation

Figure 1: Descriptive example of a weather monitoring sensor network and its observation data.

3.1. Mathematical Model Formulation for RDF Graph. As a
starting point of the mathematical model formulation, we
adopt the mathematical notation of a generic graph model
in [17]. Let 𝑉 be a set of nodes, and let 𝐴 be a set of labeled
edges.The set of nodes𝑉 is composed of two nonoverlapping
sets: a set of entity nodes 𝑉

𝐸 and a set of literal nodes 𝑉

𝐿. Let
L be a set of labels composed of a set of node labelsL𝑉 and
a set of edge labelsL𝐴. An RDF dataset is defined as a graph
𝐺 over L, and is a tuple 𝐺 = ⟨𝑉, 𝐴, 𝜆⟩, where 𝜆 : 𝑉 → L𝑉

is a node labeling function.The set of labeled edges is defined
as 𝐴 ⊆ {(𝑒, 𝛼, V) | 𝑒 ∈ 𝑉

𝐸

, 𝛼 ∈ L𝐴, V ∈ 𝑉}. The components
of an edge 𝑎 ∈ 𝐴 will be denoted by 𝑠𝑜𝑢𝑟𝑐𝑒(𝑎), 𝑙𝑎𝑏𝑒𝑙(𝑎), and
𝑡𝑎𝑟𝑔𝑒𝑡(𝑎), respectively.

Definition 1 (class node and instance node). The set of entity
nodes 𝑉

𝐸 is further decomposable into two nonoverlapping
sets: a set of class nodes𝑉

CLS and a set of instance nodes𝑉

INS.
A node 𝑢 ∈ 𝑉

CLS is said to be a class node of an instance
node V ∈ 𝑉

INS if ∃𝑎 ∈ 𝐴 | 𝑙𝑎𝑏𝑒𝑙(𝑎) ∈ L𝐴𝑐 , 𝑠𝑜𝑢𝑟𝑐𝑒(𝑎) =
V, 𝑡𝑎𝑟𝑔𝑒𝑡(𝑎) = 𝑢. The setL𝐴𝑐 is a set of “class attribute” labels
such as “http://www.w3.org/1999/02/22-rdf-syntax-ns#type”.
The class node of an instance node V ∈ 𝑉

INS will be denoted
by 𝑐𝑙𝑎𝑠𝑠(V).

Definition 2 (path). A path 𝑝 ∈ 𝑃 is a chain of consecutive
edges 𝑎

𝑖
∈ 𝐴. Let 𝑃 be a set of paths which is defined

as 𝑃 = {(𝑎

1
, 𝑎

2
, . . . , 𝑎

𝑛
) | 𝑎

𝑖
∈ 𝐴, 𝑡𝑎𝑟𝑔𝑒𝑡(𝑎

𝑖−1
) =

𝑠𝑜𝑢𝑟𝑐𝑒(𝑎

𝑖
)} ⊂

𝑛

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝐴 × 𝐴 × ⋅ ⋅ ⋅ × 𝐴, where 𝑛 is the path length
and 𝑖 = 1, 2, . . . , 𝑛. The set 𝑃 is composed of the set of class
paths 𝑃

CLS and the set of instance paths 𝑃

INS. The first and
last nodes in a 𝑝 ∈ 𝑃 will be denoted by 𝑓𝑖𝑟𝑠𝑡𝑁𝑜𝑑𝑒(𝑝) and
𝑙𝑎𝑠𝑡𝑁𝑜𝑑𝑒(𝑝), respectively.

Definition 3 (class path). The set of class paths𝑃

CLS is defined
as 𝑃

CLS = {𝑝 ∈ 𝑃 | ∀𝑠𝑜𝑢𝑟𝑐𝑒(𝑎

𝑖
∈ 𝑝) ∈ 𝑉

CLS
, ∀𝑡𝑎𝑟𝑔𝑒𝑡(𝑎

𝑖
∈

𝑝) ∈ 𝑉

CLS
}, where 𝑎

𝑖
∈ 𝑝 is the 𝑖th triple (edge) of a path

𝑝 ∈ 𝑃.

Definition 4 (instance path). The set of instance paths 𝑃

INS

is defined as 𝑃

INS = {𝑝 ∈ 𝑃 | ∀𝑠𝑜𝑢𝑟𝑐𝑒(𝑎

𝑖
∈ 𝑝) ∈

𝑉

INS
, ∀𝑡𝑎𝑟𝑔𝑒𝑡(𝑎

𝑖
∈ 𝑝) ∈ 𝑉

INS
}, where 𝑎

𝑖
∈ 𝑝 is the 𝑖th triple

(edge) of a path 𝑝 ∈ 𝑃.

3.2. Class Path Lookup Operation. As is aforementioned, the
proposed algorithm is devised by modifying BFS algorithm.
The main modification is adding a filter operation to the
BFS algorithm, which we call “class path lookup operation.”
The operation filters out the unpromising neighbor nodes by
looking up the precalculated class path expressions stored in
a relational table. Figure 3 shows a descriptive example of

4 International Journal of Distributed Sensor Networks

S001 Result

Generated
observations

S001

Observed property
Sampling time

Yuseong-gu

Location
observation 011

Time instant
2013.08.11.13:00

Air temp.

Observation Measure data

Property Time instant

Air temp.
observation

Dew point
observation

Relative humidity
observation

Is a

Sensor Result

Generated
observations

Procedure

Observed property
Sampling time

Sensor
location

Location

Schema

Instance

37.5∘C
Measure dataAir temp.

Procedure

Figure 2: Simplified ontology schema and instances of linked sensor data.

Start End Class path
AtProf GrdSt
AtProf GrdSt
AtProf GrdSt
AtProf GrdSt

AtProf/Pub/FullProf/Dpt/GrdSt
AtProf/Pub/AsctProf/Dpt/GrdSt

AtProf/Pub/AsCtProf/Course/GrdSt
· · ·

Class path lookup

SungJ/algebra
AtProf/Course

Figure 3: Descriptive example of how “class path lookup operation” filters out unpromising nodes.

how the unpromising nodes are filtered out by “class path
lookup operation,” which is implemented by classpathLookup
function.

The classpathLookup function determines if a node is
promising or unpromising by looking up the set of class
paths within lookup range, 𝑃

CLS
lookupRng, which is defined in

Definition 5. If there exists at least one class path to which
an instance path is “aligned,” the last node of the instance

path is determined to be promising. An instance path 𝑝

ins
∈

𝑃

INS is said to be “aligned” to a class path 𝑝

cls
∈ 𝑃

CLS if
all the instance triples (V

1
, 𝛼

1
, V
2
), . . . , (V

𝑖
, 𝛼

𝑖
, V
𝑖+1

) composing
the instance path 𝑝

ins
∈ 𝑃

INS have their corresponding class
triples (𝑢

1
, 𝛼

1
, 𝑢

2
), . . . , (𝑢

𝑖
, 𝛼

𝑖
, 𝑢

𝑖+1
) at the same positions in

𝑝

cls
∈ 𝑃

CLS, where 𝑢

𝑖
= 𝑐𝑙𝑎𝑠𝑠(V

𝑖
). An example of an instance

path 𝑝

ins
∈ 𝑃

INS which is “aligned” to a class path 𝑝

cls
∈ 𝑃

CLS

is shown in Figure 4, where all the types of instance nodes (V
𝑖
)

International Journal of Distributed Sensor Networks 5

and edges (𝛼
𝑖
) in an instance path 𝑝

ins
∈ 𝑃

INS correspond to
the class nodes (𝑢

𝑖
) and edges (𝛼

𝑖
) in a class path 𝑝

cls
∈ 𝑃

CLS.

Definition 5 (classpathLookup function). Let us consider a
path query “Find relationships between a source node 𝑠 ∈

𝑉

INS and a destination node 𝑑 ∈ 𝑉

INS.” For the path query,
the set of class paths within lookup range, 𝑃CLS

lookupRng ⊂ 𝑃

CLS,
can be defined as 𝑃

CLS
lookupRng = {𝑝 ∈ 𝑃

CLS
| 𝑓𝑖𝑟𝑠𝑡𝑁𝑜𝑑𝑒(𝑝) =

𝑐𝑙𝑎𝑠𝑠(𝑠), 𝑙𝑎𝑠𝑡𝑁𝑜𝑑𝑒(𝑝) = 𝑐𝑙𝑎𝑠𝑠(𝑑)}. The set 𝑃CLS
lookupRng is used as

an input parameter for 𝑐𝑙𝑎𝑠𝑠𝑝𝑎𝑡ℎ𝐿𝑜𝑜𝑘𝑢𝑝 function, which is
defined as

𝑐𝑙𝑎𝑠𝑠𝑝𝑎𝑡ℎ𝐿𝑜𝑜𝑘𝑢𝑝 (𝑝

ins
, 𝑃

CLS
lookupRng)

= {

1, if ∃𝑝

cls
∈ 𝑃

CLS
lookupRng | 𝑝

ins is aligned to 𝑝

cls

0, otherwise.
(1)

The 𝑐𝑙𝑎𝑠𝑠𝑝𝑎𝑡ℎ𝐿𝑜𝑜𝑘𝑢𝑝 function returns “1” if an instance
path 𝑝

ins
∈ 𝑃

INS is aligned to any one of class paths 𝑝

cls
∈

𝑃

CLS
lookupRng.

3.3. Combining BFS with Class Path Lookup Operation.
Algorithm 1 shows BFS combined with class path lookup
scheme. The algorithm first searches the neighbors of the
starting node as BFS does then looks up the materialized
path expressions to see which neighbor node can lead to the
destination successfully within the given path length. The
algorithm enqueues only the promising nodes and discards
the nodes which lead to unsuccessful search. The decision
is made by classpathLookup function which is defined in
Definition 5. Line 10 is the filtering operation implemented
by classpathLookup function.The input parameter 𝑝

ins for the
classpathLookup function is an instance path through which
the algorithm has traversed to reach the node V (the last node
of 𝑝

ins) starting from the source node 𝑠. The class paths, to
which 𝑝

ins can be “aligned,” are looked up against (the second
parameter𝑃

CLS
lookupRng) the set of class paths of length 𝑛, the first

node and the last node of which are 𝑐𝑙𝑎𝑠𝑠(𝑠) and 𝑐𝑙𝑎𝑠𝑠(𝑑),
respectively. If the 𝑐𝑙𝑎𝑠𝑠𝑝𝑎𝑡ℎ𝐿𝑜𝑜𝑘𝑢𝑝 function finds at least
one class path in 𝑃

CLS
lookupRng, it returns “1” and the statements

in line 11 and line 12 are executed. Line 11 builds the set of
instance paths in memory buffer. Line 12 enqueues V in [12]
to 𝑄 for next step BFS search.

Figure 5 shows the way the proposed algorithm pro-
cesses an example path query “Find relationships between
“Yuseong-gu” which is a sensor location and “Measured data
37.5∘C” which is a measured data within path length 3.”
Starting from the node “Yuseong-gu,” the algorithm searches
the neighbor nodes in BFS way to go forward one step. For
every step the algorithm expands search, it looks up the
materialized class path, which starts from “Sensor Location”
and ends in “Measured data,” to see which neighbor node can
successfully lead to the destination node. Each instance node
is tagged with the class it belongs to. For each instance node,
the algorithm remembers the class path it traversed through.
For the “Air Temp. observation 011” node in Figure 3,

the algorithm knows that it traversed through the class path
shown below:

“/SensorLocation/locate/Sensor/generateObservation/Ob-
servation”.

In this situation, the “Air Temp. observation 011”
node has several neighbor nodes which belong to “Time
Instance 2013.08.11.13:00” and “Measured data 37.5∘C.” The
algorithm enqueues “Measured data 37.5∘C” node for the
next step processing because the “class path lookup oper-
ation” finds the class path that starts with “/Sensor Location/
locate/Sensor/generateObservation/Observation” and ends in
“Measured data.” On the other hand, the algorithm discards
the “Time Instance 2013.08.11.13:00,” which belongs to
“Time Instance” class, because the class path “/SensorLoca-
tion/locate/Sensor/generateObservation/Observation/sam-
plingTime/TimeInstant” does not meet any class path within
the class path lookup range.

3.4. Combining Bidirectional BFS with Class Path Lookup
Operation. The “class path lookup operation” can also be
combined with bidirectional BFS algorithm, which further
reduces the search space. The bidirectional BFS initiates its
search from two nodes (source and destination nodes) within
half the given path length. By joining the two result sets,
one expanded from source and the other one expanded from
destination, the set of entire paths are returned as a final
result. For each step the bidirectional BFS searches neighbors,
“class path lookup operation” is executed to filter out the
unpromising nodes which cannot lead to destination node
in forward search or which cannot lead to source node in
backward search.

4. Distributed and Parallel Path
Query Using Class path

Path query processing works based on graph search
operation, which often involves massive amount of data
access as the graph size becomes large and graph search
length increases. As described in Section 3, the class path
lookup operation constrains graph traversal space by pruning
branches unsuccessfully leading to the destination node.
Even though a path query is processed by using class path
lookup operation, a large path query which involves large
amount of data access should be parallelized in order to
shorten the query response time.

By partitioning and distributing graph data, we can
parallelize a path query and shorten the query response time
[18]. However, in case the nodes in a graph are interconnected
tightly with each other by a variety of relationships, which is
the most usual case in semantic knowledge graph, optimally
partitioning and distributing (placing) the graph data are
not easy issues to handle [18]. Here, we propose a simple
but novel system architecture in which the path query is
efficiently parallelized based on the distributed class path
information. Figure 6(a) shows the system architecture that
we propose in this study. Eachworking node is equippedwith
DBMS instance and the full dataset of RDF triples. When a
path query is issued, the graph searching SQL is executed on

6 International Journal of Distributed Sensor Networks

rdf:type rdf:type rdf:type rdf:type

u1 u2 ui ui+1 un+1un

�1 �1 �i
�i+1

𝛼1

𝛼1

𝛼i

𝛼i

𝛼n
p

CLS
∈ p

CLS

p
INS

∈ p
INS

· · · · · ·

· · ·

Figure 4: An example of an instance path of length 𝑖 aligned to a class path.

Input: RDF graph 𝐺,
source node 𝑠 ∈ 𝑉

𝐸, destination node 𝑑 ∈ 𝑉

𝐸, path length 𝑛

Output: 𝑃

INS
result ⊆ {𝑝 ∈ 𝑃

INS
| 𝑠𝑜𝑢𝑟𝑐𝑒 (𝑎

1

) = 𝑠, target (𝑎
𝑛

) = 𝑑}

(1) create a queue 𝑄

(2) push 𝑠 → 𝑄

(3) while 𝑄 ̸= 0 ∧ level ≤ 𝑛 do
(4) 𝑡 ← 𝑄.dequeue
(5) for each edge 𝑎 ∈ 𝐴 | source (𝑎) = 𝑡 do
(6) V ← target (𝑎)

(7) if V is not visited then
(8) for each path 𝑝

ins
∈ 𝑃

INS
| lastNode (𝑝

ins
) = 𝑡 do

(9) 𝑝

ins
← append (𝑝

ins
, 𝑎)

(10) if classpathLookup (𝑝

ins
, 𝑃

CLS
lookupRng) = 1 then

(11) 𝑃

INS
← 𝑃

INS
∪ {𝑝}

(12) push V → 𝑄

(13) return 𝑃

INS
result ← {𝑝 ∈ 𝑃

INS
| 𝑠𝑜𝑢𝑟𝑐𝑒 (𝑎

1

) = 𝑠, target (𝑎
𝑛

) = 𝑑}

(14) level ← level + 1

Algorithm 1: BFS combined with class path lookup scheme.

each working node.The SQL implements the “BFS combined
with class path lookup scheme” based on recursive self-join
operation as described in Section 3. Map function invokes
the SQL to be executed on the DBMS instance on each
working node, and reduce function collects the result sets
from the DBMS instance on each working node. While the
SQL traverses the graph, it looks up the partitioned set of class
paths distributed to each working node.

This system architecture is different from the architecture
presented in [18] in that (1) each working node leverages
exclusively partitioned class path set in order to reduce
the search space and that (2) each working node has fully
replicated triple store. In contrast to the architecture in [12],
where each working node has partitioned triple store with
𝑛-hop guarantee, each working node of our architecture has
fully replicated dataset of triple store. Thus, the proposed
architecture costs the additional storage 𝑚 times the size
of a full triple store, where 𝑚 is the number of working
nodes. However, the storage cost can be compensated for
by the efficiency that our architecture has. The architecture
is able to eliminate the need of communication between
working nodes while each node traverses the graph (triple
store). Besides the self-sufficiency in data access, exclusively
assigned set of class path enables each working node to
avoid returning duplicate results. Additionally, as shown in
Figure 5(b), it is even possible to overcome the drawback
(storage cost) by hybridizing our architecture with DBMS

clustering infrastructure, an implementation of which is left
for our future work.

We have observed that by partitioning the set of mate-
rialized class paths and by looking up the partitioned class
path sets, a large path query can be decomposed in mutu-
ally exclusive and comprehensively exhaustive manners. For
example, let us consider a path query “Find relationships
between an instance “a”, whose class is “A”, and an instance
“f ”, whose class is “F” with path length 3.” Supposing that
the subgraph that connects class “A” and class “F” looks like
the graph shown in Figure 7, the class path set {“A/B/C/F”,
“A/B/D/F”, “A/B/E/F”} is looked up by the path query. In
order to parallelize the path query based on the class path
information, the class path set is partitioned into 𝑚 (several)
sets, that is, {“A/B/C/F”}, {“A/B/D/F”}, {“A/B/E/F”}, where
𝑚 is the number of working nodes in a cluster machine.
Each working node is assigned a partitioned set of class
paths and looks up the assigned set of class paths while
it traverses the instance graph from “a” to “f.” Because the
search spaces of the different class paths are exclusive to
each other, each working node does not have to worry
about returning duplicate search results, which enables each
working node to work independently without communi-
cating with each other. Therefore, simply concatenating all
the result sets from each working node brings a compre-
hensive search result set which is equal to the one obtained

International Journal of Distributed Sensor Networks 7

S001 Result

Generated
observations

S001

Observed property
Sampling time

Yuseong-gu

Location

observation 011

Time instant
2013.08.11.13:00

Air temp.

Observation Measure data

Property Time instant

Air temp.
observation

Dew point
observation

Relative humidity
observation

Is a

Sensor
Result

Generated
observations

Procedure

Observed property
Sampling time

Sensor
location

Location

Schema

Instance

37.5∘C
Measure dataAir temp.

Start class
Sensor

location
Sensor

location

Sensor

Sensor

End class
Time

instance
Measure

data
Time

instance
Measure

data

Path length

3

3

2

2

Class path

Materialized class path

/SensorLocation/locate/Sensor/generatedObservation/Observation/samplingTime/TimeInstance

/SensorLocation/locate//Sensor/generatedObservation/Observation/result/MeasureData

/Sensor/generatedObservation/Observation/samplingTime/TimeInstance

/Sensor/generatedObservation/Observation/result/MeasureData

· · ·

Procedure

Figure 5: Example of how BFS combined with class path lookup operation works.

by a single machine with the whole set of class paths
assigned.

5. Implementation and
Performance Evaluation

5.1. Implementation Details. All the proposed algorithms are
implemented by using SQL. The recursive SQL query is
written based on common table expressions (CTEs) which
are the standard SQL syntax [19] supported by IBM DB2,
MS SQL Server, Oracle, and more DBMSs. The initial search
result set retrieved from the triple table is stored in user
memory buffer, which is then self-joined to triple table in
recursive manners. The schematic of recursive CTE query
that executes BFS search is represented in Figure 8, where T1
denotes a triple table.

We runour experiments on a 1.7GHzquad core processor
with 32GB main memory Linux system. We used LUBM
dataset [20] for performance test because it is publicly
available for benchmark and its schema is reasonably complex
for our test purpose.We test the performance with the LUBM
(10,0), and LUBM (100,0), LUBM (1000,0) datasets which
have about 1.3, 13, and 130 million triples, respectively. The
LUBM dataset is synthetically generated by the data gener-
ator UBA 1.7 (http://swat.cse.lehigh.edu/projects/lubm/) and
converted into n-triple format, which is then loaded onto a
relational table. We used Oracle 11gR2 as a triple repository
with 10GB main memory assigned.

5.2. Performance Evaluation

5.2.1. Performance Evaluation for Single Machine Processing.
The performance of the proposed path querying scheme is

8 International Journal of Distributed Sensor Networks

Working node 1

Master node

Hadoop

Working node 2 Working node m

Replicated
triple store

Class path
partition 2
Replicated
triple store

partition 1
Replicated
triple store

Overall
dataset

User query
handler

Class path Class path
partition m· · ·

(a) Full replication architecture

Working node 1

Master node

Hadoop

Working node 2 Working node m

User query
handler

Grid infrastructure

DBMS instance DBMS instance DBMS instance

Overall dataset

DBMS
instance

Class
path

Triple
store

· · ·

(b) Hybrid double clustering architecture

Figure 6: System architecture.

A B

C

D

E

F

A B C F

A B D F

A B E F

Node 1

Node 2

Node 3

Schema

Class pathMaster node

· · ·

Figure 7: Distributing partitioned class path sets for parallelizing path query.

BFS

T1T1

Memory buffer

T1· · · · · ·

TRIPLE 1

TRIPLE N

Figure 8: Schematic of BFS based on recursive self-join.

evaluated on both a single machine and a cluster machine
whose architecture is shown in Section 4 (Figure 6(a)). For
the evaluation of the performance of the proposed path
querying scheme, we use the query shown below. We chose
the case because the pair of these two entities returns rela-
tively many relationships and the number of their neighbor
nodes is near average value of person nodes in LUBMdataset.

“Find relationships between
<http://www.Department0.University0.edu/
GraduateStudent114>who is a Grad. Student and
<http://www.Department0.University0.edu/
AssociateProfessor4>who is an Assoc. Professor”

Figure 9 shows the performance of our approach, which
is measured on a single machine. As can be seen in the figure,
combining the “class path lookup” operationwith BFS signifi-
cantly improves the path query processing performance. The
performance test was conducted by varying the path length
ranging from 2 to 7 on different dataset sizes (LUBM 10,
100, and 1000). As the path length increases, the performance
difference between BFS and the proposed approach grows
exponentially. In case of LUBM (10) and path length 6,
our approach (bidirectional BFS combined with “class path
lookup operation”) achieves performance improvement by
more than 3 orders of magnitude.

Additionally, the proposed approach is much more scal-
able than the conventional unidirectional BFS. Figure 10
shows how the query execution time changes as the size
of underlying dataset increases. The closer to “linear” and
the less stiff the curve on the graph, the more scalable the
corresponding algorithm. As seen in Figure 10, the curves
of our approach are much closer to “linear” and much less
stiff than BFS. Because BFS query execution time is much
more than 30 minutes when the path length is longer than
5 and dataset size is larger than LUBM 100, only one curve
for BFS of path length 4 appears in Figure 5. Our approach
with path length 4 is more than thousand times faster than
BFS. The execution time of our approach with path length
7 is even much less than that of BFS with path length 4.

International Journal of Distributed Sensor Networks 9

10
40

1230

34310

0

20
150

1650

18930
149120

0

10 10
60

140
760

2
1

3 4 5 6 7

El
ap

se
d

tim
e (

m
s)

Path length

LUBM (10)

101

102

103

104

105

106
>30min >30min

(a)

20

90

7020

10
30

520

10150

161050

10 10
20

140
430

3270

2
1

3 4 5 6 7

El
ap

se
d

tim
e (

m
s)

Path length

LUBM (100)

101

102

103

104

105

106

>30min

>30min >30min

(b)

20

670

30
110

4660

98760

10
20

140
920

3510

33160

2
1

3 4 5 6 7

BFS
BFS combined with class path lookup
Bidirectional BFS combined with class path lookup

El
ap

se
d

tim
e (

m
s)

Path length

LUBM (1000)

101

102

103

104

105

106
>30min

>30min >30min

>30min

(c)

Figure 9: Performance of the proposed querying scheme.

Table 1: Path query processing time on single machine (sec.).

Length LUBM10 LUBM100 LUBM1000

BFS BFS
CP lookup

biBFS
CP lookup BFS BFS

CP lookup
biBFS

CP lookup BFS BFS
CP lookup

biBFS
CP lookup

2 0.01 0 0 0.02 0.01 0.01 0.02 0.03 0.01
3 0.04 0.02 0.01 0.09 0.03 0.01 0.67 0.11 0.02
4 1.23 0.15 0.01 7.02 0.52 0.02 2164.18 4.66 0.14
5 34.31 1.65 0.06 >30min. 10.15 0.14 >30min. 98.76 0.92
6 >30min. 18.93 0.14 >30min. 161.05 0.43 >30min.

>30min. 3.51
7 >30min. 149.12 0.76 >30min.

>30min. 3.27 >30min.
>30min. 33.16

These observations imply that “bidirectional BFS class path
lookup operation” is able to efficiently narrow down the path
query search space.

5.2.2. Performance Evaluation for Distributed Parallel Pro-
cessing. We tested the performance of the path query in
the distributed parallel cluster system whose architecture
is shown in Figure 5(a). The system consists of 5 working
nodes and a master node. Hadoop is used as a clustering
platform. In order to compare the result of the parallel
processing with the result of single machine, we used the

same query as the one used in single machine performance
test. Table 1 shows test results on a single machine. From
Table 1, we have selected the test conditions whose values
(query execution time) are near or more than 100 seconds
but less than 30 minutes. The selected conditions are shown
in the first row of Table 2. Table 2 shows performance result
of distributed parallel path query processing on the proposed
architecture. For each query processing node, we measured
the query processing time and counted the resulting rows. In
order to compare the results with those of single machine,
the result of single machine is shown in the last row of
Table 2.

10 International Journal of Distributed Sensor Networks

Table 2: Result of the performance test on distributed parallel cluster machine.

Query processing node

LUBM 10,
path length 7,

BFS w/CP lookup

LUBM 100,
path length 6

BFS w/CP lookup

LUBM 1000,
path length 5

BFS w/CP lookup
Result set size

(rows)
Elapsed time

(sec.)
Result set size

(rows)
Elapsed time

(sec.)
Result set size

(rows)
Elapsed time

(sec.)
Distributed parallel cluster

Node 1 1,881 28.2 350 43.5 117 25.2
Node 2 575 25.9 579 46.5 43 21.6
Node 3 1,603 33.9 521 47.4 27 22.8
Node 4 1,372 30.0 210 36.9 74 25.2
Node 5 2,143 29.9 349 36.0 73 21.9

Sum 7,574 33.9∗ 2,009 47.4∗ 334 25.2∗

Single machine 7,574 149.1 2,009 161.1 334 98.7
∗The sum values tagged with asterisk (∗) mean the maximum elapsed time of the 5 working nodes in the distributed cluster machine.
The bold font refers to the overall elapsed time for the given path query processing.
The italic font refers to the maximum elapsed time for path query processing among the working nodes in the cluster machine.

10 20

140
60

140

920

140
430

3510
760

3270

33160

1230
7020

2164180

10 100 1000
LUBM

1

El
ap

se
d

tim
e (

m
s.)

101

102

103

104

105

107

106

Path length = 4, biBFS
combined with CP lookup

Path length = 5, biBFS
combined with CP lookup

Path length = 6, biBFS
combined with CP lookup

Path length = 7, biBFS
combined with CP lookup
Path length = 4, BFS

Figure 10: Scalability of the proposed querying scheme.

Table 2 shows that, for each test condition, the summed
count of the result sets from each working nodes is equal
to result set count of single machine processing. This result
implies that the partitioned set of class paths successfully
separates the search space for each working node and that the
result sets from each working nodes are mutually exclusive
and comprehensively exhaustive (MECE). As the partitioned
class path set separates each working node’s search space
in MECE manners, the clustering platform, Hadoop in the
proposed architecture, is saved from the computation load
for shuffling the results gathered from the working nodes.
Just passing the query to the working nodes and gathering
(concatenating) the results from the working nodes are all
that the clustering platform should do in the system, which
cost almost negligible processing time. The elapsed time
on “SUM” row in Table 2, which is tagged with asterisk
(∗), means the longest elapsed time among the 5 working

nodes. As the values in these asterisk-tagged cells are the rate
limiting time taken for the parallel path query to return, they
are almost equivalent to the overall path query processing.
These values are, on average, one-fourth of those values on
single machine. Thus, the proposed parallel query process-
ing scheme with 5 working nodes shows the performance
improvement, 4 times faster than single machine processing.

6. Conclusion

For the purpose of retrieving contextual information from
sensor networks, large amount of sensor data are annotated
with spatial, temporal, and thematic semantic metadata. We
introduced a novel path querying technique for retrieving
the contextual information from semantically annotatedRDF
data. The proposed path querying scheme utilizes precalcu-
lated class path information for efficient graph search. We
showed that combining the “class path look up scheme”
with (bidirectional) BFS algorithm could significantly narrow
down the search space. The proposed path querying scheme,
namely, bidirectional BFS combined with class path lookup,
achieved performance improvement bymore than 3 orders of
magnitude compared with the conventional BFS algorithm.

Additionally, we proposed a distributed and parallel
system architecture on which the proposed path query-
ing scheme is executed. We achieved 4 times speedup by
distributing the query processing job to 5 working nodes.
A drawback with the proposed parallel architecture is the
storage cost, because eachworking node holds fully replicated
triple set. We expect that the replication of the triple store
can be avoided by adopting the ‘hybrid double clustering
architecture’ shown in Figure 6(b) whose implementation is
left for our future work.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

International Journal of Distributed Sensor Networks 11

Acknowledgments

The authors thank JimMelton, Keith Hare, Krishna Kulkarni,
and other attendees of ISO/IEC JTC 1/SC 32/WG 3 interim
meeting held in Singapore, 2013, for the evaluation and con-
structive feedback on this work. This work utilized scientific
and technical contents constructed through “Establishment
of the Sharing System for Electronic Information with Core
Science and Technology” project (K-13-L02-C01-S02).

References

[1] F. Ganz, P. Barnaghi, F. Carrez, and K. Moessner, “Context-
aware management for sensor networks,” in Proceedings of
the 5th International Conference on Communication System
Software and Middleware (ComsWare ’11), pp. 1–6, July 2011.

[2] M. Compton, P. Barnaghi, L. Bermudez et al., “The SSN ontol-
ogy of the W3C semantic sensor network incubator group,”
Journal of Web Semantics, vol. 17, pp. 25–32, 2012.

[3] A. Sheth, C. Henson, and S. S. Sahoo, “Semantic sensor web,”
IEEE Internet Computing, vol. 12, no. 4, pp. 78–83, 2008.

[4] K. Akkaya and M. Younis, “A survey on routing protocols for
wireless sensor networks,” Ad Hoc Networks, vol. 3, no. 3, pp.
325–349, 2005.

[5] M. Yoon, J. Chang, and Y. Kim, An Energy-Efficient Routing
Protocol UsingMessage Success Rate inWireless Sensor Networks,
2013.

[6] A. Sinha and D. K. Lobiyal, “An entropic approach to data
aggregation with divergencemeasure based clustering in sensor
network,” Communications in Computer and Information Sci-
ence, vol. 192, no. 3, pp. 132–142, 2011.

[7] S. Verstichel, B. Volckaert, B. Dhoedt, P. Demeester, and F. de
Turck, “Context-aware scheduling of distributed DL-reasoning
tasks in wireless sensor networks,” International Journal of
Distributed Sensor Networks, vol. 2011, Article ID 521810, 24
pages, 2011.

[8] P. Heim, S. Hellmann, J. Lehmann, S. Lohmann, and T. Stege-
mann, “RelFinder: revealing relationships in RDF knowledge
bases,” in Semantic Multimedia, T.-S. Chua, Y. Kompatsiaris, B.
Mérialdo, W. Haas, G. Thallinger, and W. Bailer, Eds., vol. 5887
of Lecture Notes in Computer Science, pp. 182–187, 2009.

[9] D. Seo, H. K. Koo, S. Lee, P. Kim, H. Jung, and W.-K.
Sung, “Efficient finding relationship between individuals in a
mass ontology database,” Communications in Computer and
Information Science, vol. 264, pp. 281–286, 2011.

[10] F. Manola, E. Miller, and B. McBride, “RDF Primer,”
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/.

[11] S. Sakr and G. Al-Naymat, “Relational processing of RDF
queries: a survey,” ACM SIGMOD Record, vol. 38, no. 4, pp. 23–
28, 2009.

[12] H. Patni and S. Sahoo, “Provenance aware linked sensor data,”
in Proceedings of the 2nd Workshop on Trust and Privacy on the
Social and Semantic Web, 2010.

[13] D. Abadi and A. Marcus, “Scalable semantic web data man-
agement using vertical partitioning,” in Proceedings of the 33rd
international conference onVery large data bases (VLDB ’07), pp.
411–422, 2007.

[14] A. Matono and T. Amagasa, “A path-based relational RDF
database,” in Proceedings of the 16th Australasian Database
Conference (ADC ’05), vol. 39, pp. 95–103, 2005.

[15] Y. H. Kim, B. G. Kim, J. Lee, and H. C. Lim, “The path index for
query processing on RPF and RPF Schema,” in Proceedings of
the 7th International Conference on Advanced Communication
Technology (ICACT ’05), pp. 1237–1240, February 2005.

[16] C. Weiss, P. Karras, and A. Bernstein, “Hexastore: sextuple
indexing for semantic web data management,” in Proceedings of
the VLDB Endowment, 2008.

[17] S. Campinas and T. Perry, “Introducing RDF graph summary
with application to assisted SPARQL formulation,” in Proceed-
ings of the 23rd International Workshop on Database and Expert
Systems Applications (DEXA ’12), pp. 261–266, 2012.

[18] J. Huang, D. Abadi, and K. Ren, “Scalable SPARQL querying of
large RDF graphs,” in Proceedings of the VLDB Endowment, vol.
4, pp. 1123–1134, 2011.

[19] J. Melton and A. Simon, SQL: 1999-Understanding Relational
Language Components, Morgan Kaufmann, 2001.

[20] Y. Guo, Z. Pan, and J. Heflin, “LUBM: a benchmark for OWL
knowledge base systems,”Web Semantics, vol. 3, no. 2-3, pp. 158–
182, 2005.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

