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Due to the battery limitation of wireless sensor network (WSN), there is imperative requirement of energy saving and optimization
in practical application of WSN. In order to optimize the energy of WSN, in this paper, a stochastic energy model for WSN is
proposed. The model is based on the continuous time Markovian decision processes (CMDP) machine and spans both energy
consumption and ensued transition costs. We use PRISM to analyze stochastic CMDP strategies of sensor devices as the formal
framework. Simulation experiment is carried out to evaluate the model with given performance criteria. The result shows that the
given model can effectively balance energy optimization and perform with high efficiency in WSN.

1. Introduction

Wireless sensor networks (WSNs) can collect information
andmonitor situations in a variety of scenarios including coal
mines, battlefields, forests, and farmlands [1–3]. Compared to
other self-organized networks, the nodes inWSNs are gener-
ally powered by small inexpensive batteries. Each operation,
calculation, and intercommunication consume the nodes’
energy. Once some nodes, especially those crucial nodes like
the cluster head, run out of energy, theywill directly influence
the connection of WSNs and the monitoring process. To
extend the network’s lifetime of power constrained wireless
sensor networks for a long period of time, their energy
consumption should be well managed by optimal routing
designs.

Those nodes have the common attractive traits that they
have small size, light weight, high mobility, and smart usage,
and the most important feature is that they are all battery
aware devices. As we move from the wired to wireless sensor
network domain, one of the common problems in those
battery-operated devices is the availability and cost of the
energy. Power savings in these computing devices become
more crucial and this constrains the budgets of the data
collecting and computing. Google engineers, maintaining
thousands of servers, warned that if power consumption con-
tinues to grow, power costs can easily overtake hardware costs

by a large margin [4]. Each of us has experienced the event
that the battery of our laptop ormobile phone is depleted.The
issue is evenmore serious in autonomous, distributed devices
such as sensor networks where the charging of batteries on
running is difficult or impossible. Finally, energy dissipation
causes thermal problems. Most of the energy consumed by a
system is converted into heat, resulting in wear and reduced
reliability of hardware and software components.

The research community, hardware manufacturers, and
OS designers [5] already found positive solutions to extend
the battery life of mobile nodes in WSNs at different levels
such as hardware [6], operating system,wireless technologies,
and applications [7]. However, these efforts are limited by
the heavy layering existing on WSNs platforms that makes
difficult exploiting cross layer optimizations, which might be
fairly straightforward otherwise. One of the main reasons
behind this limitation is a complex business ecosystem
in which multiple players (e.g. mobile network providers,
content providers, cloud service Providers, hardware man-
ufacturers and OS vendors) compete to retain their share
of the mobile business. Most of WSNs have power monitor
to allow hardware and software components to dynamically
adjust power consumption based on required function and
services quantity. However, each kind of approach to power
savings has its own limitations. Much of the previous work
on dynamic power management has been based on ad hoc
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techniques, such as the use of regression equations, interpola-
tion, or learning based methods. Stochastic approaches [8, 9]
tend to be more formal in the sense that they are based on
mathematical models whichmake precise assumptions about
the probabilistic characteristics, for example, when service
requests arrive at a device and how long the device takes
to respond to these requests. Validation and analysis of the
stochastic DPM [10] schemes, however, are less formal and
evaluation is usually being carried out with simulation tech-
niques which are time consuming and often not completely
reliable.

The material in the paper is organized as follows. We
introduce the models of three different states and transition
paths in Section 2. The general CMDP framework and the
PRISM tool are presented in Section 3. Simulation example
and experiment numerical analysis results are showed to be
applying PRISM in Section 4. Finally, the conclusion and
future work are described in Section 5.

2. The Energy Consumption Model

In this section, we present a stochastic energy consumption
model. We prefer a stochastic model; the mean sojourn
time for each state is known in advance, but the delay is
not deterministic. For example, the sleep state is actually
distributed with exponential distribution using the rate for
sleep. The same principle is applied for idle and active states
as well. We believe that such a stochastic model is more
convenient and more realistic then using deterministic delay,
since the philosophy ofWSN can be described as “finish your
job and go to sleep as soon as possible.” Thus, each process
should go to sleep as long as it is done.

In the paper, the energy consumption model is majorly
fixed in the active state. Let 𝑟 be the energy consumption
rate, measured in energy units per time unit in the active
state. From a practical point of view, it is instructive to
study stochastic settings where the length of idle periods is
governed by probability distributions [11]. In the following,
we assume that the distribution is continuous-time Markov
distribution (CTMD).The node energy consumption devices
in general have three states: active, idle, and sleep. Each state
has two types of energy consumption: state consumption and
state transition consumption (Figure 1). We model the states
as a stochastic Markov chain process {𝑆𝑒

𝛼𝑐𝑡
(𝑡)}. In this set,

𝑆 stands for states of the sensor nodes state. In the paper,
three states are considered, 𝑆

𝛼
, 𝑆
𝑖
, and 𝑆

𝑠
, and are called

action states. The set of actions is denoted by ACT. An action
𝑎𝑐𝑡 ∈ 𝐴𝐶𝑇 is the number of time slots the device waits
until making the next detecting. When the action occurs, the
device passes into one of the three states. These three action
events correspond to a device passing to the states “in active,”
“in idle,” and “in sleep.” “𝑡” is the time for illustrating that
one action is chosen at every unit of time. When the action
state 𝑆𝑒

𝛼𝑐𝑡
occurs at the moment 𝑡, it is represented by 𝑆𝑒

𝛼𝑐𝑡
(𝑡).

“𝑒” is the energy consumption, measured by the states energy
consumption and transition energy consumption in one state.
Let 𝑟 be the energy consumption rate, measured in energy
units per time unit, in the active state. From a practical point
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Figure 1: Illustration of the states and the states transition path of
general WSNs.

of view, it is instructive to study stochastic settings where the
length of idle periods is governed by probability distributions.
“act” is the action for specifying the action state. Each action
state has three type actions, listening, sending, and receiving,
and each action has two values: 0 and 1.The expression 𝑆𝑒

𝛼𝑐𝑡
(𝑡)

expresses the state that is staying.
At the beginning of the time interval 𝑡, the variable

describing these factors is set to 𝑆𝑒
𝛼𝑐𝑡
(𝑡) and changes during

the next time step to 𝑆𝑒
𝛼𝑐𝑡
(𝑡+1)with the transition probability
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and hence captures the variations in accuracy with changing
actions. In real activities, the transition may happen due to
the random arrival of signal. The form of the distribution
is assumed to be a two dimensional Gaussian distribution
centered at 𝑆𝑒

𝛼𝑐𝑡
(𝑡):
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(1)

In general, we assume the probability 𝜌 is not known
in advance, but we can compute the transition probability 𝜌
according to the condition probability 𝜌(𝑆
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)) to calculate the next

state reaching probability. In fact, from the daily usage of
the WSN nodes, we cannot give the 𝜌(𝑆

𝑡
| 𝑆
𝑡+1
) current

state probability, so it is difficult to compute the next state
probability. Given the fact that we can detect state 𝑥 at some
time 𝑡

𝑖
and the next detects state 𝑦 at time 𝑡

𝑗
(𝑡
𝑖
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) easily, the probability of being in state 𝑧 at time 𝑡

is given by
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In order to gain the “most likely” state, the quantity given
in the above formula needs to be maximized:
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𝑅
𝑎
(𝑆, 𝑆
󸀠

) is the reward associated with the transition 𝑆 to
𝑆
󸀠.When the action act was chosen,𝑅

𝑎
(𝑆, 𝑆
󸀠

)was produced at
once. In the model, the reward will reflect the reward energy
for electricity consumption associated with the transition.
We note that these rewards are meant to achieve a desired
performance on the node and are therefore tunable to achieve
desired behaviors. For example, if request is less valuable than
data synchronization, the reward for request can be lowered
with respect to data reward. We propose to use the CMDP
approach to better handle the dynamics of the system because
WSN’s behavior is real stochastic. Reward is positive and it is
usually interpreted as income and otherwise as cost. Actions
are listening, sending, and receiving.

For short-term, small-scale evaluations a wireless sensor
network with regular nodes layout is implemented. 19 sites,
each with 3 sectors, 10MHz bandwidth operating at 2.1 GHz
carrier frequency, are assumed.Moreover, 2×2MIMO trans-
mission with adaptive rank adaption is assumed.The intersite
distance (ISD) for the dense urban and urban environments
is set to 500m, whereas the ISD for suburban and rural
areas is set to 1732m. The users are uniformly distributed,
with population densities corresponding to the respective
deployment scenarios. The simulation parameters are taken
from 3GPP specifications [4]. Two cases are simulated: (a)
base stations without sleep mode and (b) base stations with
microsleep during idle transmit intervals, that is, neither data
nor control signals are transmitted.

The power per area unit P/A, expressed in [kW/km2],
with an ISD of 500m corresponds to a coverage area of
0.2165 km2 per site. The power consumption is around
4.15 kW/km2 at low loads, and it can reach 5.1 kW/km2 at
high loads. For the network with microsleep capable base
stations, the corresponding figures are 3.5 kW/km2 at low
loads and can reach 5 kW/km2 at high loads. For compar-
ison, in an empty network when only control channels are
transmitted, but no user data, the power consumption equals
885W per site, which corresponds to a power per area unit
of 4.1 kW/km2. In the (hypothetical) extreme case, when
nothing at all is transmitted (i.e., no data and no control
channels) so that the RF output power is 0W, we obtain
𝑃/𝐴 = 3.3 kW/km2. The power consumption per area unit
for suburban and rural areas is substantially lower, which

Table 1: Average power consumption (W) and service times (ms)
for each power state.

Sleep Idle Active
Power consumption (W) 0.2 1.3 2.8
Service time (ms) 0 0 1

Table 2: Average state transitions consumption results (W).

Active Idle Sleep
Active 0 0.3 0.2
Idle 0.8 0 0.1
Sleep 1.2 0.05 0

is due to the increased ISD of 1732m, which corresponds
to a coverage area of 2.6 km2 [12, 13]. However, the system
throughput per area unit decreases accordingly, due to the
increased site coverage area. Average power consumption
(W) and service times (ms) for each power state and average
state transitions consumption results (W) are separated and
depicted in Tables 1 and 2.

For the analysis of the energy consuming of the sensor
node, we limit each state has a finite queue length, say size of
𝑄, to store the data it generated or forwarded from other state
for relaying purpose.

3. CMDP Model and
Performance Characteristics

The main challenge of modeling is to manage its complexity
in terms of the number of states, the number of actions, and
the time horizon. This is important because ultimately the
optimal energy consuming, typically in the formof a precom-
puted table, will itself be running on a resource-constrained
device (i.e., a senor node). In order to give a formal model to
be feasible for model checking, it should have an explicit state
space. We present the situation with numerical values and
examples. In general, the model consists of services requestor
(SR) to generate the tasks to be serviced, a single service
provider (SP) to supply the required services, and a service
queue (SQ) to store the taskswaiting for services. Each service
may consist of numbers of sensors states. For example, there
are five sensors built into most models of the WSN node.
Without these sensors, none of the devices would be what
we know them as today. They are proximity sensor, motion
sensor/accelerometer, ambient light sensor, moisture sensor,
and gyroscope. The total number of modules: #modules =
(𝑁 + 1) ∗ 𝑀. 𝑀 services, 𝑁 sensors in each service, in the
real case: 𝑀 = 3, 𝑁 = 5, #modules = 15. For example,
assuming that each module has 3 states, the whole model has
roughly 3 power 15 = 14348907, and the transition is 3 power
15 ∗ 16 − 1 = 229582511.

Here we adopt the continuous-time Markovian decision
processes approach to the problem of interest. CMDP is a
commonly used technique in the field of performance and
dependability analysis of sensor and especially of real-time
communication system. A CMDP is defined as a 5-tuple,
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(𝑆, 𝑆0, 𝐴𝑐𝑡, 𝑃, 𝑅), where 𝑆 is the finite set of states, which is
denoted as 𝑆 = {𝑠

0
, 𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑁
}, and the state at time 𝑡 is

denoted as 𝑠
𝑡
, a direct product of the handset states set 𝑆(𝐷),

and the indirect states set 𝑆(𝑖), 𝑆 = 𝑆(𝐷) ⊗ @𝑆(𝑖), 𝑆0 ∈ 𝑆
is the initial state; Act is a finite set of actions. 𝐴𝑐𝑡(𝑠) is the
finite set of actions available from state 𝑠 ∈ 𝑆. A typical
system with a limited battery may have around 800 states
and 1600 actions. In practice, the real tool performance is
often much better than this worst case analysis, especially for
sparse linear programs. Act is a finite set of actions. Within
the framework, the actions are constrained in the listening,
receiving, and sending.𝑃 is the transition probability between
states that action act chosen while in state 𝑠 at time 𝑡 will
lead to state 𝑠󸀠 at time 𝑡 + 1. The probabilistic description
of the transition allows accounting for stochastic nature of
the energy fluctuations as well as for the randomness in the
dynamics of the sensor node. 𝑅 is the reward associated with
the transition 𝑠 → 𝑠

󸀠 when the action act was chosen.
In the models, the reward will reflect the cost for energy
consumption associated with the transition.

PRISM [14] is a probabilistic model checker, a tool
for formal modeling and analysis of systems that exhibit
random or probabilistic behavior. It supports a wide range
of probabilistic models and has been used to analyze sys-
tems from many different application domains, including
communication and multimedia protocols, randomized dis-
tributed algorithms, security protocols, biological systems,
and many others. It supports analysis of several types of
probabilisticmodels: discrete-timeMarkov chains (DTMCs),
continuous-time Markov chains (CTMCs), Markov decision
processes (MDPs), probabilistic automata, and probabilistic
timed automata. In PRISM, models are described as the
parallel composition of a set of modules, with each module
containing a set of commands describing transitions. Each
command consists of optional action and Boolean formulae
over simple arithmetic expressions of variables and constants
for antecedent and consequent. Variables can be local with
respect to a module or global with respect to the whole
model. A transition from one state to another corresponds
to a choice of all enabled commands. A command is enabled
in a state when its antecedent holds and all other commands
with the same action synchronously hold. Depending on
the type of model, the choice of transition is probabilistic,
nondeterministic, or both. The PRISM tool can read and
parse a model description in the PRISM language.

4. Experiment Numerical Analysis

To verify the validity of the stochastic model, we have applied
PRISM to implement the experiment and present the result.
The experiment results of the numerical analysis had been
done in this section. The performance measures considered
here are several consumptions. We assume the data storage
capacity of the service request is 10(𝐶 = 10), and the state
transition distribution has the same value and equals 0.5.
Given a performance constraint (average number of request
in awaiting service), we construct the optimal policy which
minimizes the average power consumption while satisfying
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the performance constraint. We obtained these policies by
constructing the generator matrix of the system in PRISM.

We start our analysis of the power error probability
according to the changes of the state transition number. As
shown in Figure 2, if the state transitions number increases
with exponential, the power error probability of the sensor
increases very quickly and may not work when the number
reaches 10000. If the state transitions number increases
with uniformity, the power error probability of the sensor
increases very quickly, but the power error probability may
keep a stable number. Based on the results of Figure 2, the
number of the power error probability is large, so the state
transition number under 10000 is kept.

Figure 3 shows the energy consumption when the state
switches from the sleep mode to the active mode. It is
clear that the sensor may consume more energy when the
activities are increased. Also, from this figure, we know
that the less capacity, the more the energy the sensor may
consume, although the energy assumption does not change
toomuch.Thus, from the viewpoint ofminimizing the energy
consumption for switching from sleep mode to active mode,
it is optimal to minimize the number of data packets which
may need relay through the sensor under investigation. By
considering the relay is a vital property for sensor, it is
imperative to find an optimal capacity to leverage the energy
consumption.

5. Conclusion and Future Works

As people increasingly rely on WSNs, good energy man-
agement is becoming necessary to squeeze the most out of
a battery. In the paper, the states and state transitions of
sensor are explicitly illustrated. According to the rules of the
state transitions, a simple stochastic framework to analyze
energy consumption on sensor using CMDP is proposed.
We tested the framework with PRISM on both power error
and power consumption according to the state transitions.
We can obtain the automated analytical means by applying
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the given performancemeasures strategies with no additional
expensive simulation.

In the future works, we will investigate other related
results with the analytical method from this paper.
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