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Smart cameras were conceived to provide scalable solutions to automatic video analysis applications, such as surveillance and
monitoring. Since then, many algorithms and system architectures have been proposed, which use smart cameras to distribute
functionality and save bandwidth. Still, smart cameras are rarely used in commercial systems and real installations. In this paper,
we investigate the reason behind the scarce commercial usage of smart cameras. We found that, in order to achieve scalability,
smart cameras put additional constraints on the quality of input data to the vision algorithms, making it an unfavourable choice
for future multicamera systems. We recognized that these constraints can be relaxed by following a cloud based hub architecture
and propose a cloud entity, SmartHub, which provides a scalable solution with reduced constraints on the quality. A framework is
proposed for designing SmartHub system for a given camera placement. Experiments show the efficacy of SmartHub based systems
in multicamera scenarios.

1. Introduction

The basic purpose of smart cameras is to cope with the ever
increasing resource demands of processing and managing
gigantic video data. Researchers argue that efficient and
scalable solutions can be achieved by pushing the processing
to the edge of the system so that most of the processing
takes place at the sensor itself [1–6]. As a result, we witness a
number of workshops and conferences on distributed smart
cameras [7, 8]. Smart cameras perform video analysis tasks
at the sensor itself and send only an abstract description
of the scene for further processing and viewing. It has
been articulated that smart cameras are the key elements
of the ongoing paradigm shift from central to distributed
surveillance systems [9–11].

Despite great progress in terms of research, smart cameras
have not seen enough success in commercial systems and real
installations. In this paper, we investigate the reasons behind
the restricted use of smart cameras through a comparative
assessment. It is found that smart cameras are effective only

for sparse camera networks where multisensor information
fusion is minimal, such as a highway traffic monitoring
systems, but they are not suitable for applications requiring
the assimilation of data from multiple cameras.

With the decreasing cost of video sensors, however, more
applications are using densely placed cameras with overlap-
ping views. For instance, in the surveillance context, multiple
cameras with overlapping views are used to seamlessly track
targets in the presence of occlusions. Typically, redundant
sensors are used to achieve higher accuracy and robustness
of detection tasks [11, 12]. Information frommultiple cameras
is fused to improve the accuracy and robustness of detection
tasks [13–15]. This type of information fusion is not possible
in smart camera systems as the videos are processed in
isolation and only abstract data is available at the fusion
node. In this way, smart cameras are not the best choice
for synergistic integration of current and future research in
interdisciplinary areas of multicamera applications. There
are multiple limitations of smart cameras that hinder their
general usage, such as
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Table 1: Video analysis applications.

Application Purpose Analysis tasks

Surveillance and monitoring [11] Anomaly detection, alarm generation Object/face detection, recognition, and
tracking

Ambient intelligence [44] Supporting persons in daily life, living assistance Posture recognition, face detection, and
tracking

Smarthome [45] Healthcare, eldercare Activity detection, gait recognition
Teleconferencing [46] Enhanced communication experience Face detection and tracking

Traffic surveillance [47] Monitoring and analysis of traffic flow Segmentation, motion detection, and
object classification

Crowd management [48] Avoid congestion in narrow areas Tracking, flow analysis
Pervasive computing [49] Living assistance, healthcare Activity and behaviour detection

(i) multisensor coordination and information fusion is
usually inefficient as video from each camera is
processed in isolation;

(ii) only metadata and compressed video data are avail-
able for multicamera coordination. Therefore, detec-
tion and recognition tasks involvingmultiple cameras
perform poorly;

(iii) the cost of smart cameras is too high in comparison
to basic IP cameras, without equivalent benefit in
performance;

(iv) algorithms designed for smart cameras are custom
designed and hence are very difficult to upgrade.

In this work we utilize cloud computing on a local area
network (private cloud) as an alternative solution to scalabil-
ity. We propose SmartHub as a logical entity which processes
data from cameras that likely require information fusion. A
number of SmartHub instances run on the cloud to process
video from the cameras. SmartHub not only overcomes the
limitations of smart cameras but also provides a scalable,
distributed solution. Because the video streams from the
cameras needing information fusion are processed at one
node, SmartHub enables efficient multicamera information
fusion. We study the trade-off between the scalability (in
terms of the degree of processing distribution) and coordi-
nation (in terms of communication overhead) and propose
SmartHub as an alternative to smart cameras.

With the increasing number of cameras, sending high
quality video to the cloud may cause a bandwidth bottleneck.
We propose subnet dependent geographical distribution of
processing nodes and SmartHubs to avoid the bandwidth
bottleneck. With the proposed distribution of processing
nodes, high bandwidth data will remain within the subnet
and only abstract data will flow across subnets.

The main contributions of this work are as follows.

(i) We provide a comparative assessment of smart cam-
eras with the conclusion that smart cameras are an
inefficient choice for growing multicamera applica-
tions.

(ii) We propose the cloud entity SmartHub that over-
comes the limitations of smart cameras and propose
a framework to make design decisions.

The rest of the paper is organized as follows. In Sec-
tion 2 we review video analysis based applications and smart
cameras. We discuss the limitations of smart camera based
systems in Section 3. Section 4 describes SmartHub based
systemdesign and Section 5 describes the framework tomake
design decisions. We provide our conclusions in Section 6.

2. Context Description and Definitions

In this section we first describe potential applications where
smart cameras can be used and derive a representative system
architecture for these systems.Then we discuss smart camera
works and how they are employed in video analysis systems.

2.1. Video Analysis Applications. A camera captures a snap-
shot of the scene in its view; in the same way a human
eye observes a scene. The video captured by the camera is
analysed to understand the semantics of the scene. Automatic
video analysis is used to assist/automate decision-making in
a number of application scenarios, a few of which are listed
in Table 1.

The majority of video analysis applications are related to
surveillance and monitoring. Another set of applications is
concerned with healthcare and elderly care. Examining all
these applications, we make the following observations.

(i) The most common tasks are foreground detec-
tion, object/face detection, tracking, and activity/
behaviour analysis.

(ii) The tasks do not always follow a pipelined structure;
that is, we generally need original video even for high
level tasks such as tracking and activity detection.

(iii) There is always a central unit that consolidates the
analysis results and derives higher level semantics.

Based on these observations, a functional view of a typical
video analysis system is drawn in Figure 1. In some cases,
tracking is directly performed on the video. Object detection
is still required to initialize the trackers. While intermediate
functions (first three blocks of Figure 1) can be delegated to
various distributed computing devices, the final aggregation
and presentation generally take place at one (or more than
one) central unit.
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Figure 1: Functional view of typical video analysis systems.
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2.2. Smart Cameras. Earlier cameras used dedicated coaxial
cables to transmit recorded video. Today, such cameras are
almost completely replaced by IP cameras [16]. A basic IP
camera captures images, compresses them, and streams the
compressed video on the network [17]. In this paper, we will
refer to these cameras as normal cameras.

A smart camera, on the other hand, integrates resource
intensive advanced image and video processing techniques
with compression and streaming. As shown in Figure 2,
a smart camera consists of three main blocks: sensing,
processing, and communication [4]. One of the initial works
on smart cameras was by Moorhead and Binnie [18], who
integrated edge detection in the camera. In [3], a smart
camera extracts the high-level semantics of the scene it is
capturing and sends them to the central unit. In this way,
the smart cameras are mainly used to delegate detection
and recognition tasks to the embedded platforms. Table 2
provides a list of smart camera works and the processing task
implemented on the camera. To reduce the communication
overhead, smart cameras analyse the image data and only
transmit the abstract information [4, 19].

Processing video locally at the source camera reduces
the communication load by avoiding the transmission of
high quality images; only concise descriptions of extracted
features are communicated for multicamera collaboration
[9, 20–23]. Hence, smart cameras stream low-bandwidth
processed information to save bandwidth [24–26]. Yet, for
optimal performance, computer vision algorithms require
heavy computing resources. There have been attempts to
develop lightweight methods for smart cameras [27–30] to
reduce resource needs. However, these ad hoc methods com-
promise the overall quality and do not extend easily. If there
is any improvement in the original algorithm, the customized
version may or may not agree to the improvement.

Based on the discussion above, smart cameras provide
processing and bandwidth scalability only when

(i) the processing tasks are not repeated; that is, if the
foreground detection is done at the camera, it should
not be repeated at the central unit;

(ii) the data communicated from a smart camera is much
less than the original data captured.

In the following section we show the effects of these
constraints on the research in other interdisciplinary areas
of video analysis systems. Subsequently, we propose a cloud
entity, SmartHub, and demonstrate how it provides both
scalability and synergistic integration with other research
areas.

3. Limitations of Smart Cameras

Themost important limitation of smart cameras is the limited
opportunity for information fusion. In the process of video
analysis, information fusion can take place at the following
three levels [31].

(i) Data Level. In this type of fusion, pixel values are
directly compared to come to a conclusion; therefore
it requires image data for fusion.

(ii) Feature Level. In a more popular approach, features
are extracted from the image and compared for
detection. If features are not heavily compressed, they
require significant bandwidth for transmission.

(iii) Decision Level. This type of fusion is the most
economical in terms of bandwidth overhead. The
detection task is performed for individual cameras,
and only final decisions from each video are fused
together.

The smart camera systems only allow fusion at the
decision level. In current multicamera systems, however,
generally the cameras are densely placed with overlapping
views which require data and feature level fusion [32–37].
To enable feature level fusion in smart camera systems,
feature compression techniques have been proposed [25, 26].
However, feature compression is an ad hoc process and
compromises the overall accuracy of the analysis task. We
argue that the features are already compressed and further
compression is unfavoured for future analysis techniques.

To assess the smart camera systems with overlapping
views, we consider a scenario in which 4 cameras with
overlapping views are tracking a person at a subway station.
If the cameras do not communicate with each other to save
bandwidth, one object is being tracked by 4 cameras, which
is a redundancy rate of 75%. There have been research works
in which only one master camera with the best view tracks
the object [19, 21, 38]. In this case we have 4 hardware units
capable of tracking but only one unit is being used at a
time.The other 3 units are underutilized, which increases the
overall cost per object of the system.

In Figure 3, we show the processing times of the steps of a
typical video analysis system. Four videos with overlapping
views from a multicamera video dataset [39] are used for
this evaluation.While the foreground detection only depends
on the frame resolution, the processing times of detection
and tracking are proportional to the computational load of
each step. It is evident from the figure that tracking is a
computationally intensive task. It would require expensive
hardware to track objects using state-of-the-art tracking
methods, such as particle filters [40].
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Table 2: Brief summary of smart camera works.

Work Tasks
Moorhead and Binnie [18] Edge detection

Wolf et al. [3] Human gesture recognition, region extraction, contour detection, and
template matching

Lin et al. [23] Gesture recognition
Muehlmann et al. [50] Real-time tracking
Heyrman et al. [51] Motion detection
Bramberger et al. [9] Traffic surveillance, multicamera object tracking
Chen and Aghajan [19] Gesture recognition using smart camera network
Quaritsch et al. [21] Multicamera tracking, camShift
Rinner and Wolf [4] scene abstraction
Aghajan et al. [20] Human pose estimation
Sankaranarayanan et al. [24] Object detection, recognition, and tracking
Tessens et al. [30] Foreground detection, subsampling
Wang et al. [22] Tracking, event detection, and foreground detection
Casares and Velipasalar [28] Foreground detection, tracking feedback
Sidla et al. [52] Traffic monitoring
Pletzer et al. [53] Traffic monitoring, vehicle speed, and vehicle count
Wang et al. [29] Foreground detection, contour tracking
Cuevas and Garcia [54] Single camera tracking, background modelling
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Figure 4: The amount of foreground in real surveillance footage of
24 hours.

In order to decide the best view, smart cameras need to
share foreground informationwith each other. Figure 4 shows
the fraction of image area that belongs to the foreground
for real surveillance footage of 24 hours. We can see that

the foreground area may vary from nothing to 63%. Sharing
such a large amount of foreground information would use a
great deal of bandwidth. Furthermore, with the overlapping
views, the best view can change between consecutive frames.
This would require frequent changes in the role of the master
camera. Frequently changing the master camera would cause
additional bandwidth and processing overhead.

4. SmartHub System

We propose to use normal IP cameras to capture video and
delegate all video analysis tasks to the private cloud. In our
discussion, the private cloud is defined as the distributed
computing nodes on the same Local Area Network (LAN)
to which the cameras are connected. The block diagram of
the proposed SmartHub system is shown in Figure 5. The
cameras only perform the basic tasks of video compression
and streaming. Video analysis tasks of detection, recognition,
and tracking are performed by the SmartHub cloud entity.
Note that a normal IP camera with basic encoding and
streaming capabilities is approximately 10 times cheaper than
a smart camera capable of detecting activities.

SmartHub fuses visuals from multiple cameras and pro-
vides a set of services to the central unit such as object
detection, face detection, and tracking. The central unit can
query SmartHub to receive continuous information (video
streams) or event information in terms of detected objects.
Because the information fusion takes place at SmartHub,
it does not need to send video from all cameras to the
central unit but only themost informative view. Furthermore,
SmartHub can create a synthetic view (e.g., a 3Dmodel) of the
scene and send that information.
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Figure 5: Cameras capture video and send it to the SmartHub nodes in the cloud. SmartHubs process the data as a service to the central
security unit. Based on the situation, the central unit can enable or disable a particular service.
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Figure 6:The cameras and the corresponding SmartHub processing
node are connected to the same switch.

In this system, the cameras that are likely to coordinate are
connected to one processing node (SmartHub), which creates
an abstract understanding of the coverage area and shares
the coordinated and synchronized informationwith the other
processing nodes and central unit.

To avoid the bandwidth bottleneck, we exploit the orga-
nization of LAN infrastructure. A LAN consists of multiple
switches, arranged in a hierarchical fashion. The cameras are
connected to the lowest level of switches. The data going
out of the switch has a bandwidth limitation depending on
the number of other switches in the network and data flow.
For communication within a switch, however, almost full
Ethernet bandwidth is available.

We propose that the cloud processing nodes should be
connected to the switch to which the corresponding cameras
are connected. With that setup, we would be able to send
high quality video to SmartHub for information fusion, and
abstract information can be forwarded to the central unit
through higher level switches.The proposed scheme is shown
in Figure 6.

A SmartHub based system has various merits over both
centralized system and smart camera based system. These
merits and salient features of SmartHub based system are
discussed below. The topics for the discussion have been
chosen in consideration of the current state of research
focusing on design and quality issues.

4.1. Storage Scalability. A SmartHub with storage capabilities
can provide an excellent distributed data storage architecture.
Storage at each smart camera is costly, whereas unified storage
at the central location is not scalable. Hence, SmartHub can
provide a midway solution for storage.

Storing video at smart cameras is costly because smart
cameras generally use flash memory. Adversely, SmartHubs
can employ disk memory on the cloud. Table 4 compares
the price of hard disk and flash memory. We see that the
cost per GB for hard disk memory is from 6.25 to 8.9 cents,
whereas flash memory prices can range from 183 to 210 cents.
Furthermore, the price of compact memory used in smart
cameras increases more rapidly with capacity.

4.2. Reduced Processing Repetition. Video analysis involves
low level processing (background-foreground classification)
and high level processing (blob detection and tracking). In
smart camera systems, the low level steps of background and
foreground detection are repeated both at the camera and at
the processing node that fuses data frommultiple cameras. In
SmartHub, since object detection and fusion are performed
at the same place (cloud), there is no repetition of processing.
We see in Figure 3 that SmartHub needs 30% less processing
for the same task, as foreground detection is only done once.

4.3. Lower per Sensor Cost. The per sensor cost of the overall
system is very high in smart camera systems due to the
enhanced capabilities of smart cameras. On the other hand,
SmartHub offers reduced cost as there is only one hardware
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Table 3: The comparison of SmartHub, smart camera, and centralized systems.

Processing and
storage

scalability

Sensor coordination
and synchronization

difficulty

Bandwidth
requirement Cost (per sensor)

Tracking
accuracy in the
presence of
occlusions

Processing
repetition

Smart camera High High Low High Low High
Centralized Low High High Medium Medium No
SmartHub High Low Low Low High Low

Table 4: Approximate current prices of flash and hard diskmemory.

Seagate hard disk Kingston flash drive
1 TB—$89.99 8GB—$14.71
2 TB—$119.99 16GB—$33.71
3 TB—$179.99 32GB—$71.71
4 TB—$249.99 64GB—$135.71
Cost per GB = 6.25 to 8.9 cents Cost per GB = 183 to 210 cents

unit for a group of sensors. This topic has been included
to emphasize that the smart cameras add to the cost of
the system without providing equivalent benefits. SmartHub
provides better performance with reduced cost. A normal
IP camera costs around $100, while a smart camera costs
approximately 10 times more than a normal camera. If we
consider a 4-camera system, building the system with smart
cameras would cost at least $4000. Alternatively, a cloud
processor with processing power equivalent to 4 cameras
would cost less than $1000. Hence, a SmartHub system
with 4 cameras would only cost $1400, 65% lesser than the
smart camera system. Furthermore, the processing power
over cloud is available for other applications when the video
processing workload is minimal [41].

4.4. Others. Sensor coordination and synchronization is also
difficult in centralized and smart camera based systems due
to random network delays at intermediate nodes. For a
fixed bandwidth, SmartHubwill provide best tracking perfor-
mance as high quality video from overlapping view cameras
is available at one nodewithout causing additional bandwidth
overhead. Similarly, to achieve the same level of tracking
accuracy, centralized system will need high quality video
from multiple cameras causing large bandwidth overhead. A
summary of the above discussion is provided in Table 3.

5. Design and Analysis

The main question in designing the system is the number
of cameras to be connected to a SmartHub. To determine a
suitable number, we conduct a task based analysis. Consider
a video analysis task of human detection and matching. We
chose this task because it is a very common task for video
based applications [42, 43]. In this task, we detect the humans
in each camera and match them across cameras to obtain the
best view of a person.

The task can be accomplished in both centralized and
distributed architectures. However, each architecture will
have different overheads in accomplishing the task. The
overheads are abstracted in two categories: communication
overhead and processing overhead.

5.1. Communication Overhead. For human detection and
matching, high quality image regions need to be transmitted
to other processing nodes over the network. For cameras with
overlapping views, it is very useful to share the facial data to
match humans and track across obstacles. For nonoverlap-
ping cameras, the human data is only required when tracking
a person over a larger territorial region or when there is a
specific threat generated at one camera and the person needs
to be detected at all possible places. Therefore, we assume
that information from each pair of cameras needs to be fused
with a nonzero probability. This implies that in a purely
distributed smart camera network every pair of cameras
needs to communicate with each other probabilistically.

We havemodelled the communication overhead in terms
of camera overlap and data sharing requirements. Let C =
{𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
} be the set of cameras where 𝑛 is the number of

cameras. LetA = {𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
} be the set of areas covered by

the corresponding camera. Let 𝑤 and ℎ be the average width
and height of the human region in number of pixels. Now, the
total communication overhead for a smart camera network is
calculated as

𝜔

𝑠
=

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝑜
𝑖𝑗
∗ 𝑤 ∗ ℎ, (1)

where 𝑜
𝑖𝑗
is the normalized intersection of the areas covered

by the 𝑖th and 𝑗th cameras; that is,

𝑜
𝑖𝑗
=

{
{

{
{

{

𝑎
𝑖
∩ 𝑎
𝑗

𝑎
𝑖
∪ 𝑎
𝑗

if
𝑎
𝑖
∩ 𝑎
𝑗

𝑎
𝑖
∪ 𝑎
𝑗

> 0.01,

0.01 otherwise.
(2)

In a SmartHub based architecture, the communica-
tion overhead is mainly due to the communication among
SmartHubs. LetS

𝑖
be the set of cameras connected to the 𝑖th

SmartHub. The total amount of data flowing out of the 𝑖th
SmartHub is calculated as

𝜔
𝑖
= ∑

𝑖∈S𝑖

𝑛

∑

𝑗=1;𝑗∉S𝑖

𝑜
𝑖𝑗
∗ 𝑤 ∗ ℎ (3)
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Figure 7: Camera placement scenario.

and the total overhead is the sum of the overheads due to all
SmartHubs; that is,

𝜔 =

1

𝜔

𝑠

𝑛
𝑠

∑

𝑖=1

𝜔
𝑖
, (4)

where 𝜔
𝑖
is the overhead due to the 𝑖th SmartHub, 𝜔 is

the overhead in SmartHub based architecture, and 𝑛𝑠 is
the number of SmartHubs. If 𝜂 is the number of cameras
connected to a SmartHub, the total number of SmartHubs is
calculated as

𝑛

𝑠
= ⌈

𝑛

𝜂

⌉ . (5)

Note that the communication overhead depends mainly
on the communication requirements between the processing
nodes and on the camera placement.

5.2. Processing Distribution. In a smart camera network, all
the processing is pushed to the edge. The processing tasks
are completely distributed among processing units. With the
introduction of SmartHubs, we bring the processing one level
higher. In a completely centralized system, all the processing
is done at a single node. This introduces a processing
bottleneck and a single point of failure.Therefore, distributed
processing is a desired characteristic of an architecture and it
is measured as processing distribution (𝛾).

If 𝜌 is the amount of processing required to complete
the task, the processing load on a single node in a smart
camera network is 𝜌. In a SmartHub based architecture, the
processing load (Ψ) on a SmartHub is

Ψ = 𝜌 ∗ 𝜂. (6)

Consequently, the processing distribution is calculated as

𝛾 = 𝛽𝑒

−Ψ/𝑛
, (7)

where 𝛽 is a normalizing coefficient, which is chosen to be
𝑒

𝜌/𝑛 to limit the maximum value of processing distribution
to 1 for the smart camera case. The minimum value of
distribution is 𝛽/𝑒𝜌.

To measure the most adequate number of cameras for a
SmartHub, we define an optimization function as follows:

Γ = 𝛾 − 𝜔 (8)

to emphasize that we wish to reduce the communication
overhead while still being able to distribute processing.
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Figure 8: Communication overhead versus number of cameras per
SmartHub.

5.3. Experimental Results. In this section we obtain the
number of cameras to be connected to a SmartHub in a
given scenario. While the framework can be applied for any
task and any given scenario, we consider a camera placement
scenario as given in Figure 7 for experimental purposes.

For the experiments, we considered 100 cameras (𝑛 =
100) and assumed that the amount of processing required for
the detection and recognition tasks is unity; that is, 𝜌 = 1.
The height and width of the human blob are also assumed
to be unity (𝑤 = 1, ℎ = 1). For the scenario given in
Figure 7, consecutive cameras have a fractional overlap of
0.16, otherwise no overlap; that is,

𝑜
𝑖𝑗
= {

0.16,

󵄨
󵄨
󵄨
󵄨

𝑖 − 𝑗

󵄨
󵄨
󵄨
󵄨

= 1,

0.01, otherwise.
(9)

The resulting communication overhead for the given
placement is shown in Figure 8. We see that the overhead
initially reduces rapidly until 𝜂 ≈ 4 and then becomes
horizontal. Thus, beyond a point, adding more cameras to
a SmartHub does not provide any significant advantage in
reducing the bandwidth requirement.

The processing distribution decreases linearly with the
number of cameras connected to a SmartHub as shown in
Figure 9. The combined optimization function is plotted in
Figure 10. With the help of this figure, we conclude that 4 to
15 cameras could be connected to a SmartHub for adequate
trade-off between communication overhead and scalability.

5.4. Limitations. While there are multiple advantages of
SmartHub in multicamera systems, these are tightly coupled
with network topology.The proposed SmartHub architecture
assumes that the network follows tree topology. Experiments
also reveal that the benefits of SmartHub are significant only
when the number of cameras is large and the task at hand
requires fusion of video from multiple cameras.
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6. Conclusions

Smart cameras are inefficient and costly in scenarios with
multiple overlapping cameras. Such scenarios are common
in setups using cheap video sensors. The scalability achieved
by smart cameras puts additional constraints on the system
which compromise the performance of vision algorithms.
Similar scalability is achieved by processing data over cloud
with SmartHub based architecture.The given framework can
be used to calculate an adequate number of cameras to be
connected to a SmartHub for a given camera placement. For a
general placement with consecutive overlapping cameras, it is
adequate to have 4 to 15 cameras per SmartHub. In the future,
we intend to deploy SmartHub on dedicated hardware units
and explore more design decisions.
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