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Recently, indoor location-aware applications that provide interactive capability with the surrounding physical environment are
increasingly in demand. These applications include mobile asset management, indoor navigation, and location-based reservation
systems. In many cases, these services require multiple and dynamic collaborations over a large number of service subscribers with
a deterministic, fast response time. However, many studies still function primarily on client/server-based centralized architectures
that are inefficient in supporting complex collaboration, due to their static organization and unpredictable network congestion.
To address this problem, we propose a middleware architecture named Dynamic Reconfigurable Agent Space (DRAS), based on a
collaboration of service agents that can be distributed over the requested service area. A service application can dynamically modify
a service area according to the request of the service subscribers under the DRAS. To demonstrate the feasibility and performance of
the DRAS, we evaluated the elapsed time for dynamic reconfiguration of the service area. Also, two general collaboration scenarios
in indoor location-aware applications called voting and tracking were evaluated in the simulation and in a real environment. The
evaluation shows that the proposed middleware is suitable for indoor location-aware applications that require a large number of
mobile nodes and complex collaboration by the effective distribution of network traffic and processing around the service agents.

1. Introduction

Recently, ubiquitous sensor network technology has enabled
complex associations between humans and physical objects
or physical and virtual environments. Interaction with the
surrounding physical environment and personalized ser-
vices is increasingly in demand for applications such as
mobile asset management [1-3], indoor navigation [4-7],
and location-based reservation [8] systems. However, these
services are still based on centralized client/server-based
architectures that are inefficient in supporting multiple com-
plex collaborations that require real-time responses over a
large number of service subscribers. These centralized archi-
tectures are insufficient because of their static organization
and heavy resource surge. For example, messages generated

in current services need to be delivered to the centralized
server using multihop communication, therefore causing
traffic bottlenecks on the paths to the server that can poten-
tially stop all functioning services. To solve this problem,
this paper proposes a Dynamic Reconfigurable Agent Space
(DRAS), a special middleware architecture based on service
agents that can be distributed over the space of a service
area while facilitating greater and more efficient collaboration
among services and service subscribers. The service agents
can dynamically expand and contract their service areas
according to the location of service subscribers under the
DRAS. This approach can guarantee better collaboration
performance with a large number of service subscribers by
ensuring the effective distribution of network traffic around
the service area.



The DRAS is designed for an indoor wireless sensor
network environment consisting of stationary and mobile
nodes. In this paper, it is assumed that mobile nodes are
characterized by low-speed operations and ultralow power
consumption and can be attached to physical mobile objects
in the form of small tags. We will call these devices mobile
nodes and regard them as service subscribers. Stationary
nodes are also characterized by high-speed operations and
low power consumption and the ability to be attached
to ceilings or walls of unit spaces. They are intended to
function as location references and communication access for
mobile nodes (see Section 2.1 and Figure 1). The expansion
and contraction of service areas are enabled by dynamic
generation and destruction of service agents according to the
request of mobile nodes. With the dynamic reconfiguration
of service areas, the effective distribution of network traffic
and service processing amidst numerous mobile nodes is
guaranteed.

The main contributions of this paper are as follows.

(i) Service agents can be dynamically distributed over the
service area on the demands of service subscribers
(mobile nodes). This approach can provide fast ser-
vice responses by distributing network traffic and
service processing. Further, it can be used as a realistic
solution for indoor location-aware applications that
require a large number of mobile nodes and complex
collaborations.

(ii) We present two general collaboration services,
namely, voting and tracking, that operate under the
DRAS. These can be used as practical location-aware
services or reference models that are needed to
track, collect, and confirm the opinions of service
customers.

(iii) The DRAS was designed and implemented using
Erlang [9]. Due to the Erlang-based implementation,
the implementation complexity can be reduced sig-
nificantly despite complex coupling among agents.

(iv) The performance of the DRAS with the aforemen-
tioned services was evaluated. The elapsed time for
changing the service coverage was measured in a
real environment. In addition, this study measured
the elapsed time of the voting service both in the
simulation and real environment and the tracking
service in the simulation. Also, the performance
between the centralized architecture and the DRAS
was observed.

The contents of this paper are organized in the following
manner. Section 2 examines the domain description and
related research. Section 3 explains the design considerations
for the DRAS. Section 4 describes the conceptual design of
the DRAS, and Section 5 explains the operating principles
of the DRAS. Section 6 describes the implementation of the
DRAS architecture, and Section 7 presents a test-bed imple-
mentation and performance evaluation. Finally, Section 8
summarizes the work and draws conclusions.

International Journal of Distributed Sensor Networks

2. Domain Description and Related Research

2.1. Domain Description. In general, a location-aware appli-
cation means a service that can dynamically adapt its char-
acteristics and functions to the current location of service
subscribers that have free mobility. The application can
provide many advantages in a building environment that
has a complex indoor structure (e.g., irregular space shapes,
inner rooms, etc.) and lots of opportunities for collaboration
between people and objects. However, there is the traffic bot-
tleneck problem with server-side approaches [10-12] and the
multihop problem (e.g., broadcast storm, packet replication,
and routing table overflow) with mobile agents approaches in
wireless sensor networks (WSN) [13-15].

In this section, to help explain the proposed concept,
we introduce a service environment named U-Hospital
This service environment best illustrates service scenarios
that require complex collaboration and real-time responses
among a large number of service subscribers in indoor
location-aware applications (e.g., mobile asset management
[1-3], indoor navigation [4-7], and location-based reserva-
tion [8] systems). A U-Hospital has some distinctive features
as follows.

First, the whole environment can be divided into small
spaces like rooms or floors. Such spaces are called unit spaces
and are the basic units for assessing location awareness.
Even though this approach does not provide accurate loca-
tion information such as x-y coordinates, it does suggest
enough location information (e.g., cardiac center-501, vas-
cular center-613, etc.) for many U-Hospital services without
complex computation on the mobile node side.

Second, communication devices are divided into station-
ary nodes and mobile nodes according to their functionality
and features. A node means a communication device that is
implemented in hardware. A mobile node can be attached
to a person or a medical device in the form of a small
tag since it has very limited hardware (e.g., 8-bit MCU, 4K
SRAM, and coin battery) and communication functionality.
Unlike RFID tags, however, mobile nodes can communicate
bidirectionally. We will regard a mobile node as a service
subscriber. There can be a large number of mobile nodes in
a service environment. A stationary node can be installed in
the ceiling or walls in every unit space to provide location
reference functionality and communication infrastructure
for mobile nodes. A stationary node has a wired network
for communication between stationary nodes and a wireless
(sensor) network for communication between mobile nodes.

Third, we limit the communication between stationary
and mobile nodes to a single hop. This approach can help
to minimize the notorious network congestion and delay
problems that take the forms of broadcast storms, packet
replication, and routing table overflows in multihop ad
hoc sensor networks. This approach can also maximize the
possibility of supporting deterministic communication over
a large number of mobile nodes. This approach was already
used in our previous study [I12] and is one of the key
ideas in opportunistic networking. An opportunistic network
provides at least the following two functionalities: node dis-
covery and one-hop message exchange [16]. In a U-Hospital,
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FIGURE 1: Conceptual overview of U-Hospital services with dynamic reconfiguration of service area.

these two functions are provided by collaboration between a
stationary node and a mobile node and also between two or
more stationary nodes.

Fourth, a service is provided by distributed agents in
the stationary nodes. An agent means a software program
that resides in the stationary nodes to perform its tasks
automatically and continuously. In this paper, an agent and
a service agent have the same meaning and will be used
interchangeably. Generally, service requests are processed by
the agent in the same location as the service subscribers.
Figure 1 shows a tracking service (will be explained in the
last paragraph) for a wheelchair (mobile node m9) that is
processed, not by the central server but by the agents in the
S9 and S3 stationary nodes.

Fifth, a service area can be dynamically reconfigured
without stopping or recreating the service. For example,
with the dynamic approach, when a patient in an intensive
care unit is ready to move to a normal ward, services that
support the patient could just automatically modify their
service areas without manual adjustment of those services.
This feature has significant advantages compared to previous,
static approach [12], which cannot change service areas. Our
dynamic approach can support optimized resource requests
and collections. For example, if a service area is fixed and
the service needs to be provided to mobile nodes that do not
know where to go, a service should cover all the unit spaces
in the building. When a service agent needs a remote context,
the agent needs to send the request message to all agents
in the building environment. However, if the service area
can be dynamically reconfigured, a service agent can send
the request message directly to the clustered agents in one
particular service area. In addition, the static approach is too
inefficient in resource management because an unused agent
needs to be assigned manually, and, when it is not in use, it
still consumes valuable resources (power, memory, etc.) and
takes up time being managed manually by human resources.
If, however, the agent is being managed dynamically, it can be
automatically put into sleep mode or turned off completely to
reduce power consumption.

Voting and tracking are essential elements of a mecha-
nism design for fully distributed and location-aware systems
[17-20]. Many services, such as mobile asset management,

indoor navigation, and location-based reservation systems
in location-aware applications, can be explained easily by
two services: voting and tracking. Given this background, we
implemented the two foundation services under the DRAS to
provide a clear understanding.

Asshown in Figure 1, in a U-Hospital, any stationary node
can activate any service agent and expand its service area
by creating a clone agent (meaning a new instance of the
same service agent) to handle location-based service requests
from mobile nodes. In this way all mobile nodes can freely
move anywhere without service restrictions. Of course, if the
mobile nodes’” locations are reduced, then the service area
also shrinks. The voting service can be used for continuous
monitoring and status determination of patients by collecting
and analyzing sensor values from a variety of medical devices
such as sphygmomanometers and electrocardiographs. The
current status of the patient can be recognized by a majority
rule of sensor values, which can reduce false alarms. Basically,
the voting service can be defined as follows: the monitoring
service + data processing + decision making. Through voting
services, we can show how processing and networking can
be divided in the given service area under the DRAS. The
tracking service can be used for real-time tracking of medical
equipment. Tracking is the application that our previous
study [12] was mainly focusing on in indoor location-aware
services. It is important to provide the tracking of large-scale
mobile nodes and to deal with frequent moves of mobile
nodes. Through the tracking service, we can show how the
information of mobile node is managed in Peer-to-Peer(P2P)
manner under the DRAS.

2.2. Related Research. Recently, opportunistic computing and
networking [21-23] have become important concepts in
the service computing area, driven by the rapid growth of
mobile computing and ad hoc networks. The main concept
of opportunistic computing is as follows: “when two devices
come into contact, it provides a great opportunity to match
services to resources, exchange information, cyberforage,
execute tasks remotely, and forward messages” [21]. This
definition makes opportunistic computing highly suitable for
location-based ubiquitous service applications because the
communication and computing are processed by means of



a social relationship and collaboration among communi-
cation nodes. An opportunistic network provides at least
the following functionalities: node discovery and one-hop
message exchange. In other words, in an opportunistic
network, there is the opportunity for nodes to recognize and
communicate with other nodes in close physical proximity
[16]. Therefore, the proposed middleware architecture is
introduced that can create communication opportunities
and provide exchange services between stationary nodes
and mobile nodes that approach each other based on the
described concepts.

uMATT [12] is our previous WSN and centralized server-
based approach for indoor location-aware applications. It
provides a three-tier architecture for mobile asset manage-
ment services applicable to warehouses, hospitals, and so
forth. The main issues in this paper were to determine how
one can maximize the reactivity identifying the location of
mobile nodes in both the server-side and mobile itself and
how to solve the problems supporting the numerous mobile
nodes in real time. To prevent traffic overflow due to the
concentration of excessive mobile nodes into a single loca-
tion, we added a specially designed stationary node, called a
virtual sink (VS) node, supporting one-hop communication
between mobile nodes, stationary nodes, and service middle-
ware. With this approach, we achieved better performance
than the legacy WSN approach like Zigbee. However, due to
traffic bottlenecks on the server-side, complex collaborations
were difficult to support.

Mobile agent reactive spaces (MARS) [11] is a coordi-
nation infrastructure for mobile services (M-services) that
depends on a user’s location, whether physical (in space) or
logical (within a specific distributed group/application). This
paper presents a general service scenario, basic background
concept, and definition-related M-services. It also details
the modeling framework based on local and active service
contexts and discusses the impact of the framework on
application design. MARS provides a modular and flexible
approach to the design of distributed applications exploiting
location-dependent M-services. However, it does not provide
any information on an environment that has a large number
of mobile nodes and complex collaborations.

AlarmNet [10] has proposed a network and software
architecture for pervasive adaptive healthcare services. The
network consists of a mobile body network, emplaced sen-
sors, and a back-end network. The mobile body network con-
sists of an electrocardiograph, pulse oxymeter, accelerometer,
and other sensors. The emplaced sensors include temper-
ature, dust, light, and motion sensors and are installed in
living spaces. The back-end network analyzes the collected
sensor values and generates feedback. Even though the whole
service network is divided into multiple layers similarly to
the approach proposed here, service manipulations are not
performed in the emplaced sensors but in a centralized
server/database in the back-end network.

TeenyLIME [13, 14] is a tuplespace-based application
middleware that is designed for a WSN environment without
base stations. In this paper, a new tuplespace implementation
that can provide event-driven asynchronous reads/writes
among mobile nodes on top of TinyOS has been provided.
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In addition, this paper presents several example services
including multihop communication, remote function invo-
cation, and node and service discovery. The main advantage
of this middleware is its ability to support fully distributed
services and easily configurable networks. However, it is
difficult to provide real-time responses in such services,
especially when many mobile nodes are using them.

Agilla [15] is a mobile-agent-based service middleware
for a WSN environment. In this middleware, an agent can
be moved or copied among mobile nodes without losing its
internal contexts. Communication among agents is accom-
plished by the abstract functions of a tuplespace and an
internal neighbor list. Agilla is especially suitable for handling
situations in which local decisions would significantly reduce
the amount of data to be transmitted wirelessly. A service
agent can be implemented in a stack-based instruction
set architecture for supporting resource-constrained mobile
nodes. However, creation and control of the services are
very difficult in this environment because of its assembly-line
programming model. We think that this approach is suitable
for an emergency service with a small number of mobile
nodes but not for a common service with a large number of
mobile nodes.

Many studies, including middleware approaches [24-27]
and WSN protocols [28-30], have been proposed for indoor
location-aware applications. However, these studies are also
based on multihop communications and need to deal with
complex calculations on the mobile-node side. Therefore, it
is difficult to adapt their proposals to provide the services
needed for real-time response with a large number of mobile
nodes or for network stability.

3. Design Considerations for the DRAS

3.1 Supporting Location-Based Services Especially with User,
Time, and Location Contexts. A service under the DRAS is
highly related to various contexts [31], especially the service
user, current time, and service location. This means that
the service decisions or actions would vary if the context
was changed. To support this seamlessly, the DRAS should
provide a common functionality to access and share these
contexts among the service agents. The service agents should
be able to detect the context changes automatically or period-
ically.

3.2. A Fully Distributed Service Network Providing Autono-
mous Creation, Expansion, and Destruction of Service Clus-
ters. A service cluster is a set of service agents that provide the
same service. The DRAS should provide dynamic creation,
expansion, and destruction of service agents as needed.
A service can achieve real-time responses and increased
stability by following distributed service agents around the
set of stationary nodes with which the mobile nodes want
to communicate. These functions will be accomplished by
implicit or explicit requests made by mobile nodes.

3.3. Collaborative Environment between Mobile and Stationary
Nodes. The hardware specifications of mobile nodes can
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vary greatly depending on service requirements. However,
in general, they have a cheap, low-speed MCU, a limited
amount of memory, low-speed communication, and a small
battery. Thus, to process complex and difficult jobs in the
services, collaboration among mobile and stationary nodes
is essential. Generally, stationary nodes process multiple jobs
coming from various mobile nodes because of their greater
processing efficiency, but the reverse could also occur.

3.4. Network Unawareness. Service customers should receive
the services by making use of all available network resources
without dealing with the complexities of network configura-
tion. Transparency among communication protocols should
be provided between mobile and stationary nodes. Moreover,
service disruptions should be minimized except when all
methods of communication have disappeared.

4. Conceptual Design of the DRAS

4.1. Overview of the DRAS. The DRAS can associate mobile
nodes with the agents and destroy the agents freely according
to the needs of the service customer. In the DRAS, a service
can communicate with mobile nodes regardless of the nodes’
physical locations and the communication protocols being
used. A virtual social network could be generated among
mobile nodes (eventually the customers) participating in a
service and large quantities of information could be generated
among the customers. A service is provided by service
agents that are distributed according to the stationary nodes
in the form of processes and connected to each other by
P2P connections. Unlike server-based centralized architec-
ture, network traffic and service processing are distributed
naturally to multiple stationary nodes. Collaborations with
the service agents are a key consideration in the DRAS.
The DRAS uses only one-hop ad hoc communication to
communicate between stationary nodes and mobile nodes for
efficient operation, so there is no need to consider complex
management of a routing table on the mobile nodes side.

In the DRAS information model, a service agent S is
defined as a tuple S = (name, self-introduction, M, N, C,
and H), where a name is a unique name of a service, self-
introduction is a self-descriptive string of a service, M is a set
of addresses of mobile nodes that subscribe to the service, N
is a set of addresses of stationary nodes where the service is
distributed, C is a set of service contexts, and H is a service
handler (name of the compiled service code). A context is a
pair C = (T, V), where T is a nonempty set of terminologies
and V is a nonempty set of values such as “bool,” “int,” “float,”
“string,” and “date”” For a voting service, we can represent it
as

S = (“voting”, “check status”, [100, 101, 102],
[“R501”, “R5027] , )
[{“period”, 30}], “voting - beam”) .

S should be synchronized among the service agents in
the same service cluster except for C. Depending on the

requirements of the service, the context C can be managed
individually.

A message Msg is defined as a tuple Msg = (srvname,
from_addr, to_addr, command, Data, Opt, and msgref),
where srvname is the target service name, from_addr is the
address of the message sender, to_addr is the address of the
target, command is a command name to execute, Data is a
list of parameters for the command, Opt is a list of service
options, and msgref is a reference ID for the message. For
instance, we can represent a message “mobile node 100 will
move to room-502 from room-501” in the tracking service as

Msg = (“tracking”, “R501”, “R502”, “moveto”,
2)
[100], [“priority”, “normal”], 1000) .

4.2. Network Architecture Supporting Distributed Collabora-
tion in the DRAS. To support real-time service responses
with a large number of mobile nodes, the nodes have been
divided into stationary nodes and mobile nodes. Moreover,
the network was divided into a backbone and multiple
service regions for one-hop ad hoc communication. Figure 2
shows the proposed network architecture of the DRAS. The
stationary tier is composed of stationary nodes (marked S
in Figure 2), which manage unit spaces, and a backbone
network that connects the stationary nodes. The mobile tier
is composed of mobile nodes (marked M in Figure 2), which
can be attached to objects or to service customers, and the
regions serving the one-hop ad hoc network. Communication
among stationary nodes is performed in the P2P style rather
than by the traditional client/server style. A service request
coming from a mobile node can be handled by a service agent
running in a stationary node. Otherwise, it will be served by
collaboration among agents distributed in several stationary
nodes (drawn as a service cluster in Figure 2).

It is assumed here that the stationary nodes have plenty
of computing capability and a permanent power supply. To
increase the lifetime of mobile nodes, we have to carefully
consider the power consumption of the mobile nodes. To effi-
ciently communicate between stationary and mobile nodes,
we used the LIDx/LAMD one-hop ad hoc protocol that was
proposed in previous studies [32, 33] and will be explained in
the following section. This protocol enables one-hop-based
location determination and asynchronous message delivery
between stationary and mobile nodes based on IEEE 802.15.4.

4.3. LIDx and LAMD for Location Determination and Message
Delivery among Service Agents and Customers. LIDx and
LAMD [32, 33] are protocol sets that were designed for asyn-
chronous communication between stationary nodes, mobile
nodes, and a centralized server. LIDx is an abbreviation for
“Location-ID Exchange protocol,” which is used for location
awareness between stationary and mobile nodes. The basic
operation scheme of LIDx is as follows. A mobile node
broadcasts location-awareness packets to stationary nodes
to determine its current location. When stationary nodes
around the mobile node receive these packets, they will check
the link quality indicator (LQI) of the packet received. Then
each stationary node sends a packet to the mobile node
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FIGURE 2: Two-tier network architecture of the DRAS.

including the received LQI value. The mobile node gathers
packets from stationary nodes and analyzes the LQI values in
the packets. Finally, the current location of the mobile node
is determined by selecting the stationary node that sent the
packet with the highest LQI value. The mobile node then
sends the result to the stationary node. Even though this
method cannot provide x-y coordinates like a GPS, it can
simply and easily suggest an approximate location, which is
sufficient for most indoor applications. It is suitable for use in
low-powered mobile nodes to provide location awareness for
opportunistic services. LAMD is an abbreviation of “LIDx-
based Asynchronous Message Delivery;” which is used for
exchanging asynchronous messages among mobile nodes.
The message-exchange sequence is a multistep process. When
a source mobile node wants to send a message to a particular
destination mobile node, it first sends a message to a sta-
tionary node. The stationary node in turn sends this message
to the server. It is assumed that the location information of
mobile nodes is continuously collected by a server so that the
message can be routed to the stationary node closest to the
target mobile node. Finally, the message will be sent to the
destination mobile node.

After some modifications to fit a distributed environ-
ment, we used them as the primitive location determination
and message delivery protocols between mobile nodes and
stationary nodes to implement the DRAS. For LIDx, the
location information of mobile nodes is no longer managed
by a centralized server. Instead, it is distributed in the
stationary nodes following where the mobile nodes exist. For
LAMD, the message-exchange sequence has changed. When
a stationary node receives a message, the stationary node first
checks whether or not the target is in the current location by
searching the local context. If not, it will search for a remote
context and transfer the message to the proper stationary
node where the target mobile node exists.

5. Operating Principles of the DRAS

All services in the DRAS are processed by collaboration
among distributed service agents, and the collaboration is
done asynchronously by message passing. Figure 3 shows the

Service cluster

Oé =~ Collect

(1 Service context

]: Local connection

. A .
O  Service agent 1 Remote connection
v

FIGURE 3: General collaboration concept of the DRAS.

general collaboration concept with local and remote contexts
under the DRAS. To collaborate with distributed service
agents, a service agent should send its request to target service
agents and, if needed, collect results from the service agents.
It can be simply represented by two interfaces:

R = request (cmd, TargetAgents),

€)
L = collect (R, Opt),

where cmd is a command for collaboration, TargetAgents is
a set of addresses of the target stationary nodes that have
remote contexts, R is a set of information to be collected
including what and where, Optis a set of options, and Lis a set
of collected contexts. With combinations of two interfaces, we
can achieve various collaborations. A service should imple-
ment two interfaces according to its requirements. It should
be noted that collaboration among the service agents is a fairly
expensive operation. Therefore, simple and common service
requests from mobile nodes should be processed as much as
possible based on local context.

Another point to consider is that internal blocking
functions should be eliminated or used with extreme caution
when an agent requests a remote context in a message loop
(cf. Remote Procedure Call). Blocking functions prevent an
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agent from processing messages in its message queue before
receiving the requested remote context and, therefore, can
create a deadlock problem when remote contexts are heavily
related to each other. One possible solution to get rid of the
deadlock problem is to make delegate processes. A service
agent can invoke a new process (or an agent) that deals
with the blocking function and will get the returned value
asynchronously (an example is shown in “gathering process”
in Section 6.5). In this way, a service agent can keep its
message loop working even though the blocking function
is not responding. For instance, in general, the collection
function is implemented using a delegate process.

A service can dynamically modify its service coverage
by changing service agents. Each of the service agents is
managed by a process in the DRAS. A service agent can exist
in one of the following states: creation, expansion, processing,
contraction, and destruction. We call the first element in
N the “main agent” and the remainder “colleague agents”
(see Section 4.1). For the sake of easy implementation, some
critical synchronization sequences among service agents are
managed by the main agent at the time of writing.

First of all, a service cluster should be created to provide
the service such as U-Hospital to service subscribers. A
mobile node which has information about the required
service can create the service cluster. Figure 4(a) shows
the service creation step. Figure 4(a)-(1) shows a mobile
node sending a message which has service information to a
stationary node to request a service. Figure 4(a)-(2) shows
that the stationary node analyzes the service creation message
and sends a notice of new service creation to other stationary
nodes to create a service cluster. This message includes a
service name, options, and an initial service area by including
the IDs of a set of stationary nodes. Also it could include
service category, environmental data like temperature or
humidity, and a service repository which provides service
program. Figure 4(a)-(3) shows a set of clustered service
agents that are ready to provide opportunistic service, and
Figure 4(a)-(4) shows that the service is in the processing
state. A request from a mobile node is processed first by the
local service agent and, if needed, it can then be processed
collaboratively by the service cluster.

To participate in a service, a mobile node should be within
radio range of the service cluster. When a mobile node is not
in range, the service will simply not be provided. However,
if the mobile node wants to expand the physical service
area because service subscribers are increasing or the current
location of the mobile node needs to be participated in the
service cluster, the mobile node will request an expansion of
the range by creating a service agent in the stationary node of
the current location. Figure 4(b) shows the service coverage
expansion step. In Figure 4(b)-(1), a mobile node outside of
the radio range of the service cluster requests a service from
a stationary node in the current location. In Figure 4(b)-(2),
the stationary node is discovering the service that the mobile
node wants. When the stationary node finds the correct
service, it will expand the service area by taking part in the
cluster. A mobile node could find a service such as “search
for music,” “find a friend,” and “collect a coupon” without
specifying the service name as needed. Figure 4(b)-(3) shows
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FIGURE 4: Service creation and coverage expansion process in the
DRAS.

the expanded service cluster after the new stationary node
has joined it. The service coverage and the physical radio
range have now been expanded. Figure 4(b)-(4) shows that
the service is in the processing state.

On the contrary, the physical coverage of the service
cluster needs to be contracted when the service subscribers
are decreasing or the service agent of the current location in
the cluster has no more subscribers. Figure 5(a) shows the
steps in service coverage contraction. When a service agent
has not received any messages from any mobile nodes for
a predefined period of time, the service agent determines
that the current location no more needs to be participated in
the service cluster. So, the service agent will quit the service
cluster automatically. Figure 5(a)-(1) shows a service agent
that has just timed out because there is no mobile node
nearby. The timeout can be different according to the service.
If the timeout is too long, system resources of stationary
nodes could be wasted. Otherwise, the service coverage
contraction process will be performed too often. Figure 5(a)-
(2) shows the agent sending an unsubscribe message to the
main agent. For synchronization among service agents that
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FIGURE 5: Service coverage contraction and destruction process in
the DRAS.

participated in the service cluster, the main agent transmits
the message to the other agents in the service cluster.
If the main agent wants to leave the service, the second
element will automatically become the main agent. After the
unsubscribing has been authorized by all service agents, the
agent will receive an unsubscribe confirmation message from
the main agent. It means that the agent is no longer included
in the service cluster. In Figure 5(a)-(3), the agent that left the
service cluster destroys itself to stop processing. Figure 5(a)-
(4) shows that the service is in the processing state.

Finally, a service should be eliminated when it is no
more required. Figure 5(b) shows the steps in service destruc-
tion, which are similar to a service coverage contraction.
Figure 5(b)-(1) shows a situation in which there are no more
mobile nodes in the service area or in which the service
cluster has received an explicit destruction message from
an internal decision of the service cluster or a mobile node
which has a right. So the main agent broadcasts a destruction
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message to eliminate other agents. In Figure 5(b)-(2), all
service agents except the main agent process self-destruction
step. In Figure 5(b)-(3), there is only the main agent left in the
service cluster after cluster contraction. In Figure 5(b)-(4),
the service has been completely destroyed by eliminating the
main agent itself. The service is eliminated completely now,
but it can be recreated any time according to the request of a
mobile node.

Service collaboration between other clustering services
is also required. In this paper, basically, a service cluster is
expected to run its assignment without collaboration among
service clusters. However service clusters can share their
information easily under the DRAS and a service cluster
is encouraged to collaborate with other service clusters.
Even though a general collaboration process among service
clusters is not proposed at the time of writing, it will increase
usability of emerging WSN services.

6. Implementation of the DRAS Architecture

6.1. Overview of the DRAS Middleware Implementation.
Figure 6 shows the DRAS middleware architecture. The
proposed middleware has three main managers: a collabora-
tion manager, a repository manager, and a communication
manager. The collaboration manager takes charge of the
management of collaboration agents including the lifecycles
of service agents. The repository manager handles global
service contexts, including the location of mobile nodes
and environmental data. The communication manager deals
with communication between stationary and mobile nodes.
Each manager contains several processes such as message
loops, worker processes, and controllers. Message passing
is the only way to communicate among processes in this
middleware architecture. This means that communication
transparency between local and remote processes can be
provided throughout the services and that the influence on
other processes of the sudden failure of one process can be
minimized, even though the response time of the services
would be increased by message-handling overhead.

Table 1 shows the overall footprints of the DRAS source
codes. This middleware has been implemented with C++ and
Erlang [9]. Erlang is a programming language that supports
fast process creation, control of large numbers of processes,
and fast communication among processes for distributed
systems. In the DRAS, an agent is implemented as an Erlang
process, which is a kind of lightweight process that can
be provided and scheduled in an Erlang virtual machine.
A stationary node can have as many agents as possible
if resources are available. An Erlang process is similar to
an operating system process, but its creation, deletion, and
communication performances are very high. Erlang also
has a higher statement ratio than C++ with a functional
programming feature. However, hardware control is very
limited. Therefore, the collaboration manager and the repos-
itory manager have been implemented in Erlang because
they need to control and communicate with many processes.
The communication manager has been implemented mainly
in C++ but partly in Erlang, because it controls multiple
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TaBLE 1: Footprints of the source codes.

Source codes Language Code lines (except comments) Compiled code size (bytes)
Collaboration manager Erlang 217 3,372
Repository manager Erlang 122 6,068
Communication manager C++/Erlang lgﬁég:;g)) Zé’?;?éﬁ::g))
Utility and defines Erlang 68 2,600
Service 1 (voting) Erlang 146 6,264
Service 2 (tracking) Erlang 176 4,956
Service agents (applications) the stationary nodes. Each of these messages includes .the
Voting | [ Tracking | pp process ID of the agents and the result of the agent creation
process. If all agents have been created successfully, the
@ service context is transferred to the service agents. After these
steps are completed, the service cluster is ready to start. To
zl;fﬁeware Collaboration provide a naming service, the collaboration manager simply
manager saves the service name and process ID as a tuple. It will be

’d L9

Communication <:> Repository
manager manager
Native Erlang runtime
calls system
Operating system

F1GURE 6: The DRAS middleware architecture.

communication protocols for mobile nodes, including hard-
ware access. All messages based on ad hoc communication
protocols will be converted to TCP/IP-based messages in
the communication manager, and TCP/IP-based messages
will be converted before transmission to the ad hoc protocol
depending on the target mobile node. Service applications
can be implemented freely in C++ or Erlang, but Erlang is
the better choice for complex applications. It is assumed that
binaries for service applications have been installed in entire
stationary nodes before the service is executed. In the future,
they will be automatically installed.

6.2. Collaboration Manager. 'The collaboration manager takes
charge of the management of collaboration agents including
the lifecycles of service agents. In addition, it acts as a name
server to process service coverage expansion requests from
mobile nodes. Algorithm 1shows a portion of the source code
that was written in Erlang for the collaboration manager.
“Newservice” is a function that can create a service cluster
by requesting the creation of service agents over stationary
nodes. For this, a common service context is used and is
defined as “#context” including a service name, a session
ID, and service agent information. After the request, the
“gather” function collects acknowledgement messages from

automatically updated when its service cluster is created or
deleted.

6.3. Repository Manager. 'The repository manager is a kind of
in-memory database for administering global contexts such
as the location information of mobile nodes and environmen-
tal data. Generally, for efficiency, service-specific contexts are
managed in each service agent. The repository manager uses
Mnesia, which is a built-in database management system for
Erlang. The database can save a wide range of context types.
For example, simple values like temperature and complex
data structures can both be stored. Algorithm 2 shows a
portion of the main message loop in the repository manager,
which updates the location information of mobile nodes.
When an LIDx message is delivered from the communication
manager, it will be saved into the “loc” table as a record
with its arrival time. When a mobile node moves away
from this location, the stationary node will no longer be
able to receive LIDx messages from the mobile node, and
therefore the message arrival time will not be updated.
The “garbage_collector” function periodically removes those
records that have not been updated for a predefined period of
time. The services that want to use the location information
should check the message arrival time to prevent annoying
duplication problems.

6.4. Communication Manager. The communication proto-
cols for mobile nodes can vary depending on the charac-
teristics of their services and the limitations of the mobile
nodes. To support various ad hoc protocols, a communi-
cation manager is implemented in C++ and Erlang. In the
C++ part, protocol-specific messages are first converted to
TCP/IP-based messages. In the Erlang part, the TCP/IP-
based messages are converted to Erlang messages for easy
manipulation by Erlang processes. Because of this two-step
conversion, service agents do not need to concern themselves
with protocols of mobile nodes. In other words, transparent
communication can be provided among service agents and
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newservice(#context{service=Service, sessionID=SessionID, agents=Agents}=C) ->
L = Agents,
%% spawn services among required nodes
map(fun(I) -> {oppservice, I} ! {self(), C} end, L), % request func.
Gather = gather(L, SessionID), % collect func.
%% convert node information to pid
AgentP = map(fun(From)->
{-, Pid, -, , -} = lists:keyfind(From, 1, Gather), Pid end, Agents),
%% transmit context to all agents
[Pid ! C#context{agent=AgentP} || {_, Pid, _, _, -} <- Gather],
ok.

ALGoRrITHM I: The newservice function in the collaboration manager (Erlang).

(i) define(DBMODE, 1) %% raw (no transaction) mode
(ii) define(PERIOD, 30000) %% 30000 ms
repository_msgloop() ->
receive
%% update mobile-node location information
{_From, #loc{userID=_UserID, locID=_LocID, locSubID=_LocSubID, curTime=_CurTime}=R} ->
row_write(?!DBMODE, R), memorydb_msgloop();
%% garbage collection
{_From, garbagetime} ->
garbage_collector(), memorydb_msgloop();
end.
garbage_collector() ->
CurTime = calendar:datetime_to_gregorian_seconds(calendar:universal_time()),
%% In SQL, SELECT loc.userID FROM loc WHERE
%% CurTime-loc.curTime > ?PERIOD
Del = do(qlc:q([{loc, X#loc.userID} || X <- mnesia:table(loc), (CurTime-X#loc.curTime)>?PERIOD])),
if
length(Del) > 0 ->
[row_delete(!DBMODE, Row) || Row <- Del];
true -> ok
end.

ALGORITHM 2: A main message loop in the repository manager (Erlang).

class Gateway: public QObject {

private:
static const int  HeaderSize = 4;
QSerialPort xserialPort;
TepSocket xtcpSocket;
TcpServer xtcpServer;
QTimer *timer;

void makeSerialBlock();
void makeEthernetBlock();

public:
void doBeacon();
void  writetoMobile (QByteArray & arr);
void  writetoStationary (QByteArray & arr);
void onDataReceivedFromMobile();
void onDataReceivedFromStationary();
void timeouted();

ALGorITHM 3: The header of the gateway class in the communication manager (C++).
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FIGURE 7: A collaboration sequence diagram among agents of the voting service.

mobile nodes. Algorithm 3 shows a part of the header source
code of the gateway class written in C++ for the communi-
cation manager. The class contains several class objects and
functions to convert mobile messages into TCP/IP messages
and vice versa.

6.5. Service Agent-Customer Collaboration Scenarios: Voting
and Tracking. 'The voting service is a kind of collaboration
service that can collect and confirm the opinions of ser-
vice users. The collected information can be an important
resource to decide future actions for a service. In particular,
this scenario is well suited for collaborative indoor navigation
[4-7] or for self-organizing systems [34-36]. Figure 7 shows a
sequence diagram of the voting service. First, a start message
will be sent to the service agent when the voting service is
needed (1). For clarity, we will refer to the service agent that
receives the start message as the current agent. The current
agent executes a gathering process to gather results from
other service agents (2). This is done to avoid blocking a main
agent’s message loop. The current agent sends a message to
other service agents in the service cluster notifying them to
start a voting sequence (3). Again for clarity, we will refer to
service agents that receive this message as other agents. Each
of the other agents receiving a start message then collects
information from mobile nodes that are located in its current
unit space and are participating in the voting service (4).
Each of the other agents executes a gathering process like
that performed by the current agent to gather results from
mobile nodes (5). Each of the other agents then sends the
voting request messages to selected mobile nodes in Sequence

4, including a question by means of LAMD (6). Each of
the mobile nodes makes its own decision according to the
question (7) and sends its decision to the stationary node
(8). Depending on the actual application, the decisions may
be simply raw data. Each of the gathering processes of other
agents collects and processes the decisions from the mobile
nodes and elaborates, giving special attention to those that
are too complex to process in a mobile node (9). Then each
of the gathering processes sends the processed decisions to
other agents and destroys itself (10). Each of the other agents
then sends the decisions on to the gathering process of the
current agent (11). The gathering process of the current agent
collects the decisions and sends them to the current agent
(12). Finally, the result of the vote will be announced, and the
voting process will terminate (13).

The tracking service is designed to track multiple mobile
nodes in real time. It assumes that each of the mobile nodes
moves along a permitted trajectory. If a mobile node moves
to a forbidden location or visits locations in the wrong order,
a warning message will be sent to the mobile node and to
a service administrator to prevent unauthorized intrusion.
To implement this service, we will use a simple data token
that includes information on the mobile node and an ordered
list of permitted locations. At the beginning of a service, the
main service agent creates one token per mobile node. After
that, the tokens will be managed by the distributed service
agents. This scenario is well suited to various mobile asset
management environments [1-3]. Figure 8 shows a sequence
diagram of the tracking service. First, when a mobile node
sends its current location to a stationary node using LIDx
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(1), the service agent will check whether or not the current
location is the correct location. This can be done by checking
for the existence of the token associated with the mobile
node. If the token exists in the service agent, this means that
this location is permitted for the mobile node and has been
approached by the mobile node in the correct order. Once the
correctness of the location has been determined, the service
agent will execute a gathering process (2), send a message
to the agent in the previous location to delete its outdated
token (3), and send a copy of the token to an agent in the
next location in the trajectory list (4). The gathering process
needs to receive two acknowledgement messages from the
agents in the previous and nextlocation to determine whether
or not the updating sequence has been successful (5, 6). The
gathering process acknowledges its result to the agent of the
current location (7). After Sequence 7, the agent marks the
token so that Sequences 2 to 7 will not be processed more

than once (8). The agent then sends an acknowledge message
to the mobile node (9). The mobile node will move to the
next location after a certain time. If the current location is
not permitted or not in the correct order, a warning message
will be sent to an administrator and to the mobile node (10,
1).

7. Test-Bed and Performance Evaluation

To verify the proposed middleware and evaluate its perfor-
mance, we set up a test-bed consisting of 10 stationary nodes,
50 mobile nodes, one PC, and one Ethernet hub, as shown in
Figure 9. The mobile node has an 8-bit MCU embedded with
an IEEE 802.15.4 transceiver, 8 KB SRAM, and 256 KB flash
memory. The stationary node has an Arm Cortex A8 MCU
with 512 MB SDRAM and an IEEE 802.15.4 transceiver for
communication with mobile nodes. The transceiver is same
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as a mobile node. To evaluate performance on a large number
of mobile nodes, we also implemented a simulation program.
The program can simulate the behavior of mobile nodes,
including communication based on LIDx and LAMD (except
retry and delay), location movement, and service processing.
Both in the simulation and a real environment, the LIDx
period is fixed at 5sec, and mobile nodes are always active
to eliminate nondeterministic delays in LAMD.

In the simulation program, each mobile node is repre-
sented by an Erlang process. Messages that are generated by
the process are routed directly to the stationary node, which is
regarded as the current location of the mobile node. With this
approach, the distribution of traffic and processing created
by contact between a stationary node and a mobile node
could be simulated. Even though TCP/IP rather than the one-
hop ad hoc protocol was used for communication between
a stationary node and a mobile node, the simulation could
show the performance of the services and the middleware
itself that is not limited by the communication medium.

To check the overhead of the proposed reconfigurable
service coverage shown in Section 5, we evaluated the process
with the implemented hardware and showed the results in
Figure 10. Figure 10(a) shows that the overhead of the recon-
figuration is considerably low in this test even though the
number of stationary nodes has increased. This is because the
collaboration for the reconfiguration is done asynchronously
and parallel among stationary nodes in a cluster (see InParal-
lel in the voting service). Figure 10(b) shows that the average
overhead of the reconfiguration increases with increasing
number of mobile nodes due to the increased data to be
synchronized. However, we can observe that the overhead is
still low. The results do not include the communication delay
between the stationary node and the mobile node.

(A) Voting Service. As shown in Figure 7, the response time

of the voting service T, can be represented by the following
formula:

Ns
T=T +T,+ ) T,
1
N,,,/Ng
+ InParallel <T4 +Ts + Z (Te+ T, + Ty +Ty)
1
+T10+T11> + T, +T5.
(4)

InParallel indicates that sequences are executed simul-
taneously over multiple stationary nodes. Therefore we can
simplify (4) in the following manner:
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FIGURE 10: The elapsed time for the changing of service coverage
(average of 10 runs) (a) with 50 mobile nodes in a real environment
and (b) average reconfiguration time in the simulation.

Some sequences can be summarized as a constant value
C:

N,
= NS x thp + Fm (2 x Tadhoc + Tchoice + Tdoprocess) +C.
N
(6)

Following some experiments, we set T4, = 10 (ms),
thp =02 (ms) and C =30 + Tadhoc-retry X Nadhoc—retry (ms) in
the real environment, and T, g0 = Ty, = 0.2 (ms) and C =
30 (ms) in a simulation. Table 2 describes the parameters and
their descriptions for collaborative services. The estimated
(means calculated) response values are shown in Figure 11
with “(exp.)” notations.

To measure the traffic distribution, we evaluated the
response time by varying the number of stationary nodes
between one and five and the number of mobile nodes
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TABLE 2: The parameters and their descriptions for collaboration
services.

Parameter Description

T, Response time of the voting service

T ransaction A transaction time of the tracking service

T, Execution time of nth sequence in the service
Tip Transmission time of an asynchronous tcp/ip packet
Ticpr Round-trip time of a tcp/ip packet

T dhoc Transmission time of an IEEE802.15.4 packet

T hoice Delay for making a choice in a mobile node
Todhoc-retry The retry delay in adhoc communication (100 ms)
N, The number of mobile nodes

N, The number of stationary nodes
Nidhoeretry  Iransmission retry count in adhoc communication
o A traffic congestion coeflicient for the tracking service

between 10 and 50 in the real environment (Figure 11(a)).
In the simulation, we used up to 1,000 mobile nodes
(Figure 11(b)). The locations of the mobile nodes were uni-
formly distributed over all the stationary nodes. In the real
environment, the response time was rising significantly when
only one stationary node and more than 30 mobile nodes
were used. The cause was the traffic of mobile nodes flowing
into a stationary node. The traffic was beyond the com-
munication or memory capacity of the transceiver attached
to the stationary node. Due to this, retry counts increased
significantly as shown in Table 3. If retry counts increased,
performance rapidly decreased because the retry delay was
fixed at 100 ms and was much higher than typical communi-
cation. In comparison, with more than two stationary nodes,
it was below the maximum capacity, so the result shows
that performance gradually increased. The simulation shows
the performance of middleware itself well. When only one
stationary node was used, the response times were 314 ms
for 700 mobile nodes and 418 ms for 1,000 mobile nodes.
When five stationary nodes were used to distribute service
traffic better, the response times were 98 ms and 120 ms,
respectively. This result indicates that the middleware handles
traffic distribution well. The decrease in response time with
the increasing number of stationary nodes is due to the
distribution of traffic through multiple stationary nodes with
the expansion of service coverage.

To measure service-processing distribution, we evaluated
response time by changing service-processing overhead and
the number of stationary nodes. The results of this exper-
iment are shown in Figure 11(c) with 50 mobile nodes for
the real environment and in Figure 11(d) with 400 mobile
nodes for the simulation. To vary the service-processing
overhead, a series of Fibonacci numbers was calculated in
the “DoProcess” step as shown in Sequence 9 of Figure 7. It
takes 16 ms to call the function fib (23) and 42 ms for a fib
(25). Like the previous experiment, we can observe that the
performance increases following the increase of the number
of stationary nodes, and we can clearly recognize this ten-
dency as the service overhead increases. The results indicate
that the middleware effectively deals with the distribution
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TABLE 3: Retry count in the voting service per stationary node
(average of 10 runs in the real env.).

Stationary nodes 2 3 4 5
(right)/Mobile nodes (under)

10 0.00 0.25 0.00 013 0.10
20 0.60 0.40 0.67 050 0.44
30 580 085 113 125 112
40 12,60 195 180 158 1.62
50 2140 330 290 2.68 234

of network traffic and service processing among multiple
stationary nodes.

We can indirectly observe one more result in this experi-
ment. The network architecture is the same as the traditional
centralized architecture [12] when using only one stationary
node. In other words, all graphs of one stationary node
in Figurell indicate the performance of the centralized
approach. Even though the capability of the server is better
than the stationary node, we anticipate that the performance
of the centralized approach decreases rapidly as the number
of mobile nodes increases due to traffic bottlenecks on the
paths to the server.

(B) Tracking Service. As shown in Figure 8, the performance
of the tracking service can be represented by the following
formula. The token transaction time, or simply the transac-
tion time T\, cction> Means the execution time of sequences 2
to 8. Consider

Ttra.nsaction = T2 + T3 + T4 + TS + T6 + T7 + T8' (7)
T, and Ty, are affected by increasing the number of

mobile nodes. We are taking into account the factor

E(T

wep T N Ty + Tigpr + ocNmthpr) +(T,+ T, +Ty).

(8)

Some sequences can be summarized as a constant value

C:
=(1+aN,,) (thp + thpr) +C. 9)

Following some experiments, we set Ti,,, = 0.8 (ms),
Typ =02 (ms), and C = 0 (ms). The estimated transactions
are shown in Figure 12 with “(exp.)” notations.

Due to the practical limitation of moving multiple mobile
nodes simultaneously in a real environment, we only had
to evaluate the tracking service in the simulation. Figure 12
shows the results for the evaluation of the tracking service.
The result could show collaborative performance among the
service agents with heavy context exchange. The number of
stationary nodes was fixed at five, and the mobile nodes were
uniformly distributed to all stationary nodes similarly to the
voting-service experiment. When a mobile node receives a
message to move to the next location, it moves after a 5-
to 15-second delay, randomly chosen to mimic the realistic
movement of mobile objects. Figure 12(a) shows the variation
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FIGURE 11: Test results for the voting service (average of 10 runs): (a and b) variation in response time with number of stationary and mobile
nodes; (c and d) variation in response time with processing overhead and the number of stationary nodes; (a and ¢) in the real environment;

(b and d) in the simulation.

in the token transaction time with the number of mobile
nodes.

To check the performance, transaction logs were collected
and analyzed. Figure 12(b) shows the transaction time of each
of the stationary nodes when tracking 5,000 mobile nodes.
Transactions were processed in 18.83ms to 21.98 ms. That
means that traffic and processing were well distributed over
the five stationary nodes under the DRAS.

(C) Performance Comparison. The performances of the voting
and tracking services between the centralized server archi-
tecture, as shown previously [12], as well as the DRAS were
evaluated in the simulation in order to obtain clear and
practical comparison results. Table 4 shows the environmen-
tal set-up for the performance comparison. The PC is the
same hardware that was used as a server in our previous

research. First of all, the hardware was evaluated to observe
differences in performance. The benchmark results of the
server were 8 to 15 times better than those of the stationary
node. (CryptoHash result is in MiB/second. Higher is better.
All other benchmark results are in seconds. Lower is better.)
Nine stationary nodes were used in the test-bed of both
the centralized server architecture and the DRAS. In the
centralized architecture, the installed stationary nodes just
forward the data received from mobile nodes to the server
and it will process the requested service.

The mean execution time for the voting service was eval-
uated, and the sequences are shown in Figure 7. Figure 13(a)
shows the results of the performance comparison between
the server (with CNTR notation) and the DRAS (with
DRAS notation). The results indicate that the centralized
architecture shows better performance than the DRAS when
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TABLE 4: Environmental set-up for performance comparison between the centralized server architecture and the DRAS.

Service architecture

Centralized server DRAS

Main hardware (CPU)

PC (Intel Core2Duo T8300) Stationary node (ARM A8)

Benchmark results
(benchmark program: Hardinfo v0.5.1 (http://hardinfo.berlios.de/)

Blowfish: 7.223
CryptoHash: 195.664
Fibonacci: 3.007
N-Queens: 9.338

Blowfish: 78.137
CryptoHash: 12.448
Fibonacci: 24.591
N-Queens: 72.345

The number of service agents (program) 1 9 (clustered)
The number of installed stationary nodes 9 (just data forwarding) 9
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FIGURE 12: Test results for the tracking service (average of 10 runs):
(a) variation in token transaction time with number of mobile nodes
(with five stationary nodes) and (b) transaction time for each of the
stationary nodes (with 5,000 mobile nodes).

the computation overhead is low (100~200 mobile nodes). On
the other hand, the DRAS shows better performance than the
centralized architecture when the computation overhead is
high (400~500 mobile nodes).

To compare the performance of the tracking service in
two architectures, we evaluated the mean execution time for
querying the current locations of other nodes. In addition,

400 500

The number of mobile nodes

O CNTRfib (23)
O CNTRfib (25)

@ DRAS fib (23)
® DRAS fib (25)

Thrashing

Execution time (ms)
[3S]
o
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The number of mobile nodes

—A— CNTR
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(b)

FIGURE 13: The performance comparison between the centralized
server architecture and the DRAS (average of 10 runs): (a) voting
service and (b) tracking service.

to observe performance in a heavy network environment,
the LIDx period was changed to 1sec from 5sec (simply
speaking, the traffic is increased 5-fold). A mobile node
sends a request message to the stationary node in order
to find the current location of other mobile nodes. In the
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centralized approach, the message is routed to the server and
the result will be routed to the mobile node through the
stationary node. In the DRAS, the stationary node sends a
request message to the other stationary nodes in the service
cluster and collects the result. Finally, the result is routed
to the mobile node. Figure 13(b) shows the results of the
performance comparison between the server (with “CNTR”
notation) and DRAS (with “DRAS” notation). The results
show that the centralized approach has a better execution
time than the DRAS at less than 5,400 mobile nodes due
to a difference in hardware performance and simple service
sequences, although the performance difference was small.
On the other hand, execution time increased sharply when
5,500 mobile nodes were used, and eventually the service was
stopped due to a thrashing problem when more than 5,500
mobile nodes were used. The DRAS can support up to 5,900
mobile nodes without a sharp increase in mean execution
time.

8. Conclusions

In this paper, we proposed the DRAS, a special middleware
architecture based on service agents. The agents can be
distributed in the form of Erlang processes in the stationary
nodes and can provide real-time service responses by the
distribution of network traffic and service processing. The
DRAS can expand and contract the service area dynamically
by generating and destroying service agents in the stationary
nodes near the mobile node. Erlang-based implementation
reduces the implementation complexity despite complex
coupling among agents.

To verify the DRAS and to evaluate its performance, two
collaboration services were implemented: the voting service,
which can collect and confirm the opinions of service users,
and the tracking service, which can follow the trajectories
of multiple mobile nodes in real time. The results show
that the middleware deals effectively with the distribution
of network traffic and service processing among service
agents. We confirmed that the overhead of the reconfigurable
process is considerably low, even though the number of
stationary nodes is increased. We can indirectly observe that
the DRAS is better than the traditional centralized approach
by comparing when only one stationary node was used
(centralized approach) and when multiple stationary nodes
were used (DRAS) in the voting service. To compare per-
formance between the centralized approach and the DRAS
more clearly, we evaluated the average execution times of
the voting and tracking services. Although the hardware
for the server in the centralized architecture was better
than that of the stationary node, the DRAS showed better
performance, particularly when the computation overhead
and network traffic were heavy and increasing. According
to our evaluation, we conclude that the proposed DRAS
middleware is better than the traditional centralized one,
and we can suggest the DRAS as a realistic solution for
indoor location-aware applications requiring a large number
of mobile nodes and complex collaboration.
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We intend to continue to develop the DRAS and apply
it to self-organizing applications [34-36] that need fast
response and complex collaboration among a large number of
mobile nodes. It can be expected that the characteristics of the
proposed DRAS, such as effective traffic distribution, service
processing, and dynamic service coverage reconfiguration,
can be of great assistance in that service domain.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work was supported by the IT R&D program of
MSIP/KEIT (10041145, Self-Organized Software Platform
(SoSp) for Welfare Devices).

References

[1] W.Zheng, X. Li, Z. Yin, and L. He, “LBS-services of information
integrated and decision supported in logistics industry; in
Proceedings of the 5th International Conference on Wireless
Communications, Networking and Mobile Computing (WiCOM
'09), pp. 1-4, September 2009.

[2] M. C. Rodriguez-Sanchez, S. Borromeo, and J. A. Hernandez-
Tamames, “Wireless sensor networks for conservation and
monitoring cultural assets,” IEEE Sensors Journal, vol. 11, no. 6,
pp. 1382-1389, 2011.

[3] E. Bruns, B. Brombach, T. Zeidler, and O. Bimber, “Enabling
mobile phones to support large-scale museum guidance,” IEEE
Multimedia, vol. 14, no. 2, pp. 16-25, 2007.

[4] C. Urdiales, M. Fernandez-Carmona, J. M. Peula et al,
“Wheelchair collaborative control for disabled users navigating
indoors,” Artificial Intelligence in Medicine, vol. 52, no. 3, pp. 177-
191, 2011.

[5] Z. Sun, R. Farley, T. Kaleas, J. Ellis, and K. Chikkappa, “Cortina:
collaborative context-aware indoor positioning employing RSS
and RToF techniques,” in Proceedings of the 9th IEEE Interna-
tional Conference on Pervasive Computing and Communications
Workshops (PERCOM 11), pp. 340-343, March 2011.

[6] S. Biswas, S. Gupta, E Yu, and T. Wu, “A networked mobile
sensor test-bed for collaborative multi-target tracking applica-
tions,” Wireless Networks, vol. 16, no. 5, pp. 1329-1344, 2010.

[7] H. Huang, G. Gartner, M. Schmidt, and Y. Li, “Smart envi-
ronment for ubiquitous indoor navigation,” in Proceedings of
the International Conference on New Trends in Information and
Service Science (NISS '09), pp. 176-180, July 2009.

[8] H.Wang, L. Zhu, and A. Chin, “An indoor location-based social
network for managing office resource and connecting people;”
in Proceedings of the 7th International Conference on Ubiquitous
Intelligence and Computing and the 7th International Conference
on Autonomic and Trusted Computing (UIC/ATC ’10), pp. 481-
483, October 2010.

[9] J. Armstrong, Making Reliable Distributed Systems in the Pres-
ence of Software Errors, The Royal Institute of Technology, 2003.

[10] A. D. Wood, J. A. Stankovic, G. Virone et al., “Context-aware
wireless sensor networks for assisted living and residential
monitoring,” IEEE Network, vol. 22, no. 4, pp. 26-33, 2008.



18

(11]

(12]

(14]

(16]

(17]

(18]

[20]

(21]

(22]

[25]

(26]

G. Cabri, L. Leonardi, M. Mamei, and E Zambonelli, “Location-
dependent services for mobile users,” IEEE Transactions on
Systems, Man, and Cybernetics Part A, vol. 33, no. 6, pp. 667-
681, 2003.

D.-K. Lee, T.-H. Kim, S.-Y. Jeong, and S.-J. Kang, “A three-
tier middleware architecture supporting bidirectional location
tracking of numerous mobile nodes under legacy WSN environ-
ment,” Journal of Systems Architecture, vol. 57, no. 8, pp. 735-748,
2011.

P. Costa, L. Mottola, A. L. Murphy, and G. P. Picco, “TeenyLIME:
transiently shared tuple space middleware for wireless sensor
networks,” in Proceedings of the International Workshop on
Middleware for Sensor Networks (MidSens *06), pp. 43-48,
November 2006.

A. L. Murphy, G. P. Picco, and G.-C. Roman, “Lime: a mid-
dleware for physical and logical mobility,” in Proceedings of the
2Ist IEEE International Conference on Distributed Computing
Systems, pp. 524-533, April 2001.

C.-L. Fok, G.-C. Roman, and C. Lu, “Agilla: a mobile agent
middleware for self-adaptive wireless sensor networks,” ACM
Transactions on Autonomous and Adaptive Systems, vol. 4, no.
3, article 16, 2009.

A. Heinemann, Collaboration in Opportunistic Networks, VDM
Verlag, 2007.

J. Pitt, L. Kamara, M. Sergot, and A. Artikis, “Voting in multi-
agent systems,” Computer Journal, vol. 49, no. 2, pp. 156-170,
2006.

V. Conitzer, “Comparing multiagent systems research in com-
binatorial auctions and voting,” Annals of Mathematics and
Artificial Intelligence, vol. 58, no. 3, pp. 239-259, 2010.

S. Oh, L. Schenato, P. Chen, and S. Sastry, “Tracking and
coordination of multiple agents using sensor networks: system
design, algorithms and experiments,” Proceedings of the IEEE,
vol. 95, no. 1, pp. 234-254, 2007.

T. Lochmatter, P. Roduit, C. Cianci, N. Correll, J. Jacot, and A.
Martinoli, “SwisTrack—a flexible open source tracking software
for multi-agent systems,” in Proceedings of the IEEE/RS] Interna-
tional Conference on Intelligent Robots and Systems (IROS "08),
pp- 4004-4010, September 2008.

M. Conti and M. Kumar, “Opportunities in opportunistic
computing,” Computer, vol. 43, no. 1, pp. 42-50, 2010.

L. Pelusi, A. Passarella, and M. Conti, “Opportunistic network-
ing: data forwarding in disconnected mobile ad hoc networks,”
IEEE Communications Magazine, vol. 44, no. 11, pp. 134-141,
2006.

M. Conti, S. Giordano, M. May, and A. Passarella, “From
opportunistic networks to opportunistic computing,” IEEE
Communications Magazine, vol. 48, no. 9, pp. 126-139, 2010.

X. Wang, S. Wang, D.-W. Bi, and J.-]. Ma, “Distributed peer-to-
peer target tracking in wireless sensor networks,” Sensors, vol. 7,
no. 6, pp. 1001-1027, 2007.

S.-P. Kuo, S.-C. Lin, B.-J. Wu, Y.-C. Tseng, and C.-C. Shen,
“GeoAds: a middleware architecture for music service with
location-aware advertisement,” in Proceedings of the IEEE Inter-
natonal Conference on Mobile Adhoc and Sensor Systems (MASS
’07), pp. 1-3, October 2007.

P. R. Pietzuch and J. M. Bacon, “Hermes: a distributed event-
based middleware architecture, in:,” in Proceedings of the 22nd
International Conference on Distributed Computing Systems
Workshops, pp. 611-618, 2002.

(27]

(28]

(33]

[34]

International Journal of Distributed Sensor Networks

T. Gu, H. K. Pung, and D. Q. Zhang, “A service-oriented
middleware for building context-aware services,” Journal of
Network and Computer Applications, vol. 28, no. 1, pp. 1-18, 2005.

P. Costa, C. Mascolo, M. Musolesi, and G. P. Picco, “Socially-
aware routing for publish-subscribe in delay-tolerant mobile ad
hoc networks,” IEEE Journal on Selected Areas in Communica-
tions, vol. 26, no. 5, pp. 748-760, 2008.

P. Hui, J. Crowcroft, and E. Yoneki, “BUBBLE Rap: social-based

forwarding in delay-tolerant networks,” IEEE Transactions on
Mobile Computing, vol. 10, no. 11, pp. 1576-1589, 2011.

S. Biswas and R. Morris, “ExOR: opportunistic multi-hop
routing for wireless networks” ACM SIGCOMM Computer
Communication Review, vol. 35, pp. 133-144, 2005.

A. Omicini, “Towards a notion of agent coordination context,”
in Process Coordination and Ubiquitous Computing, C. L. D.
Marinescu, Ed., pp. 187-200, CRC Press, 2002.

T.-H. Kim, H.-G. Cho, S.-Y. Jeong, S.-J. Kang, and J.-B. Lee,
“A location-aware asynchronous message delivery for indoor
wireless sensor network applications,” in Proceedings of the Ist
ACIS/INU International Conference on Computers, Networks,
Systems, and Industrial Engineering (CNSI ’11), pp. 290-295, May
2011.

T. H. Kim, H. G. Jo, J. S. Lee, and S. J. Kang, “A mobile
asset tracking system architecture under mobile-stationary co-
existing WSNs,” Sensors, vol. 12, pp. 17446-17462, 2012.

E Dressler, I. Dietrich, R. German, and B. Kriiger, “A rule-
based system for programming self-organized sensor and actor
networks,” Computer Networks, vol. 53, no. 10, pp. 1737-1750,
2009.

A. E. Turgut, H. Celikkanat, F. Gokc, and E. Sahin, “Self-
organized flocking with a mobile robot swarm,” in Proceedings
of the 7th International Joint Conference on Autonomous Agents
and Multiagent Systems, vol. 1, pp. 39-46, 2008.

A. M. Naghsh, J. Gancet, A. Tanoto, and C. Roast, “Analysis
and design of human-robot swarm interaction in firefighting,”
in Proceedings of the 17th IEEE International Symposium on
Robot and Human Interactive Communication (RO-MAN °08),
pp- 255-260, August 2008.



International Journal of

Rotating
Machinery

International Journal of

The Scientific oA Distributed
World Journal Sensors Sensor Networks

Journal of
Control Science
and Engineering

Advances in

Civil Engineering

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Journal of
Electrical and Computer
Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Modelling &
oot (il St perospags
Observation in Engineering

e

Aoes

5//{/?

International Journal of nas and Active and Passive
Chemical Engineering Propagation Electronic Components




