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The skyline query processing technique plays an increasingly important role for multicriteria decision making applications in
wireless sensor networks.The technique of saving energy to prolong the lifetime of sensor nodes is one of the dominating challenges
to resource-constrained wireless sensor networks. In this paper, we propose an energy-efficient skyline query processing algorithm,
called the histogramfilter based algorithm (HFA), to efficiently retrieve skyline results from a sensor network. First, we use historical
data at the base station to construct histograms for further estimating the probability density distributions of the sensor data.
Second, the dominance probability of each tuple is computed based on the histograms, and the optimal tuple which has the
largest possibility of dominance/filtering capability is obtained using in-network aggregation approach. After that, the base station
broadcasts the optimized tuple as the global filter to each sensor node. Then, the tuples which do not satisfy the skyline query
semantics are discarded to avoid unnecessary data transmissions. An extensive experimental study demonstrates that the proposed
HFA algorithm performsmore efficiently than existing algorithms on reducing data transmissions during skyline query processing,
which saves the energy and prolongs the lifetime of wireless sensor networks.

1. Introduction

Rapid advances of embedded systems, sensing, and wireless
communication technologies have fostered the developments
of wireless sensor networks. The sensor nodes perceive,
gather, and process information of monitoring area, such as
light, temperature, and humidity, and transmit the informa-
tion to remote users via wireless communication. Wireless
sensor networks have been widely applied to many fields,
such as defense military, environmental monitoring, and
traffic management. The sensor nodes are generally battery
powered and have limited energy. In real applications, sensor
nodes are often deployed in harsh environments, which
makes changing batteries unpractical. Therefore, applica-
tions over wireless sensor networks need an energy-efficient
method to process data gathered by sensor nodes [1].

To support data query processing in wireless sensor
networks, TinyDB [2] and Cougar [3] systems have been pro-
posed which developed some basic aggregation operations,

such as MAX and MIN. Other types of user queries for a
wireless sensor network such as Join queries [4, 5], 𝑘NN
queries [6], top-𝑘 queries [7–9], and skyline queries [10, 11]
which have been widely studied in recent years are not sup-
ported by these systems. In this paper, we focus on the skyline
query as it is one of the important means of multicriteria
decisionmaking problems. Börzsönyi et al. [12] first proposed
skyline queries and introduced a classic example to describe
it in database community. Suppose one person is going on
holiday to Nassau and queries the hotel database to find one
that is cheap and close to the beach. Generally, the hotels
near the beach tend to be more expensive and ones with low
prices are far from the beach, which lead to the fact that the
database cannot return one best result to the user. However,
there may exist some interested hotels not worse than any
other hotel considering both distance and price. The set of
interesting hotels forms a skyline. Specifically, skyline query
is to select tuples which are not dominated by any other
tuple from a given set of tuples 𝑇 of 𝐷 dimensions space.
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Figure 1: Example of Nassau beach.

A tuple dominates another one if it is as good or better in all
dimensions and better in at least one dimension. Take Table 1,
for example; there are six hotels listed in the table. Although
𝐻
1
is more expensive than𝐻

2
,𝐻
1
is closer to the beach than

𝐻
2
, and no other hotels dominate them; they are both in the

skyline. 𝐻
3
is dominated by 𝐻

1
as it is more expensive and

farther from the beach. Similarly, 𝐻
4
and 𝐻

6
are dominated

by𝐻
2
. Therefore, the skyline results contain𝐻

1
,𝐻
2
, and𝐻

6
.

Figure 1 shows that the hotels lying in the blue line are the
results of the skyline query.

The skyline query can be used in many applications
in wireless sensor networks. Take monitoring wild animal’s
behavior, for example. Outdoor biologists can collect infor-
mation of birds to analyze birds’ behavioral habit through
wireless sensor networks. If a biologist wants to study the
ecological relationship between the groups of birds in a
region, he may hope that the observation area has more
species and lager quantity of birds. Sensors can be deployed
to monitoring these conditions in the forest to find the
most suitable area for monitoring birds’ behavior. Besides,
scientists can also use wireless sensor networks to study wild
fish. Sensors can be deployed to monitor river regions with
specific water temperature andwater flow speed, so that these
regions can be used to study the specific kind of fish.

In wireless sensor networks, each sensor node collects
data continually, so there is a mass quantity of data in the
network. Sensors cannot deal with such a large amount of
data due to their limited computing ability. Besides, there
is no significance to computing the skyline over the whole
time.Therefore, we use a slidingwindow to constrain the data
and retrieve the skyline from the latest data in the sliding
window. Most previous studies have resolved the skyline
query problem in a centralized way. However, if all sensor
data is collected to the base station to conduct a skyline query,
it will greatly increase the number of data transmissions.
Because the wireless transmission in sensor networks is the
main aspect of energy consumption, the large number of
transmissions will spend a lot of energy, which leads to the
sensor nodes malfunction. If we install a filter in each sensor

Table 1: Information of hotels.

Name Price Distance
𝐻
1

70 20
𝐻
2

40 40
𝐻
3

100 40
𝐻
4

70 50
𝐻
5

10 70
𝐻
6

40 60

node to discard tuples which will not be included in final
skyline results, it will avoid a large amount of data to transmit
so as to reduce the energy consumption and prolong the
lifetime of the sensor network. In this paper, we propose a
histogram filter based algorithm (HFA) to handle a sliding
window skyline query problem. First, we use the historical
data at the base station to construct histograms for further
estimating the probability density distributions of the sensor
data. Second, the optimal tuple is computed based on the
histograms and a maximal dominance region mechanism.
After that, the base station broadcasts the optimal tuple as
a global filter to each sensor node. Then, the tuples which
do not satisfy the skyline query semantics are discarded to
avoid unnecessary data transmission. The contributions of
this paper can be summarized as follows.

(1) We take a sliding window skyline query into account,
which does not need to collect all sensor data to
answer a skyline query and is more practical in real
applications.

(2) We take advantages of the multivariate histograms to
estimate the distribution of sensor data, thus, capture
tuples with the largest capability of the dominance.
And a maximal dominance region mechanism is
used to compute the optimal tuple. The base station
broadcasts the optimal tuple as a global filter to each
sensor node so as to prune dominated tuples.

(3) We conduct extensive experiments to evaluate our
proposedmethod. And the experimental results show
that the HFA algorithm is energy-efficient.

The rest of this paper is organized as follows. Section 2
introduces the related work of skyline query processing
algorithms. In Section 3, a sliding window mechanism is
described and a multivariate histogram constructing policy
is introduced. In Section 4, we propose an energy-efficient
skyline query algorithm based on multivariate histograms.
Experimental results are illustrated in Section 5 and Section 6
concludes this paper.

2. Related Work

The skyline query processing techniques have been widely
studied in recent years. After Börzsönyi et al. [12] introduced
the skyline operator into the database community, a lot of
improved algorithms were proposed, which can be divided
into two types: with/without indexes. The block-nested-loop
algorithm (BNL) and divide-and-conquer algorithm (D&C)
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[12] are two typical methods without indexes. Tan et al.
[13] proposed a Bitmap algorithm to compute skyline, which
progressively return the interesting points. Bitmap exploits
a bitmap structure to quickly identify whether a point is
an interesting point or not. As the mapping way Bitmap
utilizes may cause the length of string to increase rapidly
due to increasing values of different dimensions, it will take
up a lot of storage space. Chomicki et al. [14] proposed an
algorithm named sort-filter-skylines (SFS) as a variant of
BNL. And Godfrey et al. [15] introduce the linear elimination
sort for skyline (LESS) based on SFS. Börzsönyi et al. [12]
also proposed methods with indexes using B-tree and R-tree
to handle skyline query problem. Tan et al. [13] introduced
Index algorithm. The algorithm exploits a transformation
mechanism and a B+-tree index to return skyline points in
batches. Each point is transformed into a single dimensional
space and stored in a B+-tree structure. Points with some
common features are clustered together. Kossmann et al. [16]
proposed nearest neighbor algorithm (NN), and it is the first
user-friendly skyline computation method. Papadias et al.
[17] took advantage of R-tree to establish index for the data
and proposed a progressive algorithm called BBS (branch and
bound skyline) which is optimal in terms of node accesses.

In addition to a centralized environment, the skyline
query has been widely used in distributed, peer-to-peer
(P2P), Web, and road network environment. Hose and
Vlachou [18] described in detail the skyline query processing
algorithm in the distributed environment. Wang et al. [19]
proposed Skyframe, which consists of two querying meth-
ods for efficient skyline processing in Peer-to-Peer systems.
And they introduced a method to balance the query loads
among the peers in Skyframe through both load induced
data space partitioning and dynamic load migration. The
Skyframe algorithm can quickly respnd to a query and has
lower communication cost. Tao and Papadias [20] studied
skyline computation in stream systems that consider only
the tuples that arrived in a sliding window covering the 𝑊
most recent timestamps. Balke et al. [21] put forward an
effective distributed skyline algorithm in Web information
systems for the first time according to the characteristics
of the independent Web resources distribution. Deng et al.
[22] considered multisource relative skyline queries in road
networks for the first time. Three algorithms are proposed to
process multisource skyline queries in a constrained space.

In the past years, the skyline query problem in wireless
sensor networks has been studied in the literature. Huang
et al. [23] proposed a filter-based approach (FA) to retrieve
skyline results from mobile ad hoc networks, which aims
to reduce the cost of the communication among the mobile
devices and the cost of query execution on the devices.
And this method can be easily extanded to wirelss sensor
networks. Kwon et al. [24] proposed a MFT-applied aggrega-
tion approach (MFTA) for in-network processing for skyline
queries. Chen et al. [25] studied the problem of continuous
skyline monitoring in wireless sensor network for the first
time. They proposed an advanced approach that employs
hierarchical thresholds at nodes and a sophisticatedMinMax-
threshold approach (MINMAX), which aim to minimize the
transmission traffic of the entire network. Xin et al. [26]

put forward a sliding window skyline monitoring algorithm
(SWSMA) to continuously maintain skyline in the network.
There are two filter methods, one is tuple filter approach and
another is grid filter approach. Su et al. [10] proposed a skyline
sensor algorithm (SkySensor) to efficiently retrieve skyline
results from a sensor network. A cluster-based architecture
is designed in SkySensor to collect all sensor readings from
sensor nodes. Chen et al. [11] studied skyline query optimiza-
tion and maintenance problems in wireless sensor networks.

The energy consumption of wireless communication
has a great effect on the lifetime of sensor networks. It
is not practical to collect all sensor readings to the base
station to conduct a skyline query. We observe that the
algorithms exploited in centralized, distributed, Web, and
data stream environment are not applicable to the wireless
sensor networks. Existing skyline query algorithms in sensor
networks are generally based on filtering some dominated
tuples to efficiently answer the skyline queries, so as to avoid
unnecessary wireless communications in order to reduce
energy consumption of sensor nodes. These methods mostly
focus on the local filters; if all the data of one sensor node does
not belong to the final skyline set, the local filter approachwill
not prevent these data from transmitting, which consumes a
certain amount of energy. Therefore, a global filter method
is necessary to design to prune nonskyline tuples as many
as possible for energy-efficient skyline query processing in
sensor networks.

3. Preliminaries

Assume that the tuple set of a sensor network is denoted by𝑇,
and every tuple has 𝑑 dimensions. So each tuple 𝑡

𝑖
with 𝑑 real-

valued attributes can be conceptualized as a 𝑑-dimensional
point (𝑡

𝑖,1
, 𝑡
𝑖,2
, . . . , 𝑡

𝑖,𝑑
) ∈ R𝑑, where 𝑡

𝑖,𝑗
is the 𝑗th attribute

of 𝑡
𝑖
. In the following sections, we first define the skyline

query. Then, we introduce the sliding window skyline query.
After that, a policy to construct a multivariate histogram is
discussed.

3.1. The Sliding Window Skyline Queries. In this paper, we
focus on the skyline query in a wireless sensor network. The
skyline operator is first proposed in [12]. It is represented in
Definition 1.

Definition 1. The skyline query is to find the skyline set
of the given database 𝑇, which retrieves tuples that are
not dominated by any other tuple. Given two tuples 𝑡

𝑖
=

(𝑡
𝑖,1
, 𝑡
𝑖,2
, . . . , 𝑡

𝑖,𝑑
) and 𝑡

𝑗
= (𝑡

𝑗,1
, 𝑡
𝑗,2
, . . . , 𝑡

𝑗,𝑑
) ∈ R𝑑, 𝑡

𝑖

dominates 𝑡
𝑗
if and only if we have 𝑡

𝑖,𝑘
≤ 𝑡
𝑗,𝑘

for 1 ≤ 𝑘 ≤ 𝑑
and 𝑡
𝑖,𝑘
< 𝑡
𝑗,𝑘

for some 1 ≤ 𝑘 ≤ 𝑑, denoted by 𝑡
𝑖
≺ 𝑡
𝑗
.

Notice that we consider the smaller value of every
attribute as a good one. There is no need that every tuple of
the skyline needs to dominate a tuple of 𝑇. For instance, in
Figure 1, while hotels 𝐻

1
and 𝐻

2
each dominate two other

hotels, hotel𝐻
1
dominates no hotel.

In wireless sensor networks, every sensor node collects
data periodically. When a skyline query is conducted to
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a sensor network, if all sensor readings are gathered at the
base station to process the query, it will consume a large
amount of energy, which is not energy efficient. Therefore,
the sensor nodes generally do not transmit mass data to base
station. Instead, all sensor data is stored locally. The sensor
nodes will generate large amounts of data over time. And it is
impossible to store all data due to the limited storage ability
of nodes. Besides, the data that is collected earlier makes no
sense to the skyline query at current moment. So we don’t
consider these earlier collected data. On the other hand, it
is not viable to process skyline query after all data has been
collected because the sensor data are continuously generated.
Instead, we consider the skyline of data that is falling in a
sliding window. The sliding window skyline based on time
stamps is represented in Definition 2 [26].

Definition 2. When the sensor node collects data, there is a
time stamp 𝑡.𝑐 to indicate the tuple 𝑡’s collected time. If the size
of the sliding window is 𝑆 at each sensor node and the current
moment is 𝜏, then, if the tuple 𝑡 in the network satisfies (1), it
will be used to compute the sliding window skyline results:

𝜏 − 𝑆 ≤ 𝑡.𝑐 ≤ 𝜏. (1)

3.2. The Construction of Histogram. We propose a histogram
based approach to estimate the distribution of data in a
wireless sensor network, as histograms can intuitively show
the the distribution status of data. If the probability density
function of data is known in advance, the tuple’s dominance
probability can be calculated [26] to obtain the optimal tuple
which has the largest capability of the dominance.

3.2.1. The Construction of Univariate Histograms. A univari-
ate histogram is to construct a histogram for data with one
dimension. Assume that, in a wireless sensor network, there
are 𝑛 historical tuples stored in base station: 𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑛
, 𝑡
𝑖
∈

R. Then, the base station trains the tuples to construct a
univariate histogram. The histogram consists of many bins.
Assume that the 𝑘th bin of the histogram is denoted by
𝐵
𝑘
= [V
𝑘
, V
𝑘+1
). Suppose that V

𝑘+1
− V
𝑘
= ℎ for all 𝑘; then,

the histogram is said to have fixed bin width ℎ. Let 𝑛
𝑘
=

num
𝑘
(𝑡
𝑖
) denote the number of tuples in the 𝑘th bin, that is,

the number of tuples falling in bin 𝐵
𝑘
; then the probability

density function obtained from the histogram is defined as

𝑝 (𝐵
𝑘
) =
𝑛
𝑘

𝑛
=
num
𝑘
(𝑡
𝑖
)

𝑛
(2)

and 𝑡
𝑖
∈ [V
𝑘
, V
𝑘+1
), 𝑖 ∈ [1, 𝑛].

The tuples of the sensor network are falling in 𝑚 bins.
Assume that Vmax and Vmin are the largest and smallest values
of the training set, respectively; then the bin width ℎ is
determined by

ℎ =
Vmax − Vmin
𝑚

. (3)

After that, the interval of every bin of the histogram is
calculated using (3). The initial position of the 𝑘th bin of the
histogram V

𝑘
is

V
𝑘
= Vmin + (𝑘 − 1) ∗ ℎ. (4)

Then, the number of tuples falling in each bin is com-
puted. And according to (2), the probability of each bin is
calculated, so as to obtain the probability density function of
the whole sensor network.

3.2.2. The Construction of Multivariate Histograms. Process-
ing multidimension data query is meaningful to skyline
queries in a wireless sensor network; so a multivariate his-
togram is needed. Assume that tuples in the sensor networks
have 𝑑 dimensions, and the base station trains 𝑛 historical
tuples: 𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑛
, 𝑡
𝑖
∈ R𝑑 to construct a multivariate

histogram. A multivariate histogram is determined by a
partition of the space. Consider a regular partition by hyper-
rectangles of size ℎ

1
× ℎ
2
× ⋅ ⋅ ⋅ × ℎ

𝑑
, choosing hyper cubes as

bins would be sufficient if the data is properly scaled, where ℎ
𝑗

denotes the width of the 𝑗th dimension.Then, the number of
bins of the histogram is𝑚

1
×𝑚
2
× ⋅ ⋅ ⋅ ×𝑚

𝑑
, where𝑚

𝑗
denotes

the count of the 𝑗th dimension.
Constructing a multivariate histogram for a wireless

sensor network is as follows. Firstly, the tuples of the network
are divided into 𝑑 groups. Let 𝑡

1,𝑗
, 𝑡
2,𝑗
, . . . , 𝑡

𝑛,𝑗
denote tuples

of the 𝑗th group, where 𝑡
𝑖,𝑗
is the value of the 𝑗th dimension

of tuple 𝑡
𝑖
. Secondly, the theory used to construct a univariate

histogram is utilized to construct a multivariate histogram.
Let V
𝑗.max and V

𝑗.min be the largest and smallest values of
the 𝑗th dimension of the training set, respectively. Then, the
width of the 𝑗th dimension ℎ

𝑗
is determined by

ℎ
𝑗
=
V
𝑗.max − V𝑗.min

𝑚
𝑗

. (5)

Assume that 𝑏
𝑗,𝑘
= [V
𝑗,𝑘
, V
𝑗,𝑘+1
) denotes the interval of the

𝑘th block of the 𝑗th dimension and V
𝑗,𝑘+1
− V
𝑗,𝑘
= ℎ
𝑗
; so

V
𝑗,𝑘
= V
𝑗.min + (𝑘 − 1) ∗ ℎ𝑗. (6)

For the tuples of the whole dimensions, let 𝐵(𝑘
1
,

𝑘
2
, . . . , 𝑘

𝑑
) denote the interval of corresponding bin, where 𝑘

𝑗

is the 𝑘
𝑗
th block of the 𝑗th dimension and 𝑘

𝑗
= 1, 2, . . . , 𝑚

𝑗
:

𝐵 (𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑑
) = (𝑏

1,𝑘
1

, 𝑏
2,𝑘
2

, . . . , 𝑏
𝑑,𝑘
𝑑

) . (7)

After that, the number of tuples falling in each bin is
computed using (7), and the probability of each bin is

𝑝 (𝐵 (𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑑
)) =

𝑛
𝐵(𝑘
1
,𝑘
2
,...,𝑘
𝑑
)

𝑛
, (8)

where 𝑛
𝐵(𝑘
1
,𝑘
2
,...,𝑘
𝑑
)
denotes the number of tuples falling in bin

𝐵(𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑑
).

Figure 2 shows the histogram bins of 2-dimensional
data. Assume the sensor data has two attributes, data of
1st dimension is divided into 3 groups while data of 2nd
dimension is divided into 4 groups, and ℎ

1
and ℎ

2
are bin

widths of corresponding dimensions.

4. Histogram Filter Based Algorithm

Many methods focus on pruning nonskyline tuples to effi-
ciently answer the skyline query in a wireless sensor network,
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Figure 2: Bins of a multivariate histogram.

so as to reduce the data transmission. In this section, we
propose our HFA algorithm. First, a naive approach to carry
out a skyline query in awireless sensor network is introduced.
Second, we discuss two methods used to compute the skyline
results, known as FA [23] and MFTA [24]. Third, the details
of our proposed method are described.

4.1. Basic Approach. The most direct method to compute
skyline in a wireless sensor network is to collect all data in
the sliding window to the base station and carry out the
skyline query utilizing a centralizedmethod. However, only a
little part of the tuple set belongs to the final skyline results
generally. If all tuples are delivered to the base station, a
lot of nonskyline tuples will transmit in the network, which
increases the energy consumption of the sensor network.

Because the skyline operator is decomposable [26], the
in-network aggregation method can be used to compute
skylines, which is called naive approach (NA). A spanning
tree is established with the base station as the root. So each
intermediate sensor node will not transmit the data to its
parent until it has received all its children’s skyline results.
In this way, the data is combined to a message, so that it
reduces the cost of wireless communication. First, each leaf
node computes its local skyline and transmits the result to
its parents. Second, each intermediate node merges its local
skyline and the results delivered by its children and thens send
the new results to its parent. Third, after the root node has
received all children’s results, the final skyline results can be
obtained.

4.2. Methods Used to Compute Skyline Results in Wireless
Sensor Networks. In the NA approach, each sensor node
computes the skyline result locally and prunes some of the
nonskyline tuples, so that it reduces the data transmission.
However, every sensor node needs to send its local skyline to
its parent. It cannot avoid some tuples to transmit because
there are some tuples which belong to the local skyline
but do not belong to the final skyline. If there is a filter
in each sensor node, it will efficiently prevent many of the
nonskyline tuples form transmitting and greatly reduce the
cost of communication.
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Figure 3: Topology of a sensor network.

Assume that Figure 3 shows the topology structure of
a sensor network. There are five sensor nodes 𝑆

1
, . . . , 𝑆

5
in

the network. Tuples in each node are as shown in Figure 3.
Suppose all tuples are in the sliding window, and we will
use the FA algorithm and MFTA algorithm to compute the
skyline of given tuples.

4.2.1. FA Algorithm. In FA algorithm, a tuple 𝑡
𝑗
at the root

node can be chosen as a filter because the skyline query is
also carried out in the root sensor node. Assume that the data
range of the 𝑘th dimension of sensor data is [𝑠

𝑘
, 𝑏
𝑘
]; then, for

a tuple 𝑡
𝑗
= (𝑡
𝑗,1
, 𝑡
𝑗,2
, . . . , 𝑡

𝑗,𝑑
), its dominance region is defined

as VDR
𝑗
= ∏(𝑏

𝑘
− 𝑡
𝑗,𝑘
), where 𝑘 is from 1 to 𝑑. The root

sensor node sends skyline request as well as the filter tuple to
its children. The child nodes prune tuples dominated by the
filter tuple and compute the local skyline as well as the VDR
of tuples in the local skyline. If there exists one tuple 𝑡

𝑘
whose

VDR
𝑘
is larger than VDR

𝑗
, then the filter tuple is updated by

𝑡
𝑘
. In the end, themerge approach is used to compute the final

skyline results of the whole network.
Take Figure 3, for example, assume that the base station

conducts a skyline query to 𝑆
1
. The local skyline of 𝑆

1
is

{𝑡
12
, 𝑡
13
}. The upper bound of each dimension is 1. A filter

tuple is chosen from the local skyline of 𝑆
1
, as VDR

12
=

(1 − 0.28) ∗ (1 − 0.55) = 0.324 and VDR
13
= 0.2404,

VDR
12
> VDR

13
, 𝑡
12
is chosen as the filter tuple. 𝑆

1
sends the

query as well as 𝑡
12
to its child nodes 𝑆

2
and 𝑆
3
. Unfortunately,

the filter tuple 𝑡
12

does not dominate any tuple of 𝑆
2
and 𝑆
3
.

So 𝑆
3
sends its local skyline {𝑡

32
, 𝑡
33
} to 𝑆

1
. In node 𝑆

2
, as

VDR
23
= 0.3717 > VDR

12
= 0.324, the filter tuple is updated

by 𝑡
23
. Filter tuple 𝑡

23
dominates 𝑡

42
at sensor node 𝑆

4
but

dominates no tuples at 𝑆
5
. 𝑆
4
sends its local skyline {𝑡

42
, 𝑡
44
} to

𝑆
2
and 𝑆
5
sends its local skyline {𝑡

51
, 𝑡
52
, 𝑡
53
} to 𝑆
2
. In the end,

the base station retrieves the final skyline results {𝑡
32
, 𝑡
33
, 𝑡
44
}

using the merge approach.

4.2.2. MFTA Algorithm. MFTA algorithm utilizes a min-
score filter tuple (MFT) to prune nonskyline tuples so as to
avoid these tuples transmitting between sensor nodes. Tuples
closer to the original point have bigger chance to dominate
other tuples; so theMFTA algorithm chooses the tuple which
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Figure 4: MFTA approach.

is closest to the original point as the MFT. Each sensor node
sorts the sensor reading locally according to ascending order
of ∑ 𝑡

𝑖,𝑗
, where 𝑗 is from 1 to 𝑑, as shown in Figure 4. The

MFT is chosen based on the following rules. (a)The tuple that
makes ∑ 𝑡

𝑖,𝑗
smallest is chosen as MFT. (b) If there is more

than one tuple satisfying rule (a), then the tuple that makes
∏(𝑏
𝑘
− 𝑡
𝑖,𝑗
) biggest is chosen as MFT. (c) If more than one

tuple satisfies rules (a) and (b) at the same time, then the first
sensed tuple is chosen as MFT.

InMFTA algorithm, each nonleaf node computes its local
MFT. When the root sensor node receives a skyline query, it
will send the query as well as its local MFT to its child nodes
and compute its local skyline. When the intermediate node
receives the skyline query, it will compare the received MFT
and its local MFT to determine whether to update the MFT
or not. After that, it will send theMFT and skyline query to its
child nodes and compute its local skyline. After all leaf nodes
have retrieved the local skyline set, the results are gathered to
the base station. And the final skyline result is obtained using
an in-network aggregation method.

Take Figure 3, for example; the tuples in Figure 4 have
been sorted. When the sensor node 𝑆

1
receives the skyline

query from base station, 𝑆
1
chooses 𝑡

12
as MFT

1
and sends

the skyline query as well as MFT
1
to 𝑆
2
and 𝑆
3
. 𝑆
1
computes

its local skyline = {𝑡
12
, 𝑡
13
}. In sensor node 𝑆

2
, the MFT

1
is

updated by 𝑡
21
. 𝑆
3
sends the query and MFT

2
= 𝑡
21
to 𝑆
4
and

𝑆
5
and computes its local skyline = {𝑡

21
, 𝑡
23
, 𝑡
24
}. 𝑆
4
and 𝑆

5

useMFT
2
to prune dominated tuples and compute their local

skyline. 𝑆
4
, 𝑡
41
, and 𝑡

43
are dominated by MFT

2
, so 𝑆
4
sends

{𝑡
42
, 𝑡
44
} to 𝑆
2
. Similarly, 𝑆

5
sends {𝑡

51
, 𝑡
52
, 𝑡
53
} to 𝑆
2
. Then, the

node 𝑆
2
computes the current local skyline {𝑡

23
, 𝑡
44
, 𝑡
52
, 𝑡
53
}

and sends the result to 𝑆
1
. As there is no tuple dominated

by MFT
1
, 𝑆
3
sends its local skyline {𝑡

32
, 𝑡
33
} to 𝑆

1
. In the

end, 𝑆
1
retrieves the final skyline {𝑡

32
, 𝑡
33
, 𝑡
44
} by merging its

children’s results.
It can be seen from the above two examples that although

FA algorithm and MFTA algorithm utilize filters at sensor
nodes, the pruning effect is not obvious. We observe that the
tuple 𝑡

33
in node 𝑆

3
’s local skyline has small value in both

dimensions by analyzing the characteristic of the data of the
network. If we can choose it as the filter before processing
the queries, more nonskyline tuples will be discarded. For
example, sensor node 𝑆

4
just needs to send 𝑡

44
to its parent,

and tuples at node 𝑆
5
are all dominated by 𝑡

33
, which prevents

these tuples from transmitting in network and greatly reduces
the data transmission and energy consumption.

4.3. Histogram Filter Based Algorithm. If one tuple 𝑡
𝑖
belongs

to the local skyline but does not belong to the final skyline,
there must exist one tuple 𝑡

𝑗
that can dominate 𝑡

𝑖
in the tuple

set. Suppose 𝑡
𝑖
is located at sensor 𝑆

𝑖
; if 𝑡
𝑗
is set to be the

filter at node 𝑆
𝑖
, then tuple 𝑡

𝑖
will be discarded and prevented

from transmitting. When a tuple 𝑡flt which can dominate
the most number of tuples is found and broadcasted to
the whole network as a global filter, it will avoid a large
number of nonskyline tuples transmitting in the network
and reduce the energy consumption. Therefore, we propose
a histogram based algorithm to obtain the best global filter.
We utilize sensor data on the base station to construct
histograms for estimating probability distributions and the
dominance probability of each tuple is computed based on
the histograms. The optimal filter is the one with the largest
possibility of dominance/filtering capability.

4.3.1. The Dominance Probability. Suppose tuple 𝑡
𝑖
= (𝑡
𝑖,1
,

𝑡
𝑖,2
, . . . , 𝑡

𝑖,𝑑
) falls in the bin𝐵(𝑘

1
, 𝑘
2
, . . . , 𝑘

𝑑
) of themultivariate

histogram; then, the dominance probability of 𝑡
𝑖
can be cal-

culated by computing the bin 𝐵(𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑑
)’s dominance

probability, which can be obtained by

𝑝 dom (𝑡
𝑖
) = 𝑝 dom (𝐵 (𝑘

1
, 𝑘
2
, . . . , 𝑘

𝑑
))

= ∑

𝑅

𝑝 (𝐵 (𝑘
󸀠

1
, 𝑘
󸀠

2
, . . . , 𝑘

󸀠

𝑑
)) ,

(9)

where 𝑅 = {(𝑘󸀠
1
, 𝑘
󸀠

2
, . . . , 𝑘

󸀠

𝑑
) | 𝑘
󸀠

1
> 𝑘
1
, 𝑘
󸀠

2
> 𝑘
2
, . . . , 𝑘

󸀠

𝑑
> 𝑘
𝑑
}.

If there exists 𝑗 ∈ {1, 2, . . . , 𝑑}, which makes 𝑘
𝑗
equal to 𝑚

𝑗
,

then 𝑝 dom(𝑡
𝑖
) is set to zero.

4.3.2. The Maximal Dominance Region Mechanism. Using
(9), we can obtain the bin which has the largest capability
of dominance because (9) is used to compute the dominance
probability of the bin which tuple 𝑡

𝑖
falls in. There may exist

more than one tuple fall in the bin; so only utilizing (9) cannot
determine which tuple in the bin will be set to be the filter.
Therefore, we use method in [23] to compute the dominance
region of tuples in this bin to measure the tuples’ dominance
ability. The maximal dominance region mechanism is also
applicable for tuples satisfying 𝑝 dom(𝑡

𝑖
) = 0.

Assume that 𝑡
𝑖
and 𝑡
𝑗
are two 2-dimensional tuples, their

dominance regions are shown in Figure 5. It is obvious that
tuples falling in 𝑡

𝑖
⋅ DR will be dominated by 𝑡

𝑖
. Therefore,

the larger the value of 𝑡
𝑖
⋅ DR is, the more the tuple 𝑡

𝑖
is able

to dominate other tuples. Figure 5 shows that 𝑡
𝑗
has higher

dominance ability than 𝑡
𝑖
as the value of 𝑡

𝑗
⋅DR is larger than

the value of 𝑡
𝑖
⋅DR. Let 𝑢

𝑗
denote the upper bound of the 𝑗th

dimension of the tuple 𝑡
𝑖
and let 𝑡

𝑖,𝑗
denote the value of the

𝑗th dimension of the tuple 𝑡
𝑖
, then the dominance region of 𝑡

𝑖

can be obtained by

𝑡
𝑖
⋅ DR =

𝑑

∏

𝑗=1

(𝑢
𝑗
− 𝑡
𝑖𝑗
) . (10)
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(1) 𝑛 ← sensor numbers
(2) for 𝑖 = 1 to 𝑛 do
(3) Initialization: LS(𝑖) = 0 ⊳ initializing each node’s local skyline;
(4) sort tuples in node(𝑖) in ascending order of the first dimension
(5) for each tuple 𝑡𝑝 in node(𝑖) do
(6) for each tuple 𝑙𝑡𝑝 in LS(𝑖) do
(7) if 𝑡𝑝 is not dominated by 𝑙𝑡𝑝 then
(8) insert 𝑡𝑝 to LS(𝑖) ⊳ insert the tuple to the skyline
(9) end if
(10) end for
(11) end for
(12) 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(LS(𝑖)) ⊳ compute the dominance probability of each local skyline tuple
(13) 𝑚𝑎𝑥𝑝 𝑡𝑢𝑝𝑙𝑒 ← tuples with the biggest dominance probability
(14) if 𝑛𝑢𝑚(𝑚𝑎𝑥𝑝 𝑡𝑢𝑝𝑙𝑒) > 1 then
(15) 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 DR(𝑚𝑎𝑥𝑝 𝑡𝑢𝑝𝑙𝑒) ⊳ compute the dominance region of every tuple in𝑚𝑎𝑥𝑝 𝑡𝑢𝑝𝑙𝑒
(16) 𝑓𝑖𝑙𝑡𝑒𝑟(𝑖)← tuple with the largest value of DR
(17) end if
(18) end for
(19) 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛(𝑓𝑖𝑙𝑡𝑒𝑟(𝑖)) ⊳ use the in-network approach to find tuple with best dominance ability
(20) 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡(𝑓𝑖𝑙𝑡𝑒𝑟) ⊳ broadcast the filter to the network
(21) for each tuple 𝑡𝑝 in LS(𝑖) do
(22) if 𝑡𝑝 is dominated by 𝑓𝑖𝑙𝑡𝑒𝑟 then
(23) remove 𝑡𝑝 from LS(𝑖)
(24) end if
(25) end for
(26) 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛(LS(𝑖)) ⊳ use the in-network approach to compute the final skyline

Algorithm 1: HFA algorithm.
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Figure 5: The dominance regions of 𝑡
𝑖
and 𝑡
𝑗
.

Finally, the tuple which makes (9) and (10) the largest is
chosen as final filter tuple 𝑡flt.

4.3.3. Description of the HFA Algorithm. Algorithm 1 is the
pseudo-code of our proposed HFA algorithm. First, the base
station uses the historical data to construct histograms for
further estimating the probability density distributions of the
sensor data. Second, the dominance probability of every tuple
is computed based on the histograms, and the optimal tuple
which has the largest dominance ability is obtained using
the in-network aggregation approach. After that, the base
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Figure 6: The probability density distribution.

station broadcasts the optimal tuple as the global filter to each
sensor node. Then, the tuples which don’t satisfy the skyline
query semantics are discarded to avoid unnecessary data
transmission. In the end, the final skyline result is calculated
using the aggregation approach.

For example, in Figure 3, the tuples are used to construct a
multivariate histogram based on Figure 2. Figure 6 shows the
probability density distribution of sensor data. Take sensor
node 𝑆

3
, for example; when the skyline query is executed, the

sensor node first computes its local skyline LS(𝑆
3
) = {𝑡
32
, 𝑡
33
}.

Then, the two tuples’ dominance probability is computed:

(1) 𝑝 dom(𝑡
32
) = 𝑝 dom(𝐵(2, 1)) = 𝑝(𝐵(3, 2)) + 𝑝(𝐵

(3, 3)) + 𝑝(𝐵(3, 4)) = 0.15;
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Figure 7: Effect of different synthetic datasets.

(2) 𝑝 dom(𝑡
33
) = 𝑝 dom(𝐵(1, 1)) = 𝑝(𝐵(2, 2)) +

𝑝(𝐵(2, 3)) + 𝑝(𝐵(2, 4)) + 𝑝(𝐵(3, 2)) + 𝑝(𝐵(3, 3)) +

𝑝(𝐵(3, 4)) = 0.4.

We can see that 𝑝 dom(𝑡
33
) is larger than 𝑝 dom(𝑡

32
), so

tuple 𝑡
33
is chosen as the filter tuple. The other sensor nodes

obtain their filter tuples in the same way. The tuple 𝑡
33

is
chosen as a global filter by using the in-network aggregation
method. After that, the base station broadcasts 𝑡

33
as the

global filter 𝑡flt to each sensor node. In this way, tuples at the
leaf node 𝑆

5
are all dominated by 𝑡flt and there is no need to

send any tuple to node 𝑆
2
. In sensor node 𝑆

4
, 𝑡
41
, 𝑡
42
, and

𝑡
43

are dominated by 𝑡flt, and only 𝑡
44

needs to transmit to
𝑆
2
. Similarly, the sensor node 𝑆

3
only sends 𝑡

32
and 𝑡
33

to
𝑆
1
. The intermediate node 𝑆

2
merges its local skyline and

the results transmitted by its children and sends 𝑡
44

to 𝑆
1
.

In the end, the sensor node 𝑆
1
retrieves the final skyline set

{𝑡
32
, 𝑡
33
, 𝑡
44
}. Thus, the HFA algorithm needs to send less data

than the methods mentioned in Section 4.2; thus, it is more
energy-efficient.

Clearly, when the bin width ℎ
𝑗
of every dimension

decreases, the number of groups 𝑚
𝑗
of the corresponding

dimension increases.Thenumber of bins grows exponentially
as the dimension of sensor data increases, which increases the
computational complexity of each sensor node. To facilitate
the calculation, we assume that the group number of each
dimension is fixed,𝑚 = 3, so as to reduce the computational
cost of sensor nodes.

5. Experimental Evaluation

In this section, we utilize synthesized datasets and real
datasets to compare and evaluate the performances of naive
approach NA, filter based approach FA, min-score filter
tuple approach MFTA, and our proposed HFA algorithm by
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Figure 8: Effect of dimension of data of synthetic datasets.

MATLAB simulations. All simulations are conducted on a
desktop PC running on MS Windows XP Professional. The
PC has a Pentium 2.8GHz CPU and 512MB memory.

5.1. Experimental Setup. Suppose that a sensor network is
monitoring one region whose size is 𝑛×𝑛.There are 𝑛2 sensor
nodes with communication radius of 2√2 evenly deployed
in the network. The average area one sensor node occupied
is set to 1. In the experiment, datasets with correlated,
anticorrelated, and independent distributions are generated
using the method mentioned in [12]. In addition, we use
Intel Lab Data [27] and Washington State Climate Data [28]
as the real datasets to conduct our experiments. The Intel
Lab Data consists of 54 sensor nodes gathering temperature,
humidity, voltage, and light from real world.TheWashington
State Climate Data is atmospheric data collected from 32
sensors in Washington and Oregon states, which has three

Table 2: Parameters used in eExperiments.

Parameter Default Rang of variation
Dimension of data 3 2, 3, 4, 5
Size of sliding window 20 10, 20, 30, 40, 50
Number of sensors 100 50, 100, 150, 200

dimensions of data: temperature, wind-speed, and humidity.
Table 2 shows the experimental parameters and their settings
which are used to evaluate performance of the algorithms.
The number of sending packets for each sensor node is
recorded for performance evaluation.

5.2. Experimental Results

5.2.1. Experimental Results of Synthetic Datasets. First, we use
the synthetic datasets to conduct experiments and compare
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Figure 9: Effect of sliding window size of synthetic datasets.

the effect of our proposed algorithmwith othermethods.The
experiments evaluate the performance of the algorithms by
changing the dimension of sensor data, the size of sliding
window, and the number of sensor nodes.

Before comparing performance of the algorithms, we
study how different datasets affect the size of the skyline
set. Figure 7 shows the skyline size under different datasets
while changing the size of sliding window, the dimension
of sensor data, and the number of sensor nodes. Figure 7
indicates that the skyline size is very large in anticorrelated
distribution while the skyline size is very small in correlated
distribution. As the dimension of data increases, it mostly
influences the skyline size of anticorrelated distribution and
has little influence on independent distribution and almost
has no influence on correlated distribution. The reason is
that the increase of dimension adds the probability of two
tuples that are not dominated by each other in anticorrelated
distribution data, which makes the size of the skyline set

larger. As the sliding window size grows and the number
of sensors in the network increases, the size of the skyline
set grows. Because the larger the sliding window size and
the number of sensors, the more the number of data in the
network, resulting in the increase of the skyline set size.

Figure 8 shows performance of the algorithms on dif-
ferent datasets while changing the dimension of data. Fig-
ures 8(a), 8(b), and 8(c) represent the effect of correlated
distribution, anticorrelated distribution, and independent
distribution datasets, respectively. It can be observed that the
HFA algorithm performs best in each dimension. As theHFA
algorithm takes advantage of the historical data to learn the
global knowledge of the data distribution, it chooses a filter
with the best quality. Therefore, HFA algorithm performs
best in the four algorithms. Meanwhile, the total sending
packets of the network increase along with the increase of
dimension of sensor data for all algorithms, thus, resulting in
a higher query processing cost.The reason is that the increase



International Journal of Distributed Sensor Networks 11

50 100 150 200

1

2

3

4

5

Number of sensors

NA
FA

MFTA
HFA

To
ta

l c
om

m
un

ic
at

io
n 

co
st 

(p
ac

ke
t×

10
2
)

(a) Correlated distribution

50 100 150 200

1.5

2.5

3.5

4.5

5.5

Number of sensors

NA
FA

MFTA
HFA

To
ta

l c
om

m
un

ic
at

io
n 

co
st 

(p
ac

ke
t×

10
3
)

(b) Anticorrelated distribution

50 100 150 200

0.5

0.75

1

1.25

1.5

Number of sensors

NA
FA

MFTA
HFA

To
ta

l c
om

m
un

ic
at

io
n 

co
st 

(p
ac

ke
t×

10
3
)

(c) Independent distribution

Figure 10: Effect of number of sensors of synthetic datasets.

of dimension adds the probability of two tuples that are
not dominated by each other, which makes the size of
the skyline set larger, as shown in Figure 7(b). Because the
strategy of choosing filter tuple in FA algorithm is similar to
MFTA algorithm, there is no significant difference of total
number of sending packets between FA and MFTA. Both of
them can prune some nonskyline tuples in correlated and
independent distributions, but the filtering effect is not so
good as anticorrelated distribution.

Figure 9 shows the effect of different datasets on the
algorithms while changing the sliding window size. Figures
9(a), 9(b), and 9(c) represent the effect of correlated, anticor-
related, and independent distributed datasets, respectively.
It shows that the HFA algorithm is more efficient than
other algorithms. The reason is that the HFA algorithm
considers the global characteristic of sensor data and chooses
an optimal tuple from the network as the global filter.

Figure 9 indicates that all the algorithms require the lowest
communication cost when the data distribution is correlated.
When the data distribution is anticorrelated, all the algo-
rithms need a mass of energy to transmit data. The reason is
that the size of the skyline set in the correlated distribution is
very small as shown in Figure 7, which causes the algorithms
to only need to transfer a small amount of data in the network.
However, the size of the skyline set in the anticorrelated
distribution is typically large, which leads to a large amount
of sending packets.

Figure 10 shows the effect of different datasets on the
algorithms while changing number of sensor nodes. Figures
10(a), 10(b), and 10(c) represent the effect of correlated
distribution, anticorrelated distribution, and independent
distribution datasets, respectively. It indicates that under
different network sizes, the HFA algorithm sends less packets
than the other methods, and the HFA algorithm performs
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Table 3: Skyline size versus attribute combinations.

(a) Intel Lab data (dimension = 2)

Combinations of attributes Skyline size
TV 5
TL 28
TH 68
VL 31
VH 37
LH 49

(b) Intel Lab data (dimension = 3)

Combinations of attributes Skyline size
TVL 34
TVH 134
TLH 208
VLH 157

(c) Washington State Climate Data (dimension = 2)

Combinations of attributes Skyline size
TS 3
TH 14
SH 6

best in the fourmethods.The total number of sending packets
increases along with the increment of sensor nodes for all
algorithms. The reason is that tuples of the whole network
become large when the number of sensor nodes increases,
so that the tuples belong to the skyline increase, as shown in
Figure 7(c), which leads to the increment of communication
cost.

5.2.2. Experimental Results of Real Datasets. We use Intel Lab
Data and Washington State Climate Data for real datasets to
conduct experiments and evaluate the effect of our proposed
HFA algorithm. The experiments evaluate the performance
of algorithms through changing the dimension of sensor
data and the size of sliding window. We do not compare the
influence of number of sensors on the algorithms because the
number of sensor nodes in the network is fixed.

Table 3 shows how different combinations of attributes
affect the size of the skyline set (the sliding window size is
set to 20). For the Intel Lab Data, there are four attributes;
suppose 𝑇 represents temperature, 𝑉 represents voltage, 𝐿
represents light, and 𝐻 represents humidity, respectively.
For the Washington State Climate Data, there are three
attributes, and 𝑇 represents temperature, 𝑆 represents wind-
speed, and 𝐻 represents humidity, respectively. As shown
in Table 3, there are 𝐶2

4
combinations when data dimension

is set to 2 in the Intel Lab Data. Similarly, there are 𝐶3
4

combinations when data dimension is 3 in the Intel Lab
Data and 𝐶2

3
combinations when data dimension is 2 in

the Washington State Climate Data. It can be seen from
the table that even though the length of dimension is fixed,
different combinations of attributes make different influence
on the skyline size. Take Table 3(a) for example, when we

Table 4: Skyline size of different datasets.

(a) Changing data dimension

Data dimension Skyline size (Intel) Skyline size
(Washington)

2 49 3
3 157 38
4 335 /

(b) Changing sliding window size

Sliding window size Skyline size
(Intel)

Skyline size
(Washington)

10 18 2
20 34 3
30 61 3
40 79 3
50 89 3

consider temperature and voltage, the skyline size is very
small, while whenwe consider temperature and humidity, the
skyline size becomes large. That is because different attribute
combinations cause different final skyline sizes.

Figure 11 shows the effect of the two real datasets on the
algorithms while changing the combinations of attributes of
data (sliding window size = 20). Figures 11(a), 11(b), and 11(c)
represent 2 dimensions in Intel Lab data, 3 dimensions in
Intel Lab data, and 2 dimensions in the Washington State
Climate Data, respectively. It demonstrates that our proposed
HFA algorithm performs best in the four algorithms. The
total communication of cost, that is, the number of sending
packets, increases or decreases along with the skyline size.
When the skyline size is small, the communication cost is low,
while when the skyline size is large, the communication cost
is high.The reason is that when the skyline size of the network
becomes large, there is a lot of data needed to be transmitted,
thus, causing a large amount of data to be delivered in the
network, which results in a high energy cost.

Figure 12 shows performance of the algorithms on real
datasets while changing the dimension of data (sliding
window size = 20). For the Intel Lab data, we consider the
light and humidity attributes when data dimension is 2 and
consider voltage, light, and humidity when data dimension
is 3. For the Washington State Climate Data, we consider
temperature and wind-speed attributes when data dimension
is 2. Table 4(a) shows the skyline size when changing data
dimension. Figures 12(a) and 12(b) represent the effect of
the Intel Lab Data and The Washington State Climate Data,
respectively. As the HFA algorithm chooses a best tuple
as a global filter, it performs best in the four algorithms.
Meanwhile, the total sending packets of the network increase
along with the increase of dimension of sensor data for all
algorithms, thus, resulting in a higher energy cost.The reason
is that the increase of dimension adds the probability of two
tuples which are not dominated by each other, which makes
the size of final skyline set larger, as shown in Table 4(a).

Figure 13 shows the effect of the two real datasets on
the algorithms while changing the sliding window size.
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(b) Dimension = 3 in Intel Lab data
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(c) Dimension = 2 in Washington State Climate Data

Figure 11: Effect of different combinations of attributes of real datasets.

For the Intel Lab data, we consider 3 dimensions of data:
temperature, voltage, and light attributes. For theWashington
State Climate Data, we consider 2 dimensions of data: tem-
perature and wind-speed. Table 4(a) shows the skyline size
when changing sliding window size. Figures 13(a) and 13(b)
represent the effect of sliding window size of the Intel Lab
Data and The Washington State Climate Data, respectively.
It demonstrates that our proposed HFA algorithm performs
well. It can be seen that when the sliding window size
increases, the number of sending packets increases in the
Intel Lab Data, while it has little influence on theWashington
State Climate Data. That is because when the sliding window
size increases, the Washington State Climate Data has a
smaller skyline size as shown in Table 4(b), and the sliding
window size almost has no influence on the skyline size. For
the two datasets, when the sliding window size grows, the
number of data in the network increases, andmore data needs

to be transmitted, which results in a little more delivering
energy.

6. Conclusions

In this paper, we propose a histogram filter based algorithm
HFA to process the sliding window skyline query problem
in wireless sensor networks. HFA utilizes historical data to
construct amultivariate histogram to estimate the probability
density function of the sensor data. Then, an optimal filter
tuple is chosen based on the histograms, which can prune
nonskyline tuples to the maximum extent. The experimental
results demonstrates that the HFA algorithm outperforms
NA, FA, and MFTA algorithms and reduces the data trans-
missions effectively in wireless sensor networks which saves
the energy and prolongs the lifetime of wireless sensor
networks. Further interesting work is to extend our HFA
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Figure 12: Effect of data dimension of real datasets.
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Figure 13: Effect of sliding window size of real datasets.

algorithm to processing some variations of skyline queries,
such as continuous skyline queries and 𝑘-dominant skyline
queries.
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