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Wireless sensor networks (WSNs) have been used extensively in a range of applications to facilitate real-time critical decision-
making and situation monitoring. Accurate data analysis and decision-making rely on the quality of the WSN data that have
been gathered. However, sensor nodes are prone to faults and are often unreliable because of their intrinsic natures or the harsh
environments in which they are used. Using dust data from faulty sensors not only has negative effects on the analysis results and
the decisions made but also shortens the network lifetime and can waste huge amounts of limited valuable resources. In this paper,
the quality of aWSN service is assessed, focusing on abnormal data derived from faulty sensors.The aimwas to develop an effective
strategy for locating faulty sensor nodes inWSNs.The proposed fault detection strategy is decentralized, coordinate-free, and node-
based, and it uses time series analysis and spatial correlations in the collected data. Experiments using a real dataset from the Intel
Berkeley Research Laboratory showed that the algorithm can give a high level of accuracy and a low false alarm rate when detecting
faults even when there are many faulty sensors.

1. Introduction

A wireless sensor network (WSN) consists of spatially dis-
tributed autonomous sensors. A WSN operated in self-
organization and multihop mode can be used to perceive
physical or environmental conditions (such as the temper-
ature, sound level, or pressure) in a target region and to
acquire, process, and transmit data describing these condi-
tions. Wireless sensor networks were developed for military
applications, but they have been used to monitor and control
industrial processes, to monitor machine health, and in other
applications [1, 2].

Low-cost and large-scale sensor nodes are often deployed
in uncontrolled or even harsh environments, so they are
prone to developing faults and becoming unreliable. Faults
may occur at different levels of the sensor network for differ-
ent reasons, such as the depletion of batteries or the failure
of a physical component, and faults can lead to incorrect
readings being included in a dataset, packet losses during

communication, and errors occurring in the middleware and
software [3, 4]. From a “data-centric” point of view, faulty
sensors may cause dust data to be generated, and this may
cause limited resources to be wasted, shorten the network
lifetime, affect the analysis of the data and the decisions that
are made, and even lead to the failure of the entire network.
It is therefore desirable to exclude data from faulty sensors to
ensure that the quality of the service is maintained. Faults in
WSNs are defined as observations that are not consistent with
expected behaviour. Fault tolerance and detection in systems
controllingmachines and distributed systems have previously
been studied intensively [5–8]. Traditional detectionmethods
cannot be directly applied to WSNs because of the limited
resources available and the need for the large scale deploy-
ment of sensors. It is challenging to develop an accurate
detectionmethod that has the characteristics required for use
in WSNs.

The aim of the work presented here was to develop a
system for locating faulty sensors in a WSN. We propose
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a localized fault detection algorithm for identifying faulty
sensors.The algorithm uses spatial and temporal correlations
in WSN data to define normal behaviour and then identifies
faults as they occur. The main benefits of our proposed
method are outlined below.

(1) The system identifies temporal outliers by performing
a time series analysis of each node and performing
spatial correlations using neighbouring sensor data
and local majority voting. Four new simple and
effective spatial strategies are proposed for revising
the anomalies. Performance evaluations showed that
different strategies and thresholds may be applicable
in different situations.

(2) The localized decision-making strategies in the pro-
posed methods are aimed at decreasing communi-
cation times and avoiding detection status diffusion,
thereby saving energy consumption.

(3) Simulations showed that our detection algorithm
does not need to be given the physical positions of
the sensors and that it works well even when there are
many faulty sensors.

The algorithm was found to be able to successfully identify
faulty sensors even when half of the neighbouring sensors
failed or when there were few neighbouring sensors. Even if a
node hadnoneighbouring sensors the algorithmdegenerated
into a time series analysis method but still worked well.

The remainder of this paper is organized as follows. The
literature on fault detection inWSNs is reviewed in Section 2.
The network model and data model are defined in Section 3.
The proposed spatial-temporal fault detection scheme is
described in detail in Section 4. Performance evaluations are
presented in Section 5 and our conclusions are drawn in
Section 6.

2. Related Work

Fault detection in WSNs is an attractive field of research.
Krishnamachari and Iyengar [9] developed a Bayesian fault
recognition algorithm for disambiguating binary fault fea-
tures. The algorithm they developed was simple and con-
sumed little energy, but the authors assumed that measure-
ment faults were equally likely to occur at every sensor node
and used the binary mode to represent the measurements
made by the sensors, and these aspects of the algorithm
may limit the scope of its applications. Ni and Pottie [10]
used hierarchical Bayesian space-time modelling to detect
faults. This method was more complex than the first order
linear AR modelling method, but the spatial and temporal
correlations were not explicitly calculated in either method,
and the existence of such correlations was simply assumed.

A distributed fault detection scheme in which the col-
lected data were spatially correlated was proposed by Chen
et al. [11]. In this method, each sensor uses its neighbours
to identify its initial status, determines whether its status
is either “good” or “faulty” from its neighbours’ statuses,
and then sends its final state to the adjacent sensor nodes.
The false alarm rate using this method was low when

the probability of sensor faults occurring was low. Jiang [12]
improved the scheme described above by defining new detec-
tion criteria and increased the fault detection accuracy for
different average numbers of neighbouring nodes and node
failure ratios. However, in both of the methods described
[11, 12] each sensor needs to communicate with neighbouring
nodes at least three times, and such frequent communication
between adjacent nodes consumes a large amount of energy.
Lee and Choi [13] proposed a fault detection algorithm in
which comparisons between neighbouring nodes weremade,
and the decision made at each node was disseminated. The
use of the dissemination process meant that the network
would have a relatively high level of energy consumption.

Some researchers have used artificial intelligence
approaches to detect faults. Rassam et al. [14] assessed PCA-
based anomaly detection models. Siripanadorn et al. [15]
integrated SOM andDWT data to detect anomalies. Nandi et
al. [16] introduced two different detection probabilities and
used a model selection approach, a multiple model selection
approach, and Bayesian model averaging methods to solve
the detection problem. Such algorithms consume relatively
large amounts of resources.

Sharma et al. [17] described and analysed four qualita-
tively different classes of fault detection method (rule-based,
LLSE, time series forecasting, and HMMs) using real-world
datasets.They found that each of the four method types sat at
a different point on the accuracy/robustness spectrum.Their
evaluation showed that no single method perfectly detected
the different types of faults and that using hybrid methods
could help eliminate false positives or false negatives. They
also found that using two methods in sequence could allow
more low-intensity faults to be detected, at the expense of
a slightly higher number of false positives, than could be
detected using one method alone.

Zhang et al. [18] introduced five different detectionmeth-
ods that were based on either spatial or temporal correlations
or on both. Out of these algorithms, the temporal and
spatial outlier detection method, the spatial predicted outlier
detection method, and the spatial and temporal integrated
outlier detection method used both spatial and temporal
correlations, but they were complex methods, and each node
required rather large amounts of computing resources so that
it could receive a number of parameters to allow it to predict
its neighbours’ observations from its previous observations.
In this paper we will attempt to identify simple and efficient
strategies using spatial correlations of time series analyses
that have previously been used [17, 18] for the distributed and
online detection of faults in a WSN.

3. Network Model and Data Model

We assume that sensors are randomly deployed or placed
in predetermined locations and that every sensor has the
same transmission range. Each sensor node is able to locate
its neighbours within its transmission range using a broad-
cast/acknowledge protocol. The communication graph for a
WSN can be represented as digraph 𝐺(𝑉, 𝐸), in which 𝑉 is
the set of sensor nodes in the network and𝐸 is the set of edges
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connecting the sensor nodes. Two nodes V
𝑖
and V
𝑗
are said to

have an edge 𝑒
𝑖𝑗
= (V
𝑖
, V
𝑗
) in the graph if the distance between

them is less than the transmission range 𝑅
𝑐
. In this paper,

faulty sensors are defined as those for which the observations
do not match the expected behaviour. Nodes with faulty
sensors remain capable of receiving, sending, and processing
data. Only sensor nodes with permanent communication
faults (including a lack of power) are removed from the
network.

We define the data model for a sensor network using
spatial and temporal correlations. Individual faulty sensor
nodes are not relevant to this model. A spatial-temporal
correlation will imply that adjacent sensor nodes have made
similar observations and that each node has similar values
to its previous values in the time series. We let V

𝑖
and V

𝑗
be

neighbouring nodes and let 𝑥𝑡
𝑖
and 𝑥𝑡+1

𝑖
be the sensed data at

node V
𝑖
at time 𝑡

𝑡
and 𝑡
𝑡+1

, respectively. The conditions that
need to be satisfied by V

𝑖
and V
𝑗
are then |𝑥𝑡

𝑖
− 𝑥
𝑡

𝑗
| ≤ 𝜃
1
and

|𝑥
𝑡

𝑖
− 𝑥
𝑡+1

𝑖
| ≤ 𝜃
2
, in which 𝜃

1
and 𝜃
2
may vary depending on

the application.

4. Spatial-Temporal Correlative
Fault Detection

4.1. Definitions. The notation used in this paper is shown
below.

(i) 𝑆: the set of all sensors,
(ii) 𝑁: the total number of sensors,
(iii) V

𝑖
: sensor node 𝑖,

(iv) Neighbour(V
𝑖
): the set of neighbours of V

𝑖
,

(v) 𝑥𝑡
𝑖
: the measured value for node V

𝑖
at time 𝑡

𝑡
,

(vi) 𝑥𝑡
𝑖
: the predicted value for node V

𝑖
at time 𝑡

𝑡
,

(vii) 𝐶
𝑖𝑗
: a comparison test between V

𝑖
and V

𝑗
, only per-

formed if (V
𝑖
, V
𝑗
) ∈ 𝐸. 𝐶

𝑖𝑗
= {0, 1}, 𝐶

𝑖𝑗
= 𝐶
𝑗𝑖
,

(viii) DS
𝑖
: the detection state of node V

𝑖
, DS
𝑖
= {LS

𝑖
, FS
𝑖
}.

The initial DS
𝑖
is NULL,

(ix) LS
𝑖
: the likelihood detection state of node V

𝑖
, LS
𝑖
=

{LG, LF},
LG: the likelihood state of node V

𝑖
is good,

LF: the likelihood state of node V
𝑖
is faulty,

(x) FS
𝑖
: the final detection state of node V

𝑖
, FS
𝑖
= {FG, FF},

FG: the final state of node V
𝑖
is good,

FF: the final state of node V
𝑖
is faulty,

(xi) NeigTab(V
𝑖
): each node V

𝑖
maintains a neighbour

table that contains details of its neighbours, their
comparison test values 𝑐

𝑖𝑗
, and their detection statuses

DS
𝑖
,

(xii) the threshold test for the time series: for each node V
𝑖
,

if |𝑥𝑡
𝑖
−𝑥
𝑡

𝑖
| ≤ 𝜃
1
then LS

𝑖
= LG. Otherwise LS

𝑖
= LF,

(xiii) the threshold test for spatial neighbours: for each
node V

𝑖
, if |V𝑡

𝑖
−V𝑡
𝑗
| ≤ 𝜃

2
then 𝐶

𝑖𝑗
= 0. Otherwise

𝐶
𝑖𝑗
= 1,

(xiv) 𝜃
1
, 𝜃
2
: two predefined threshold values.

4.2. Algorithm. The proposed fault detection algorithm is
based on spatial-temporal correlations and uses the defini-
tions given above. The algorithm can be broken down into
four steps.

Step 1.The value for each node V
𝑖
is predicted from an analysis

of its time series.
A node will have similar values throughout its time

series, so temporal correlations can be used to construct an
efficient time series model to allow changes in the values
to be modelled and forecast. The multiplicative seasonal
autoregressive integrated moving average (SARIMA) time
series model is a general model for analysing time series. The
SARIMA can be written explicitly as [19]

Φ
𝑝 (𝐿) 𝐴𝑝 (𝐿

𝑠
) ∇
𝑑
∇
𝐷

𝑠
𝑌
𝑡
= Θ
𝑞 (𝐿) 𝐵𝑄 (𝐿

𝑠
) 𝑒
𝑡
, (1)

where 𝑌
𝑡
is a time series, 𝑒

𝑡
is a residual sequence, 𝐿 is a lag

operator, ∇ = 1 − 𝐿 is a “no seasonal difference” operation,
∇
𝑠
= 1 − 𝐿

𝑠 is a “seasonal difference” operation, Φ
𝑝
(𝐿) and

𝐴
𝑝
(𝐿
𝑠
) are “no seasonal difference” and “seasonal difference”

autoregressive polynomials, respectively, Θ
𝑞
(𝐿) and 𝐵

𝑄
(𝐿
𝑠
)

are “no seasonal difference” and “seasonal difference”moving
average polynomials, respectively, parameters 𝑃,𝑄, 𝑝, and
𝑞 are polynomial coefficients for the four polynomials just
described, respectively, and 𝑑 and 𝐷 are nonseasonal differ-
ence and seasonal difference frequencies, respectively.

The time analysis involves four substeps. (1) Model iden-
tification: the choice of a time series model is focused on the
selection of parameters𝑃,𝐷,𝑄, 𝑝, 𝑑, 𝑞, and 𝑠 by observing the
sample autocorrelations and sample partial autocorrelations.
For example, if 𝑠 = 𝑃 = 𝐷 = 𝑄 = 0, the model degenerates
into the autoregressive integrated moving average, but if 𝑠 =
𝑃 = 𝐷 = 𝑄 = 𝑑 = 0, the model is called an autoregressive
moving average. (2) Parameter estimation: the historical data
are used to estimate the parameters for the tentatively selected
model. (3) Diagnostic checking: various diagnostic tests are
used to check the suitability of the tentatively selected model.
(4) Model forecasting: the selected model is used, with the
previous observations, to predict the next observation.

The choice of a time series model for the sensor mea-
surements is determined by the nature of the phenomenon
being evaluated. It is possible that a complex seasonal model
could be the most appropriate for making the predictions,
but using a complex model means that more parameters
andmore computationally intensive trainingwill be required.
Determining the best-fitting time series model for modelling
the phenomena of interest is an important task for a resource-
constrained WSN, but it is not the focus of this work. Our
results obtained using real-world datasets showed that the
simple AR(𝑝) model used here allows faults in a time series
of temperature measurements to be detected effectively.

Step 2. Run a threshold test to determine the preliminary state
of each node V

𝑖
.

Once each node V
𝑖
knows its measured value 𝑥𝑡

𝑖
and

predicted value 𝑥𝑡
𝑖
at time 𝑡, we can obtain the likelihood state

LS
𝑖
of node V

𝑖
using a threshold test. If |𝑥𝑡

𝑖
−𝑥
𝑡

𝑖
| ≤ 𝜃
1
then LS

𝑖

is set to LG. The state LS
𝑖
, based on temporal correlations,
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is a preliminary test result. Sensors can be determined to be
either good or faulty in this phase.

Step 3. Compute a comparison value between each node V
𝑖

and each member of Neighbour(V
𝑖
).

A comparison test result 𝐶
𝑖𝑗

is generated by sensor
V
𝑖
based on the measurements for its neighbour V

𝑗
using

a predefined threshold value 𝜃
2
. If |V𝑡

𝑖
−V𝑡
𝑗
| ≤ 𝜃

2
then

𝐶
𝑖𝑗
= 0. Obviously, a faulty sensor can generate arbitrary

measurements, and the comparison test result 𝐶
𝑖𝑗
will then

exceed 𝜃
2
.

Step 4. Analyse the results using different judging rules to
determine the final state of node V

𝑖
.

Each sensor sends its preliminary state to all of its
neighbours. There are four possible relationships between
node V

𝑖
and its neighbours, and they are defined in (2).

Consider

𝑔
𝑡

𝑖
= number( ∑

V𝑗∈Neighbours(V𝑖) andDS𝑗=LG

𝐶
𝑖𝑗
= 0) ,

ℎ
𝑡

𝑖
= number( ∑

V𝑗∈Neighbours(V𝑖) andDS𝑗=LF

𝐶
𝑖𝑗
= 1) ,

𝑦
𝑡

𝑖
= number( ∑

V𝑗∈Neighbours(V𝑖) andDS𝑗=LG

𝐶
𝑖𝑗
= 1) ,

𝑤
𝑡

𝑖
= number( ∑

V𝑗∈Neighbours(V𝑖) andDS𝑗=LF

𝐶
𝑖𝑗
= 0) .

(2)

Obviously, 𝑔𝑡
𝑖
and ℎ𝑡
𝑖
imply that node V

𝑖
may be good, and

𝑦
𝑡

𝑖
and 𝑤𝑡

𝑖
imply that node V

𝑖
may be faulty. The relationship

between node V
𝑖
and its neighbours can follow the pattern

shown in Figure 1. The node is marked with its preliminary
state LG or LF, and the edge is marked with the comparison
test result 𝐶

𝑖𝑗
.

The final state of node V
𝑖
depends on its neighbours’ states

and their comparison test results. According to the voting
strategy, if the majority of the neighbours conclude that V

𝑖
is

good, it is considered to be fault-free. We use the rules shown
in (3)–(6) to determine the final state of node V

𝑖
to illustrate

different detection effects.

Rule 1a. Consider

FS
𝑖
= {

FG, (𝑔
𝑡

𝑖
− 𝑦
𝑡

𝑖
) + (ℎ

𝑡

𝑖
− 𝑤
𝑡

𝑖
) > 0

ToFS (LS
𝑖
) , otherwise.

(3)

Rule 1b. Consider

FS
𝑖
=

{{

{{

{

FG, (𝑔
𝑡

𝑖
− 𝑦
𝑡

𝑖
) + (ℎ

𝑡

𝑖
− 𝑤
𝑡

𝑖
) > 0

ToFS (LS
𝑖
) , 𝑔

𝑡

𝑖
= ℎ
𝑡

𝑖
= 𝑦
𝑡

𝑖
= 𝑤
𝑡

𝑖
= 0

FF, otherwise.
(4)
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LG
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LG
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Figure 1: Relationships between node V
𝑖
and its neighbours.

Rule 2a. Consider

FS
𝑖
= {

FG, 𝑔
𝑡

𝑖
− 𝑦
𝑡

𝑖
> 0

ToFS (LS
𝑖
) , otherwise.

(5)

Rule 2b. Consider

FS
𝑖
=

{{

{{

{

FG, 𝑔
𝑡

𝑖
− 𝑦
𝑡

𝑖
> 0

ToFS (LS
𝑖
) , 𝑔

𝑡

𝑖
= ℎ
𝑡

𝑖
= 𝑦
𝑡

𝑖
= 𝑤
𝑡

𝑖
= 0

FF, otherwise.
(6)

Function ToFS(LS
𝑖
) will convert LG (or LF) into FG (or

FF). The criteria shown above mean that there is a common
implied condition: if 𝑔𝑡

𝑖
= ℎ
𝑡

𝑖
= 𝑦
𝑡

𝑖
= 𝑤
𝑡

𝑖
= 0 then FS

𝑖
=

ToFS(LS
𝑖
). This means that the final state of node V

𝑖
is based

on its own preliminary state LS
𝑖
when node V

𝑖
does not have

any neighbouring nodes. This condition may decrease the
likelihood of false alarms occurring if the majority of the
network nodes are faulty.

The threshold values 𝜃
1
, 𝜃
2
and the time series model

parameters are preset in the node process unit at the time of
deployment. The consistency of the diagnosis is not checked
by propagating states because such a validation process will
consume a large amount of communication or computing
resources and even cause detection errors.The fault detection
algorithm described above is summarized below.

Spatial-Temporal Correlative Fault Detection Algorithm
(STCFD). We have the following.

Step 1. Consider the following.

(1) Each sensor node V
𝑖
establishes its own NeigTab(V

𝑖
)

and sets predefined thresholds 𝜃
1
and 𝜃
2
.

(2) Parameters 𝑝, 𝑑, 𝑞, 𝑃,𝐷, 𝑄, and 𝑠 are set for the time
series model for the sensor nodes.

(3) The predicted value for every node V
𝑖
is estimated

using 𝑥𝑡
𝑖
= SARIMA(𝑝, 𝑑, 𝑞)(𝑃,𝐷,𝑄)𝑠.

Step 2. Consider the following.

(1) The difference between the value for each node V
𝑖
and

its predicted value at time 𝑡, |𝑥𝑡
𝑖
−𝑥
𝑡

𝑖
|, is calculated.
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(2) IF |𝑥𝑡
𝑖
−𝑥
𝑡

𝑖
| ≤ 𝜃
1
THEN LS

𝑖
= LG ELSE LS

𝑖
= LF.

(3) The values 𝑥𝑡
𝑖
and LS

𝑖
are sent to Neighbour(V

𝑖
) and

NeigTab(V
𝑖
) is updated.

Step 3. Consider the following.

(1) The differences between the value for node V
𝑖
and

the values for its neighbours at time 𝑡, |𝑥𝑡
𝑖
− 𝑥
𝑡

𝑗
|, are

calculated.
(2) IF |𝑥𝑡

𝑖
− 𝑥
𝑡

𝑗
| ≤ 𝜃
2
THEN 𝐶

𝑖𝑗
= 0 ELSE 𝐶

𝑖𝑗
= 1.

(3) The 𝐶
𝑖𝑗
value for each node V

𝑖
in NeigTab(V

𝑖
) is

updated.

Step 4. Consider the following.

(1) 𝑔𝑡
𝑖
, ℎ
𝑡

𝑖
, 𝑦
𝑡

𝑖
, and 𝑤𝑡

𝑖
are calculated for each node V

𝑖
.

(2) Rule 1a

(a) IF (𝑔𝑡
𝑖
− 𝑦
𝑡

𝑖
) + (ℎ

𝑡

𝑖
− 𝑤
𝑡

𝑖
) > 0 THEN FS

𝑖
= FG,

ELSE.
(b) FS

𝑖
= ToFS(LS

𝑖
).

Rule 1b

(a) IF (𝑔𝑡
𝑖
− 𝑦
𝑡

𝑖
) + (ℎ
𝑡

𝑖
− 𝑤
𝑡

𝑖
) > 0 THEN FS

𝑖
= FG.

(b) IF 𝑔𝑡
𝑖
= ℎ
𝑡

𝑖
= 𝑦
𝑡

𝑖
= 𝑤
𝑡

𝑖
= 0 THEN FS

𝑖
=

ToFS(LS
𝑖
).

(c) OTHERWISE FS
𝑖
= FF.

Rule 2a

(a) IF (𝑔𝑡
𝑖
− 𝑦
𝑡

𝑖
) > 0 THEN FS

𝑖
= FG, ELSE.

(b) FS
𝑖
= ToFS(LS

𝑖
).

Rule 2b

(a) IF (𝑔𝑡
𝑖
− 𝑦
𝑡

𝑖
) > 0 THEN FS

𝑖
= FG.

(b) IF 𝑔𝑡
𝑖
= ℎ
𝑡

𝑖
= 𝑦
𝑡

𝑖
= 𝑤
𝑡

𝑖
= 0 THEN FS

𝑖
=

ToFS(LS
𝑖
).

(c) OTHERWISE FS
𝑖
= FF.

(3) Output all nodes with DS
𝑖
= FF.

4.3. Example. In this section we will present an example to
illustrate our algorithm. A partial set of sensor nodes in a
wireless sensor network with some faulty nodes is shown
in Figure 2. We examined nodes V

1
–V
12
. If two nodes are

neighbours they are connected by a line. For convenience,
each edge is marked with the value 𝐶

𝑖𝑗
and each node V

𝑖
is

marked with its preliminary state LS
𝑖
.

The results of performing the detection algorithm are
shown inTable 1.Thefinal detected states and the preliminary
states of the nodes were consistent except for nodes V

4
and

V
8
. Nodes V

1
, V
2
, V
3
, V
5
, V
6
, V
9
, V
10
, V
11
, and V

12
were found to be

good, and node V
7
was faulty. Node V

4
was found to be faulty

in the time series analysis but it was found to be good using all

Table 1: Detection process and results for the algorithm used on the
wireless sensor network shown in Figure 2.

V
𝑖
𝑔
𝑡

𝑖
ℎ
𝑡

𝑖
𝑦
𝑡

𝑖
𝑤
𝑡

𝑖
LS
𝑖

Rule 1a Rule 1b Rule 2a Rule 2b
FS
𝑖

FS
𝑖

FS
𝑖

FS
𝑖

V
1

3 1 0 0 LG FG FG FG FG
V
2

2 0 0 1 LG FG FG FG FG
V
3

4 0 0 0 LG FG FG FG FG
V
4

2 1 1 0 LF FG FG FG FG
V
5

2 1 1 0 LG FG FG FG FG
V
6

2 0 0 1 LG FG FG FG FG
V
7

0 1 3 0 LF FF FF FF FF
V
8

2 0 3 0 LG FG FF FG FF
V
9

3 0 0 0 LG FG FG FG FG
V
10

2 1 0 0 LG FG FG FG FG
V
11

2 1 1 0 LG FG FG FG FG
V
12

2 0 1 0 LG FG FG FG FG
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Figure 2: Illustration of a fault detection algorithm for a wireless
sensor network.

four of our algorithm rules because most of its neighbouring
nodes believed that it was good.

Node V
8
was first considered to be good but was then

found to be faulty under some of the rules or good under
other rules. LS

8
= LG and (𝑔𝑡

8
+ ℎ
𝑡

8
) − (𝑦

𝑡

8
+ 𝑤
𝑡

8
) = 2 − 3 =

−1 < 0 is considered to be good using Rule 1a but faulty
using Rule 1b. Similarly, it is considered to be good using
Rule 2a but faulty using Rule 2b.The differences between the
results found using different rules may affect the detection
accuracy of the algorithm, and this will be discussed in detail
in Section 5.

5. Performance Evaluation

The proposed STCFD depends on a number of parameters
(the threshold values 𝜃

1
and 𝜃
2
, the average number of neigh-

bours, and the number of faulty nodes in a target area). The
performance of the STCFD was evaluated using a real-world
dataset with different values for the parameters. We assumed
that faults were independent of each other in the experiments.
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We used the detection rate (DR) and the false positive rate
(FPR) to evaluate the detection performance. The DR is the
ratio of the number of detected faulty sensor nodes to the total
number of faulty nodes.The FPR is the ratio of the number of
fault-free sensor nodes that are diagnosed as faulty to the total
number of fault-free nodes. An effective detection technique
should achieve a high DR and a low FPR. Here, nodes with
some transient faults were treated as fault-free nodes. In the
time series analysis we forecast the sensor measurements for
time 𝑡 + 1 from the measurements up to time 𝑡. We used
EViews 6.0 for the time series analysis and Matlab 7.0 as a
computing tool.

5.1. Real-World Dataset from the Intel Berkeley Research
Laboratory. The Intel Berkeley Research Laboratory (IBRL)
dataset was used as a real world dataset for testing the
proposed model. The data were collected from 54 Mica2Dot
sensors that were deployed in the IBRL between 28 Febru-
ary and 5 April 2004. The position of each node in the
deployment area is shown in Figure 3.TheMica2Dot sensors
had weather boards and collected time-stamped topology
information and humidity, temperature, light, and voltage
values once every 31 s.Thedatawere collected using a TinyDB
in-network query processing system, which was built in the
TinyOS platform. The IBRL dataset included a log of about
2.3 million readings from these sensors [20].

The temperature dataset for two consecutive days (from
00:00 to 24:00), 28 February and 29 February, was selected
from the experimental data. The data from 28 February were
used to estimate the SARIMA model parameters. The fault
detection methods were evaluated using the data from 29
February. The transmission range of the nodes was chosen
to ensure that the sensors had different average numbers
of neighbours in the simulation runs. An example of the
network topology is shown in Figure 4. The relationships
between the transmission range 𝑅

𝑐
, the average number of

neighbours, and the maximum difference between neigh-
bours are shown in Table 2. We used the transmission range
𝑅
𝑐
(rather than the average number of neighbours) for the

mapping relationships in the following discussion.

5.2. Data Preprocessing. Theproposed STCFD is a distributed
parallel algorithm, and it requires time synchronized data to
be input. However, different nodes cannot collect data at the
same time because the Mica2Dot sensor would miss some
of the data packages. The IBRL dataset could not therefore
be directly used in the STCFD, and we had to preprocess
the data before it was input to the algorithm. We used a
smoothing window to modify the original data to keep the
gathered data synchronized. The smoothing window outputs
the average value, giving samples at specified time intervals.
The smoothing window size could be set at 10, 20, 30, or
60min, as required.

The raw IBRL data are shown in Figure 5(a), and the
data processed using smoothing window of 30min is shown
in Figure 5(b). The smoothing window was 30min in the
analysis described below. Each sensor node could acquire 48
time series samples between 00:00 and 24:00 on 29 February.

Table 2: Relationships between the transmission range 𝑅
𝑐
and

the average number of neighbours and the maximum difference
between neighbours.

Transmission
range (𝑅

𝑐
)

Average number of
neighbours

Maximum
difference

6m 3.37 2.06∘C
8m 5.67 2.39∘C
10m 8.19 2.39∘C
12m 10.56 2.49∘C

Analysing the 48 samples from each sensor node on
28 February easily showed that the samples satisfied AR(2),
and the desired prediction data were easily obtained. For
example, the sampling data and their forecasts for node 1 on
29 February are shown in Figure 6.

Some artificial anomalies with slightly deviating sta-
tistical characteristics were inserted to allow the anomaly
detection models to be evaluated using these samples. The
maximum temperature in the 2592 samples from 54 nodes on
29 February was 23.0∘C and theminimumwas 14.9∘C. Taking
the maximum difference between neighbouring sensors into
account, random measured values were generated using the
temperature ranges (0, 12) and (26, 40) as faults, and theywere
inserted into the normal dataset.

5.3. Experimental Results. The DR and FPR values produced
in simulations using different parameters and rules were
compared. We assumed that the network was available when
the number of faulty nodeswas less than half the total number
of nodes in the WSN. Sensors were randomly chosen to be
faulty, and the number of faulty sensors was set in the range
1–27.Wewill now discuss the effects on the algorithm of using
different parameters in the experiments described below.
Each experimental result was the average of 30 independent
runs.

5.3.1. Experiment I: Variable 𝜃
1
, 𝜃
2
= 2.5, and 𝑅

𝑐
= 10m.

In experiment I we determined the faulty node detection rate
and false alarm rate using different 𝜃

1
values and algorithm

Rule 1a, Rule 1b, Rule 2a, and Rule 2b. The 𝜃
1
parameter was

set at 0.5, 1.5, 3, 5, 7, or 9, and 𝜃
2
and 𝑅

𝑐
were set at 2.5 and

10m, respectively.
As can be seen in Figures 7 and 8, increasing the number

of faulty nodes caused the DR using Rule 1a and Rule 1b to
decrease gradually. The DR using Rule 1a was higher when
𝜃
1
was 1.5 or 3 than when it was 0.5, 5, or 7 (Figure 7).

Increasing 𝜃
1
caused the FPR using Rule 1a to decrease. The

FPR decreased from 6.26% to 2.39% when 𝜃
1
was 0.5, but the

FPR using Rule 1a was only 0% when 𝜃
1
was 7.

In Figure 8, larger 𝜃
1
values gave better DR values but

not larger FPR values using Rule 1b. Increasing 𝜃
1
from 1.5

to 3 caused the FPR to fall sharply. Increasing 𝜃
1
from 3 to

5 and then to 7 caused the FPR to change little. Increasing
𝜃
1
to 9 caused the FPR using Rule 1b to increase rather than

decrease.
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Figure 3: Sensor nodes deployed to collect the Intel Berkeley Research Laboratory dataset.
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= 6m in

the Intel Berkeley Research Laboratory dataset.

It can be seen from Figures 9 and 10 that the DR using
Rule 2a and Rule 2b almost stayed the same as the number
of faulty nodes was changed. However, the DR using Rule 2a
was affected by the 𝜃

1
value and increasing 𝜃

1
decreased the

detection rate.TheDR using Rule 2a was about 99.96%when
𝜃
1
was 0.5, but the DR was only about 92% when 𝜃

1
was 7.

Fortunately, increasing 𝜃
1
decreased the FPR. The FPR was

approximately 0% when 𝜃
1
was 7, and when 𝜃

1
was 0.5 the

FPR using Rule 2a continued to increase (from 2.2% to 3.6%).
The 𝜃

1
value hardly affected the DR using Rule 2b

(Figure 10), and the DR was around 99.95% when 𝜃
1
was

0.5, 1.5, 3, 5, or even 7. However, the FPR using Rule 2b was
influenced by the 𝜃

1
value. The FPR using Rule 2b was lower

when 𝜃
1
was 1.5 or 3 than when it was 0.5, 5, or 7.

Two main conclusions were drawn from Experiment I.
(1) 𝜃
1
can affect the DR and FPR using all four rules, but it

is impossible to find a 𝜃
1
value that gives both a high DR

and a low FPR. The 𝜃
1
value that gives an optimal effect

will depend on the application. (2) The DRs found using
algorithm Rule 1a and Rule 1b are related to the numbers of
faulty nodes. The DRs found using algorithm Rule 2a and
Rule 2b are almost independent of the numbers of faulty
nodes.However, the FPRs usingRule 2a andRule 2b increase
as the number of faulty nodes increases.

5.3.2. Experiment II: Variable 𝜃
2
, 𝜃
1
= 1.5, and 𝑅

𝑐
= 10m.

Experiment II gave the faulty node detection rate and false
alarm rate using different 𝜃

2
values and algorithm Rule 1a,

Rule 1b, Rule 2a, and Rule 2b. The 𝜃
2
values were 1.5, 2.5,

3.5, 4.5, 5.5, and 9, and 𝜃
1
and 𝑅

𝑐
were set to 1.5 and 10m,

respectively.
It can be seen from Figures 11 and 12 that the DRs

obtained using Rule 1a and Rule 1b were similar. The 𝜃
2

value was relatively small and the DR was relatively high
when the number of faulty nodes was relatively low. The 𝜃

2

value was relatively small and its DR was relatively low when
the number of faulty nodes was relatively high. Increasing
the number of faulty nodes increased the 𝜃

2
value and the

corresponding DR decreased more slowly.
The DR using Rule 1a was higher when 𝜃

2
was 1.5 than

when 𝜃
2
was 3.5when the number of faulty nodeswas≤11.The

DR when 𝜃
2
was 1.5 decreased from 99.638% to 98.808%, but

the DR when 𝜃
2
was 3.5 decreased from 99.384% to 98.762%.

When the number of faulty nodes was >11, the DR was lower
when 𝜃

2
was 1.5 than when 𝜃

2
was 3.5, and the rate decreased

more quickly when 𝜃
2
was 1.5 than when 𝜃

2
was 3.5. The DR

when 𝜃
2
was 1.5 decreased from 98.43% to 70.078%, but the

DRwhen 𝜃
2
was 3.5 only decreased from98.436% to 80.725%.

It was difficult to find a 𝜃
2
value that gave a better DR than

other values gave for all of the different faulty node patterns.
Thebest 𝜃

2
valuewas approximately the same for the FPRs

using Rule 1a or Rule 1b.The FPR was lower when 𝜃
2
was 2.5,

3.5, 4.5, or 5.5 than when 𝜃
2
was 1.5 or 9 (Figure 11(b)). The

FPR was lower when 𝜃
2
was 3.5, 4.5, or 5.5 than when 𝜃

2
was

1.5, 2.5, or 9 (Figure 12(b)).
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Figure 5: (a) Raw data for node 1 from 00:00 to 24:00 on 29 February and (b) time series samples for node 1 from 00:00 to 24:00 on 29
February produced using a smoothing window of 30min.
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Figure 6: Sampling data and forecasts for node 1 on 29 February
(using a smoothing window of 30min).

The effects on the DR and FPR using Rule 2a and Rule 2b
are clearly shown in Figures 13 and 14. Smaller 𝜃

2
values gave

higher DRs (up to 100%). Larger 𝜃
2
values gave lower FRPs.

TheDRwas about 100%when 𝜃
2
was 1.5 but only about 81.5%

when 𝜃
2
was 9, and the FPR when 𝜃

2
was 1.5 increased from

3.01% to 6.20% but when 𝜃
2
was 9 the FPR increased from 0%

to 0.88% (Figure 13).
Two main conclusions were drawn from Experiment II.

(1) The best 𝜃
2
value gave optimal effects, but the optimal

value depends on the application. (2)TheDRs achieved using
algorithm Rule 1a and Rule 1b are related to the number
of faulty nodes. The DRs achieved using algorithm Rule 2a
and Rule 2b are almost independent of the number of faulty
nodes but the FPRs increase as the number of faulty nodes
increases.

5.3.3. Experiment III: Variable 𝑅
𝑐
, 𝜃
1
= 1.5, and 𝜃

2
= 2.5.

The faulty node detection accuracies achieved using Rule 1a,
Rule 1b, Rule 2a, and Rule 2b and the numbers of faulty
nodes for different neighbours are shown in Figures 15 and 16.
𝑅
𝑐
was set to 8m, 10m, and 12m (fromTable 2), implying that

the average number of neighbours was 5.67, 8.19, and 10.56,
respectively.

Increasing 𝑅
𝑐
from 8m to 12m caused the DRs using

both Rule 1a and Rule 1b to increase but the FPR to decrease
(Figure 15). Increasing the number of faulty nodes caused
both the DR and the FPR to decrease, but if the 𝑅

𝑐
was

increased the corresponding FPR decreased more slowly.
The DRs using Rule 2a and Rule 2b were almost inde-

pendent of the average number of neighbours (Figure 16).
Increasing the average number of neighbours caused the
FPRs using Rule 2a and Rule 2b to decrease, but the FPRs
increased as the number of faulty nodes increased. Evenwhen
half of the total number of sensors were faulty the DRs using
Rule 2a and Rule 2b were still about 99.95%. The FPR using
Rule 2awas 0.13%when𝑅

𝑐
was 8m, 0.04%when𝑅

𝑐
was 10m,

and only 0.03%when𝑅
𝑐
was 12m.TheFPRusing Rule 2bwas

4.47% when 𝑅
𝑐
was 8m, 1.22% when 𝑅

𝑐
was 10m, and only

0.58% when 𝑅
𝑐
was 12m.

In brief, Experiment III showed that increasing the num-
ber of neighbours may improve the detection performances
of algorithm Rule 1a, Rule 1b, Rule 2a, and Rule 2b.

5.3.4. Experiment IV: Comparing the Accuracies of Detec-
tion Achieved Using Different Algorithms. In the following
experiments we compared the detection performances of
our STCFD, a single time series model (STM) [18], and a
distributed fault detection (DFD) algorithm [11].

(1) STCFD and STM. We used two scenarios to compare the
performances of the STCFD and STM. (1) 𝜃

1
= 0.5, 𝜃

2
= 2.5,

and 𝑅
𝑐
= 10m; (2) 𝜃

1
= 5, 𝜃

2
= 2.5, and 𝑅

𝑐
= 10m. When

𝜃
1
= 0.5, the STM gave a high detection rate and a high false
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Figure 8: (a) Detection rate (DR) for algorithm Rule 1b when 𝜃
2
= 2.5 and 𝑅

𝑐
= 10m and (b) the false positive rate (FPR) for algorithm

Rule 1b when 𝜃
2
= 2.5 and 𝑅

𝑐
= 10m.

positive rate. When 𝜃
1
= 5, the STM gave a low detection rate

and a low false positive rate.
The STM DR was about 100% and the FPR remained

at about 8%, and neither was affected by the number of
faulty nodes (Figure 17). Increasing the number of failed
nodes caused the DRs and FPRs using Rule 1a and Rule 1b
to decrease nonlinearly (Figure 17(a)). The DRs decreased
from about 93% to about 70%, the FPR using Rule 1a
decreased from about 6.27% to 2.39%, and the FPR using
Rule 1b decreased from about 7.68% to 2.56%.The DRs using

Rule 2a and Rule 2b were about 99.95% and were not related
to the number of faulty nodes (Figure 17(b)), the FPR using
Rule 2a increased from about 2.19% to 3.63%, and the FPR
using Rule 2b increased from about 2.47% to 4.96%, and both
of the FPRs were less than the STM FPR (8%). Rule 1a and
Rule 1b gave lower false alarm rates than the STM, but at
the expense of a lower detection rate. Rule 2a and Rule 2b
obviously gave lower false alarm rates than the othermethods
and maintained a high detection rate that was equivalent to
that achieved using the STM.
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Figure 9: (a) Detection rate (DR) for algorithm Rule 2a when 𝜃
2
= 2.5 and 𝑅

𝑐
= 10m and (b) the false positive rate (FPR) for algorithm

Rule 2a when 𝜃
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Figure 10: (a) Detection rate (DR) for algorithm Rule 2b when 𝜃
2
= 2.5 and 𝑅

𝑐
= 10m and (b) the false positive rate (FPR) for algorithm

Rule 2b when 𝜃
2
= 2.5 and 𝑅

𝑐
= 10m.

It can be seen from Figure 18 that the FPR using the STM
was only 0% but the DR using the STM was about 98%. The
DR using Rule 1a decreased from 98.11% to 75.76%, and the
DRusingRule 2awas about 98%.Neither Rule 1a norRule 2a
improved the detection accuracy because their DRs were not
higher than the DR achieved using the STM.

The DR using Rule 2b was about 99.95%, which was
higher than was achieved using the STM (2%). The FPR
using Rule 2b only increased from 0.18% to 1.62%. When the
number of faults was <16, the DR using Rule 1b was higher
than was achieved using the STM (1.90%–0.03%), and the
corresponding FPR was also higher than was achieved using
the STM (0.18%–0.01%). These results imply that the FPRs

were increased less than the DRs using algorithm Rule 2b
and Rule 1b relative to using the STM, so Rule 2b and
Rule 1b gave better detection performances than the STM.
Experiment IV showed that we can produce an STCFD
rule that will increase the detection rate or decrease the
false positive rate under different conditions, to improve the
detection accuracy over that achieved using the STM.

(2) STCFD and DFD. Different types of parameters are
available, so it is difficult to compare the different algorithms
exactly. We chose relatively moderate values for appropriate
parameters so that we could compare the STCFD and DFD
algorithms in general terms. We used 𝜃

1
= 1.5, 𝜃

2
= 2.5,
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Figure 11: (a) Detection rate (DR) for algorithm Rule 1a when 𝜃
1
= 1.5 and 𝑅

𝑐
= 10m and (b) the false positive rate (FPR) for algorithm

Rule 1a when 𝜃
1
= 1.5 and 𝑅

𝑐
= 10m.
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Figure 12: (a) Detection rate (DR) for algorithm Rule 1b when 𝜃
1
= 1.5 and 𝑅

𝑐
= 10m and (b) the false positive rate (FPR) for algorithm

Rule 1b when 𝜃
1
= 1.5 and 𝑅

𝑐
= 10m.

and 𝑅
𝑐
= 10m for the STCFD and 𝜃

1
= 2.5, 𝜃

2
= 0.1, and

𝑅
𝑐
= 10m for the DFD.
The DRs and FPRs achieved using the STCFD and DFD

methods plotted against the numbers of faulty sensors are
shown in Figure 19. The DR using DFD, Rule 1a, and Rule 1b
decreased as the number of faulty nodes increased. When
the number of faulty nodes was <12, the DR using the DFD
was >99.0% and was slightly higher than or at least equal
to the DRs achieved using Rule 1a and Rule 1b. When the
number of faulty nodes increased from 12 to 24, the DR using

theDFDdecreased sharply until it fell below 70%, but theDRs
using Rule 1a and Rule 1b only decreased to about 84%. Some
sensors may not have enough neighbours for a correct and
complete analysis to be achieved, so faulty sensors were not
diagnosed as faulty using the DFD. Increasing the number of
faulty sensors caused the FPR using theDFD to increase from
0.65% to 2.4% and then to decrease to 1.62%.

TheDRs and FPRs using Rule 2a andRule 2bwere higher
than the DR using the DFD. The DRs using Rule 2a and
Rule 2b were still about 99.95% when 27 sensors were faulty.
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Figure 13: (a) Detection rate (DR) for algorithm Rule 2a when 𝜃
1
= 1.5 and 𝑅

𝑐
= 10m and (b) the false positive rate (FPR) for algorithm

Rule 2a when 𝜃
1
= 1.5 and 𝑅

𝑐
= 10m.
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Figure 14: (a) Detection rate (DR) for algorithm Rule 2b when 𝜃
1
= 1.5 and 𝑅

𝑐
= 10m and (b) the false positive rate (FPR) for algorithm

Rule 2b when 𝜃
1
= 1.5 and 𝑅

𝑐
= 10m.

Furthermore, the FPR using Rule 2a increased from 0% to
0.06% and the FPR using Rule 2b increased from 0.22% to
1.20%. It is clear that our STCFD gives a better fault detection
accuracy than does the DFD, especially when the number of
faulty nodes is higher than in the target network.

5.4. Complexity Analysis. There are usually strict constraints
on resources when WSN algorithms are performed, and this
is a significant difference from other scenarios in which such
algorithms are used. A very accurate but resource-hungry
method is hardly applicable to WSNs. We analysed the com-
plexity of the STCFDmethod, including the communication,
computation, and memory demands.

The computational complexity was found to depend
mainly on the time series model used to calculate
𝐶
𝑖𝑗
, 𝑔
𝑡

𝑖
, ℎ
𝑡

𝑖
, 𝑦
𝑡

𝑖
, and𝑤𝑡

𝑖
for the spatial neighbours.The SARIMA

model gave a different level of complexity. Considering
AR(𝑝) in our experiment, the computational complexity was
𝑂(𝑝), where 𝑝 is the regression coefficient. The maximum
computational complexity at each node was, therefore,
𝑂(𝑝 + 𝑐 ⋅ 𝑞), where 𝑐 is a constant and 𝑞 is the number
of neighbours. The communication complexity of the
STCFD was low, each node only sending one of its own
observations to its neighbours to allow a spatial comparison
to be performed in each run period, which is less than
the communication times required in previous algorithms
[11–13]. The memory complexity came mainly from keeping
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Figure 15: (a) Detection rate (DR) and false positive rate (FPR) for algorithm Rule 1a when 𝜃
1
= 1.5 and 𝜃

2
= 2.5 and (b) DR and FPR for

algorithm Rule 1b when 𝜃
1
= 1.5 and 𝜃

2
= 2.5.
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Figure 16: (a) Detection rate (DR) and false positive rate (FPR) for algorithm Rule 2a when 𝜃
1
= 1.5 and 𝜃

2
= 2.5 and (b) DR and FPR for

algorithm Rule 2b when 𝜃
1
= 1.5 and 𝜃

2
= 2.5.

previous observations and algorithm parameters (selected
SARIMA parameters, 𝑥𝑡

𝑖
,DS
𝑖
, 𝜃
1
, 𝜃
2
, 𝐶
𝑖𝑗
, . . .) in memory. This

may be represented as 𝑂(𝑝 + 𝑑), where 𝑑 is the number of
variables required. The overheads involved in storing the
temporal and spatial correlation parameters were found to
be negligible.

6. Conclusions

In this paper we present a method for detecting distributed
faults in coordinate-free WSNs. The method is based on
spatial and temporal correlations in WSN data. Firstly, we
used a time series analysis method to determine the pre-
liminary detection state for each node. Secondly, we used

spatial correlations of adjacent nodes to obtain a comparison
test result 𝐶

𝑖𝑗
for the neighbours of each node. Finally, we

used four rules (Rule 1a, Rule 1b, Rule 2a, and Rule 2b) to
determine the final detection results. Our algorithm involves
three parameters, a temporal threshold value 𝜃

1
, a spatial

threshold value 𝜃
2
, and the average number of neighbours.

Experimental results obtained using a real database gave
the following results. (1) The four rules in our algorithm give
different detection accuracies. Rule 1a and Rule 1b use the
inequality (𝑔𝑡

𝑖
−𝑦
𝑡

𝑖
)+(ℎ
𝑡

𝑖
−𝑤
𝑡

𝑖
), and theDRs and FPRs they yield

decrease nonlinearly. They may work better when there are
only small numbers of faulty nodes. Rule 2a and Rule 2b use
(𝑔
𝑡

𝑖
−𝑦
𝑡

𝑖
) and give DRs that are independent of the number of

faulty nodes. However, the FPRs they producemay rise as the
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Figure 17: (a) Detection rate (DR) and false positive rate (FPR) for the single time series model (STM) and the algorithm Rule 1a and Rule 1b
when 𝜃

1
= 0.5, 𝜃

2
= 2.5, and 𝑅

𝑐
= 10m and (b) DR and FPR for the STM and the algorithm Rule 2a and Rule 2b when 𝜃

1
= 0.5, 𝜃

2
= 2.5,

and 𝑅
𝑐
= 10m.
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Figure 18: (a) Detection rate (DR) and false positive rate (FPR) for the single time series model (STM) and the algorithm Rule 1a and Rule 1b
when 𝜃

1
= 5, 𝜃

2
= 2.5, and 𝑅

𝑐
= 10m and (b) DR and FPR for the STM and the algorithm Rule 2a and Rule 2b when 𝜃

1
= 5, 𝜃

2
= 2.5, and

𝑅
𝑐
= 10m.

number of faulty nodes increases. (2) The values of 𝜃
1
and 𝜃
2

depend on the specific application, and the larger the average
number of neighbours each node has the better. (3) Overall,
our localized fault detection algorithm gives a high detection
accuracy and a low false alarm rate even when there is a large
set of faulty sensors, and our algorithm gives better detection
accuracies than the STM and DFD algorithms.

Our algorithm is promising, and we intend to extend
it to see how it behaves in extremely large deployments. In
further research and simulations, we will use our proposed
algorithms in real situations. We will focus on the following
four aspects: (1) using more complex data structures, with

seasonal, cyclical, and other trends, (2) inserting different
fault types (short faults, noise faults, and constant faults) or
fault intervals into real data for detection tests, (3) using
different SARIMAvalues for the forecast for eachnode, rather
than uniform values as used in the experiments described
above, and (4) optimizing the analysis process to decrease the
complexity of the algorithm.
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Figure 19: (a) Detection rate (DR) and false positive rate (FPR) for the distributed fault detection method (DFD) and the algorithm Rule 1a
and Rule 1b and (b) DR and FPR for the DFD and the algorithm Rule 2a and Rule 2b.
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