
Research Article
Application of Fault-Tolerant Mechanism to Reduce Pollution
Attacks in Peer-to-Peer Networks

Chien-Sheng Chen,1 Ting-Yuan Yeh,2 Chin-Tan Lee,3 and Chyuan-Der Lu4

1 Department of Information Management, Tainan University of Technology, Tainan 71002, Taiwan
2Department of Engineering Science, National Cheng Kung University, Tainan 70000, Taiwan
3Department of Electronic Engineering, National Quemoy University, Quemoy 89250, Taiwan
4Department of Finance, Tainan University of Technology, Tainan 71002, Taiwan

Correspondence should be addressed to Chien-Sheng Chen; t00243@mail.tut.edu.tw

Received 17 October 2013; Revised 3 April 2014; Accepted 7 April 2014; Published 7 July 2014

Academic Editor: Yang Xiao

Copyright © 2014 Chien-Sheng Chen et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

File pollution is a recent security threat to peer-to-peer (P2P) file sharing systems. By disseminating numerous polluted files with
mismatched or partially tampered contents in the P2P system, the attacker causes users to download unexpected files.This attack is
aimed at frustrating users andmaking themabandon the system. Present researches on combating file pollution havemostly focused
on pollution modeling or evaluating the extent of pollution. Only a few researches have proposed effective methods to eliminate
pollution attacks, and they are primarily based on reputation systems and blacklistingmechanisms.However, thesemethods require
exchange of significant feedback among the peers in order to identify the malicious peers or polluted files in the system. In this
paper, we describe the application of fault-tolerantmechanismused in the redundant arrays of independent disks system to suppress
file pollution attacks based on the concept that P2P file sharing systems currently have global file storage systems.We have extended
the previously developed FluidModel to analyze and evaluate the proposed antipollutionmechanism.Themodel accuracy has been
demonstrated by performing several simulation experiments; the proposedmechanism could effectively suppress the pollution and
successfully decrease the polluted-time exposure of a P2P file sharing system by approximately 40∼60%.

1. Introduction

A file sharing system is an important application in peer-to-
peer (P2P) networks; it enables files to be shared with high
efficiency by allowing parallel downloads of the duplicated
file pieces that are distributed across several peers. The
robustness of P2P networks is dependent on the total system
capacity; as the total system capacity increases, the number of
duplication times of resources in more peers also increases,
thereby leading to more fault-tolerant systems. Since the
release of the Napster system in 1999, P2P file sharing systems
such as Kazaa and BitTorrent have become some of the
most popular systems on the Internet. The shared contents
encompass awide variety ofMP3 songs,movie films, software
packages, and games, and they have motivated numerous
network citizens (Netizens) to install P2P file sharing pack-
ages because of the speed of their sharing and diversity. For

example, in the case of Kazaa, which is one of the most
popular P2P sharing software packages,Good andKrekelberg
[1] pointed out that there were more than 3 million users in
2003 with the shared file size amounting to almost 5000 TB.
Today, P2P file sharing flow has become the most important
source of network traffic on the Internet [2].

However, among the many people who join the P2P file
sharing system, not all of them have an understanding or
appreciation of the associated security risks. This makes the
P2P file sharing systems easy targets for malicious attackers.
Many types of security attacks have already been identified;
these include churn attacks, poisoning and pollution, Sybil
attacks, worms, malware, and cheating in P2P massively
multiplayer online games (MMOGs) [3]. Pollution attack
is a major recent security threat that was first proposed
by Liang et al. [4] at the INFOCOM in 2005. Pollution
attacks occur primarily due to counterattacks against the

Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2014, Article ID 792407, 18 pages
http://dx.doi.org/10.1155/2014/792407

2 International Journal of Distributed Sensor Networks

illegality of fast and quantitative sharing and dissemination
of copyrighted materials [5]. Many musical, movie, software,
and publishing industries have suffered significant revenue
impacts due to the popularity of P2P file sharing software.
Hence, the impacted companies have taken a series of coun-
termeasures [4] including prosecuting instances of copyright
infringements by companies and individuals and performing
file pollution attacks that significantly reduce the file usability
by destroying or tampering file titles, metadata, or contents,
thereby making users frequently download unexpected files
and, hence, be frustrated and quit the system.

The decentralized management architecture adopted for
the sake of scalability and autonomy has made the P2P file
sharing system vulnerable to security threats. Moreover, the
high efficiency of the file sharing feature leads to pollution
attacks [6, 7] and the fast disseminating of other malware
and viruses [8] across the networks. In 2005, [4] showed
that 50%∼80% of the shared files in Kazaa had already
been polluted; in 2006, other research [9] demonstrated that
roughly 50% of the popular files of other well-known file
sharing software, eDonkey, had been polluted.

It is anticipated that the researches and developments
of legal downloading mechanisms [10] may finally cause
copyright owners to stop the file pollution attack measures
taken against the P2P file sharing systems in the name of
copyright protection. However, file pollution may continue
to be a popular method taken by other malicious attackers
to threaten the security of P2P file sharing systems. Hence,
in this paper, we focus on the suppression and avoidance of
the dissemination of polluted files in P2P file sharing systems.
Most current methods have adopted the reputation system
[6, 11, 12] or blacklistingmechanism [13] to achieve such goals,
but they usually require user feedback information to identify
the malicious peers in a system or polluted files. Hence, they
have the following issues.

(1) A user has to first occupy the network resource and
download the files totally or partially before knowing
the contents that have been polluted.

(2) A user, after having downloaded some files, will not
typically check immediately whether the files are
polluted or not; this allows the polluted files in the
sharing folders to be shared and disseminated further.

(3) Feedback information may easily suffer from tam-
pering or forging and thereby cause many additional
security issues.

Therefore, in this paper, we have attempted to develop
an effective antipollution mechanism without using user
feedback. Our method has been developed on the basis of
the idea that a file in a P2P sharing system can be transferred
after dividing it into segments and then reassembling into a
complete file when all the segments are available. We have
used a fault-tolerant mechanism adapted from the EVEN-
ODD coding scheme [14] that is used in the disk storage
technology. This mechanism tolerates disk failures in the
redundant array of independent disks (RAID) system effec-
tively and efficiently—each polluted segment is considered
to be a failed disk, and with proper rebuilding, a tampered file

can be recovered correctly. The degree of tolerance depends
on the number of segments into which a file is broken,
and a balance between the number of segments and file
reconstruction efficiency can be reached after some exper-
iments. Hereafter, the EVENODD coding scheme will be
abbreviated as EVENODD, and its operating principle and
the reasons for using it will be described in the following
sections. This proposed mechanism is capable of avoiding
and eliminating the polluted file segments without using user
feedback information or changing the P2P network structure.
The Fluid Model (FM) [15] has been extended in this paper
to construct a model that is able to analyze and evaluate
the proposed antipollution mechanism. Moreover, by using
simulation experiments, we have demonstrated the accuracy
of the proposed model. We have shown that the proposed
mechanism can effectively avoid pollution and decrease
the polluted-time exposures of P2P file sharing systems by
40∼60%.

The rest of this paper is organized as follows. Section 2
discusses the background and related researches that have
already been conducted to counter the P2P file pollution.
EVENODD is introduced in Section 3. Section 4 describes
the system architecture and operations of the proposed
antipollutionmechanism.Thededuction of themathematical
system model is presented in Section 5. Section 6 describes
the evaluation results. Section 7 presents equations to amend
the system model. Finally, Section 8 summarizes this study.

2. Background and Related Work

The contents that are shared, legally or illegally, on a P2P
network are mostly music, movies, documents, and software
packages; each of such contents has a ⟨Title⟩, and further,
because of the different content attributes, a title hasmanydif-
ferent ⟨Versions⟩. For instance, for a piano etude, there may
be several versions corresponding to different performers,
while for an MP3 song, there may be different versions com-
prising different encoding rates. When these versions are dis-
seminated on a P2P network, the file owned by the peers that
acquire that particular version is called the “Copy of this
Version.”

A user who wishes to download the Copy of a Title from
the P2P file sharing system first issues an enquiry to the
system. For example, a user who is interested in a song with
the ⟨Title⟩ “Hey Ya”makes an enquiry to the system using the
string “Hey Ya.”The system then responds to the user with all
the versions available in the P2P file sharing system and the
number of quantities and locations of the copies of each ver-
sion.The user chooses to download a suitable version accord-
ing to his preference. The file is downloaded and saved in
the user’s sharing file folder to be downloaded by other peers
in the system. In this manner, the file is disseminated very
quickly in the network.

2.1. File Pollution Categories. To initiate a pollution attack,
a pollution attacker first produces a polluted version by
adopting polluting techniques such as quality reductions or
content alterations of the target file.Thepolluter subsequently

International Journal of Distributed Sensor Networks 3

injects this modified content into the system on his peer or
on several peers under his control and, by using the title of
this polluted version, makes an announcement to the system
that is visible to other peers and downloaded as per the
requirement. As a result, while searching for a certain title, a
user may be confronted with a polluted file and an authentic
file. Since it is not possible to verify in advance whether
the content has been polluted or not, an unaware user may
choose to download the polluted version. Moreover, the user
usually may not check the downloaded file that is saved in
the sharing folder immediately, which causes the polluted file
to be disseminated faster and further in the P2P file sharing
system.

In the strategy adopted by malicious attackers, the pollu-
tion on a file can be categorized into three types [4, 9].

(1) Content Pollution. Content-modified decoys are created
for users to download, which then disseminate in the system.
A decoy is created by adding certain noises that cannot
be decoded into meaningful content in a target file or
by changing the content into that of a different file but
retaining the metadata of the original. Since it is difficult to
determine whether the file content has been polluted before
downloading, thismethod represents a very simple and effec-
tive polluting approach. The suppression and elimination
(removal) of these types of pollution are the primary goal of
this paper.

(2) Metadata Pollution. In this type of pollution attack,
metadata such as the file name and type of a targeted file are
replaced with those of a different unrelated file. This causes
a user to choose and download a file containing content that
does not totally conform to expectations.

(3) Index Poisoning. In a P2P network framework that
possesses the capabilities of file searching, for example, a
P2P file sharing network based on distributed hash tables, a
pollution attacker causes a nonexistent file to be shared on
the network by uploading bogus file records such as the IP
address of the file sharing person, port number, and file hash
value to the supernodes that are responsible for maintaining
these records in the network or by modifying the file records.

2.2. File Pollution Studies and Counteractions. The measure-
ment study conducted by [4] focused specifically on Kazaa,
themost popular file sharing system, and developed a crawler
that could quickly retrieve the supernodes in the Kazaa net-
work; subsequently, from the raw data on popular music col-
lected by the crawler, statistics and observation studies were
conducted on the file pollution status. Their results showed
that the pollution was very serious; in the Kazaa file sharing
system,more than 50%of the popular copies ofmusical songs
were polluted. Subsequently, many researchers have dedi-
cated themselves to conductmeasurement studies to examine
the extent of the impact of pollution attacks on the P2P net-
work. For example, Liang et al. [9] also developed an effective
methodology to estimate the amounts of index poisoning
and pollution in the file sharing system; they used data-
harvesting platforms on FastTrack and Overnet to collect the

required data. Christin et al. [5] provided a measurement-
based analysis to inspect the impacts on content availability
due to pollution and poisoning in the P2P network. Dhungel
et al. [16] conducted experimental measurements to analyze
and study the pollution in P2P live video streaming systems.

Other researchers have constructed analysis models to
facilitate the analysis and evaluation of the impacts of
pollution on P2P networks. Dumitriu et al. [17] performed
analyticalmodeling against file-targeted attacks andnetwork-
targeted attacks in order to investigate the resilience demon-
strated by a P2P file sharing system when fighting against
denial-of-service (DoS) attacks. The study of Shi et al. [18]
presumed that the file-targeted attacks and network-targeted
attacks have close and inseparable relationships and, in this
manner, proposed a unified model for these two attacks.
Thommes and Coates [19] inspected the viruses in P2P
networks in addition to the polluting behavior and adopted
an epidemiological approach to explore a dynamic model
capable of describing viruses and pollution. Similarly, from
the concept of an epidemic model, Gu et al. [20] proposed a
model of reputation-based approaches, which could simulate
and evaluate pollution, in order to study the dissemination
of a shared file in P2P networks. Lee et al. [21] investigated
user behaviors by using questionnaires and then employed
the results as a basis to explore an analytical model in order
to study the dynamic properties of pollution in P2P networks.
In the study of Yang et al. [22], a modeling framework was
constructed to analyze and study the pollution in P2P live
video streaming systems. Kumar et al. [15] developed the FM
for pollution proliferation in a P2P file sharing system; in this
paper, we have extended a small part of the FM to construct
a model that is able to analyze and evaluate the proposed
antipollution mechanism.

Thus far, few researchers have focused on developing pol-
lution countering (measures), andmost of themhave adopted
a reputation system or a blacklisting mechanism. Credence
[12] is a well-known reputation system for fighting viruses
in P2P file sharing systems. By employing a simple network-
wide voting scheme, Credence enables a user to conduct
positive and negative appraisals on object contributions in
P2P file sharing systems; moreover, it also allows a client
to perform weighting on his vote based on the statistical
correlations between himself and his peers. In Dong et al.
[23] and Dong et al. [11], a P2P antipollution file sharing
system was constructed based on object reputations, but
employing different building processes. They proposed a
pollution propagationmodel that first considered file objects,
then weighted votes by calculating the vector space similarity,
processed the data sparsity problem by using the Horting
graph-theoretic approach, and finally adopted a self-adaptive
reputation threshold to judge the file authenticity. On the
other hand, Costa et al. [6] proposed a P2P antipollution file
sharing system, named Scrubber, that was based on peer
reputations. In comparison to Credence, Scrubber is a dis-
tributed and decentralized reputation system inside which
peers mutually designate the reputations to verify and dif-
ferentiate malicious users who disseminate polluted contents
on the network. In addition to the imposition of severe and
speedy punishments on the content polluters, Scrubber

4 International Journal of Distributed Sensor Networks

also includes a rewarding mechanism to recover a peer’s
reputation. However, the above-mentioned proposals cannot
rapidly react to the dissemination of polluted contents. Cai
et al. [24] proposed a holistic mechanism to defend against
pollution attack. Besides using a general reputation model,
the mechanism gathers extra inherent file-related informa-
tion for peers to identify the potential pollution without
completely downloading the requested content. Barcellos
et al. [25] developed a reputation-based pollution control
strategy inwhich the dissemination rate of a content is limited
according to the reputation of the version. In this way, the
polluted content is eliminated before a peer vote on the
version negatively. Shin andReeves [26] presented an antipol-
lution scheme called winnowing. It reduces index pollution
by publish message verification and user feedback mediation
in DHT-based P2P system.

Liang et al. have proposed certain countermeasures based
on a blacklistingmechanism after conductingmanymeasure-
ment studies on P2P network pollution [13]. They had devel-
oped the abovementioned crawler that crawls an entire P2P
network and collects the metadata of all the shared files for
offline analysis. In their automated version-checking proce-
dure, a set of nodes of very probable polluters are verified and
added to a blacklist. Further, another study had focused on
countering index poisoning attacks in P2P systems; a similar
method was followed in [13] via a step named harvesting. In
harvesting, massive information relevant to the versions in
a P2P system is collected, and the poisoned, polluted, and
clean versions are verified; bad sources are then recognized
and added to a blacklist. It is possible to suppress the pollution
spreading in P2P file sharing systems without downloading
the data shared from the blacklisted nodes. However, in
blacklisting mechanisms, massive amounts of data have to
be collected on a P2P network, and it is not affordable to
normal individual users. Moreover, since the peers in a P2P
network join and leave the system frequently and unex-
pectedly, the data search procedures have to be conducted
often to prevent the collected data from becoming out of date,
and this significantly increases the network overheads.

3. EVENODD Coding Scheme

Reed-Solomon (RS) codes [27] and EVENODD are two
representative forward error correction (FEC) codes widely
used in telecommunication and information theory, such as
data transmission and storage systems. In the RS codes, an
update to a single information bit requires an update in all the
parity symbols and affects numerous bits in each symbol. As
a result, the RS code update operations incur large computa-
tion overheads. Unlike RS codes, EVENODD requires only
cyclic shifts and XOR operations, which therefore achieves
optimal redundancy with considerably lower computational
complexity. Furthermore, EVENODD can tolerate up to two
errors or erasures of bits (disks) and is more practical than RS
codes.

The development of coding schemes remains an active
research area. Since the EVENODD was proposed, several
schemes have been proposed, such as the remote desktop

protocol (RDP) scheme [28], X-code [29], B-code [30],
and generalized EVENODD code [31]. These schemes are
more efficient than EVENODD, and some of them can
tolerate more than even two erasures. However, most of these
schemes are variations or extensions of EVENODD, and
hence, they are more difficult to implement due to the high
complexity for achieving high performances. In this study, we
aim to find a fault-tolerantmechanism to reduce the pollution
attacks in P2P networks; developing or looking for high-
performance coding schemes is beyond the scope of this
study. EVENODD is both efficient and simple and hence is
suitable for the purpose of this study. In this section, we will
briefly introduce the EVENODD encoding scheme. Formore
details, please refer to [14, 32, 33].

3.1. Encoding Procedure. In a RAID, in order to tolerate the
simultaneous damages to two disks, EVENODD requires
(𝑚 + 2) disks to spread its encoding of stored data; here 𝑚
must be a prime number.The original data is split into blocks
and, after proper encoding, distributed as uniformly as possi-
ble into𝑚 disks. Each disk is split into𝑚−1 blocks, and hence,
the RAID system logically forms a (𝑚 − 1) × (𝑚 + 2) matrix
A. The redundant data generated from the original data for
crash recovery are saved in the two extra disks 𝑚 and 𝑚 + 1.
The parity data calculated from the horizontal blocks of disk
0-disk𝑚−1 is saved ondisk𝑚, while the parity data calculated
from the diagonal blocks disk 0-disk 𝑚 − 1 is saved on disk
𝑚 + 1. In array 𝐴, 𝐴[𝑖, 𝑗] represents the block of the 𝑖th row
and 𝑗th column (i.e., the 𝑖th block of the 𝑗th disk), where
0 ≤ 𝑖 ≤ (𝑚 − 2) and 0 ≤ 𝑗 ≤ (𝑚 + 1). Equations (1)–(3) are
the formulae for calculating the parity data. For each 𝑖, 0 ≤
𝑖 ≤ (𝑚 − 2), the parity data saved in disk𝑚 can be calculated
from

𝐴 [𝑖, 𝑚] =

𝑚−1

⨁

𝑗=0

𝐴 [𝑖, 𝑗] . (1)

Here ⨁ represents an XOR operation. Equation (1)
performs an XOR operation on the horizontal block of the
original data disk array. The calculation of the parity data
saved in disk𝑚 + 1 uses (2) and (3) as follows:

𝑆 =

𝑚−1

⨁

𝑗=1

𝐴 [𝑚 − 1 − 𝑗, 𝑗] , (2)

𝐴 [𝑖, 𝑚 + 1] = 𝑆 ⊕ (

𝑚−1

⨁

𝑗=0

𝐴 [⟨𝑖 − 𝑗⟩

𝑚
, 𝑗]) . (3)

Before calculating the 𝑆 value, the 0th column of the
original data array is removed to make it a square array.
XOR operations are then performed on the data from the
lower-left to upper-right diagonal blocks in the square array
to obtain the 𝑆 values; subsequently, all the blocks of the
original data array are shifted one grid to the left in order
to obtain another diagonal line. An XOR operation is then
performed on the blocks of this diagonal line to obtain a
value, and a single XOR operation is again performed on the
just calculated value and 𝑆 values. The results are saved on

International Journal of Distributed Sensor Networks 5

1 1

1

1 1 1 1

1 1 1 1

1 1 1 1 1 11

11

1

1 1 1 1 1

1 1 1 1

1 1 11 1 11 1 1

1 1 1

1 1 1 1

1 11

1 1 1 1

1111

1 1 1 1

1 1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1

0 0 00 0

0

0

0

0

0 0

0 0

0 0

0 0

00

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0

00

0

0 0

(e) Original data (d) Eq. (1) applied

(c) 0th column is
removed to get
S = 0 by (2)

(b) Rotate original
array in (b) once
and apply (3)

for i = 1

(a) After the column
is rotated 4 times, we

get the final result

Figure 1: An EVENODD encoding example.

the 0th block of the 𝑚 + 1 disk. Figure 1 shows an example
of obtaining the parity data based on the abovementioned
calculation process wherein the rotation is shown for easy
explanations. For detailed calculation processes, please refer
to the example in [14].

3.2. Decoding Procedure. If we consider the situation inwhich
only one disk crashes, the lost data can be easily recovered by
using (1), (2), and (3) for reversal computations. When two
disks crash simultaneously, 4 situations must be considered.
Let us assume that both disks 𝑖 and 𝑗 crash, where 0 ≤ 𝑖 < 𝑗 ≤
(𝑚 + 1); consider the following situations.

3.2.1. 𝑖 = 𝑚, 𝑗 = (𝑚+1). The damaged ones are the two disks
with parity data saved on them.The damaged parity data can
obviously be recalculated by using (1), (2), and (3) after the
new disks are installed.

3.2.2. 𝑖 < 𝑚, 𝑗 = 𝑚. One of the two damaged disks retains
the original data while the other disk𝑚 retains the horizontal
parity data. The parity data of disk 𝑚 + 1 and the unaffected
diagonal block data in the array are substituted into the
following formula to obtain the value of 𝑆:

𝑆 = 𝐴 [⟨𝑖 − 1⟩

𝑚
, 𝑚 + 1] ⊕ (

𝑚−1

⨁

𝑙=0

𝐴 [⟨𝑖 − 𝑙 − 1⟩

𝑚
, 𝑙]) . (4)

Substitute the calculated value of 𝑆 into the following formula:

𝐴 [𝑘, 𝑖] = 𝑆 ⊕ 𝐴 [⟨𝑖 + 𝑘⟩

𝑚
, 𝑚 + 1]

⊕ (

𝑚−1

⨁

𝑙=0

𝑙 ̸= 𝑖

𝐴 [⟨𝑘 + 𝑖 − 𝑙⟩

𝑚
, 𝑙]) .

(5)

Here, 𝑘 is every single damaged disk block. These two
equations are related to the recovery of the damaged original
disk, while the lost horizontal parity data in disk 𝑚 can be
regained by (1).

3.2.3. 𝑖 < 𝑚, 𝑗 = (𝑚 + 1). One of the two damaged disks
retains the encoded original data while the other disk 𝑚 + 1
retains the diagonal parity. To recover the original data, first,
substitute the horizontal parity data of disk 𝑚 into (1) for
reversal operations to recover the damaged original disk data;
subsequently, employ (2) and (3) to regain the diagonal parity
data of disk𝑚 + 1.

3.2.4. 𝑖<𝑚, 𝑗<𝑚. Both the damaged disks retain the encoded
original data. To recover, first use the following formula to
obtain the 𝑆 value:

𝑆 = (

𝑚−2

⨁

𝑙=0

𝐴 [𝑙, 𝑚]) ⊕ (

𝑚−2

⨁

𝑙=0

𝐴 [𝑙, 𝑚 + 1]) . (6)

Subsequently, use the following formulae to obtain 𝑆s as the
horizontal blocks 𝑆(0) = 𝑆(0)

0
, 𝑆

(0)

1
, . . . , 𝑆

(0)

𝑚−1
and the diagonal

blocks 𝑆(1) = 𝑆(1)
0
, 𝑆

(1)

1
, . . . , 𝑆

(1)

𝑚−1
:

𝑆

(0)

𝑢
=

𝑚

⨁

𝑙=0

𝑙 ̸= 𝑖,𝑗

𝐴 [𝑢, 𝑙] ,

𝑆

(1)

𝑢
= 𝑆 ⊕ 𝐴 [𝑢,𝑚 + 1] ⊕(

𝑚−1

⨁

𝑙=0

𝑙 ̸= 𝑖,𝑗

𝐴 [⟨𝑢 − 𝑙⟩

𝑚
, 𝑙]) .

(7)

Here, 𝑆(0)
𝑢

is the value obtained after an XOR operation on the
horizontal blocks of the 𝑢th row without the damaged data,
while 𝑆(1)

𝑢
is the value obtained by an XOR operation on the

diagonal blocks without the damaged data, 0 ≤ 𝑢 ≤ (𝑚 − 1).
Subsequently, by following the steps below, the lost data in the
two damaged disks 𝑖 and 𝑗 can be recovered.

(1) Designate the first recovered block and set 𝑠 to
⟨− (𝑗 − 𝑖) − 1⟩

𝑚
; subsequently, initialize all the blocks

on the (𝑚 − 1)th row and set 𝐴[𝑚 − 1, 𝑙] to 0, where
0 ≤ 𝑙 ≤ (𝑚 − 1).

(2) Let𝐴[𝑠, 𝑗] = 𝑆(1)
(𝑗+𝑠)
𝑚

⊕𝐴[⟨𝑠 + (𝑗 − 𝑖)⟩

𝑚
, 𝑖] and𝐴[𝑠, 𝑖] =

𝑆

(0)

𝑠
⊕ 𝐴[𝑠, 𝑗].

(3) Let 𝑠 = ⟨𝑠 − (𝑗 − 𝑖)⟩
𝑚
; if 𝑠 = (𝑚 − 1), then stop;

otherwise, return to Step (2).

For simplicity, the exact meaning of the application of each
formula is not explained in this paper; for more details on
the recovery processes, please also refer to the examples in
[14, 29, 30].

4. System Architecture and Operation

This section describes methods to employ the fault-tolerant
capabilities of EVENODD to avoid file pollution in P2P
systems; further, the overheads imposed by the scheme for
producing redundant data with respect to the network and
storage space are briefly analyzed.

6 International Journal of Distributed Sensor Networks

D
1

D
2

D
3

D
4

D
5 R V R D

D
1

D
2

D
3

D
4

D
5 R V R D

D
1

D
2

D
3

D
4

D
5 R V R D

D
1

D
2

D
3

D
4

D
5 R V R D

D
1

D
2

D
3

D
4

D
5 R V R D

Peer A
Peer B

Peer C

Peer D Peer E

Internet

(a)

D
1

D
2

D
3

D
4

D
5 R V R D

D
1

D
2

D
3

D
4

D
5 R V R D

D
1

D
2

D
3

D
4

D
5 R V R D

D
1

D
2

D
3

D
4

D
5 R V R D

D
1

D
2

D
3

D
4

D
5 R V R D

Peer A
Peer B

Peer C

New peer

Peer D Peer E

Internet

(b)

Figure 2: An example of the operational details of the proposed mechanism.

4.1. EVENODD for Antipollution P2P File Sharing. In P2P file
sharing systems, in order to efficiently share files, a file will
usually be split into several pieces by the P2P file shareware
before being placed for sharing [34–36]. Such practices have
motivated the adoption of EVENODD to solve pollution
problems in P2P file sharing systems. In order to conform
with the EVENODD data slicing criteria, a shared data file
must be split into 𝑚 uniformly sized pieces, where 𝑚 is a
prime number.

Figure 2 illustrates an example of the operational details
of the proposed mechanism in which five peers—A, B, C, D,
and E—network over a P2P file sharing system. As shown
in Figure 2(a), A, B, and C have copies of file 𝑓, which they
all provide to the other peers for downloading. A and C
provide good copies, while B provides a polluted copy. Prior
to sharing, all of these copies were split into the same number
of pieces; in this example, all were split into 5 pieces (𝑚 =
5), which, following encoding by EVENODD, resulted in 7
pieces per copy. D and E each place requests to download a
copy of 𝑓 through enquiries to the P2P file sharing system,
to which the system responds with the number and locations
of the available copies. Owing to the inherent properties of
P2P file sharing system, each piece of 𝑓 downloaded by D
and E will generally be from different sources. As can be
seen in Figure 2(a), five of the pieces that D and E download
separately from A, B, and C are polluted (two by D and three
by E). The two polluted pieces downloaded by D are data
piece D4 and redundant piece 𝑅v. As this corresponds to
situation 2 in Section 3.2, the correct downloaded copy can be
recovered by the EVENODD decoding procedure; therefore,
peer D has obtained a good copy even though it has down-
loaded polluted pieces. On the other hand, because E has
downloaded more than two polluted pieces, the copy will not
be recovered by EVENODD, and therefore E will delete the

copy and resend a request to the P2P file system to download
a new copy of 𝑓. In Figure 2(b), E has obtained a new copy
of 𝑓 after initiating the duplicate download. At this stage,
E will download pieces from D as well as from A, B, and
C, and since D has become a peer that provides only good
copies of 𝑓 as a result of the previous stage, the probability
that Ewill download good pieces will increase.Thus, only one
piece (D4) downloaded by E is polluted in this stage and, as
described in Section 3.2, a single polluted data piece can easily
be recovered by using (1), (2), and (3) for reversal computa-
tion. As a result, E becomes a provider of good copies of 𝑓
in successive downloads. In accordance with this paradigm,
any pollution will be eliminated in a short time.

4.2. Networks and Storage Overhead. After the original data
file is successfully split, the previously introduced encoding
procedure is employed to produce both the horizontal parity
and diagonal parity pieces. As a result of these extra slices,
this file has a certain degree of fault-tolerant capabilities. For
example, Figure 3 shows an example inwhich an original data
file is split into twelve pieces (A1∼D3) that are clustered into
four groups (e.g., A1, A2, and A3 are a group). Two pieces of
parity data will be created by EVENODD for each group, for
example, the two pieces of 𝑅V1 and 𝑅D1 for the first group in
Figure 3.

The generated parity data pieces cause a file to occupy
more storage space. Assuming a file is split into 𝑚 pieces,
because the generated parity data have a fixed number of two
pieces for certain pieces, that is, a group, the higher the 𝑚
value, the smaller the extra storage space. Figure 4 shows the
ratio of the generated parity data size to the original file size as
𝑚 increases. The extra storage overhead does not reach more
than 66% (i.e., the least splitting case when𝑚 = 3).

After the EVENODD encoding, a file is disseminated
with a certain fault tolerance on the network. Theoretically,

International Journal of Distributed Sensor Networks 7

RV1 RD1

RV2 RD2

RV3 RD3

RV4 RD4

A1 A2 A3

B1 B2 B3

C1 C2 C3

D1 D2 D3

Original file

EVENODD encoding

Figure 3: Example of dividing a file into 12 pieces and 4 groups.

70

60

50

40

30

20

10

0Fr
ac

tio
n

of
 in

cr
ea

sin
g

vo
lu

m
es

 (%
)

1 10 19 29 37 46 55 64 73 82 91 100
Information disks per group

Figure 4: Number of split𝑚 and extra storage space.

when the shared file size increases, it produces additional
network traffic overheads. However, because EVENODD
tolerates up to errors in two file pieces, a peer need not
download all the pieces of a file to obtain the entire file. The
missing two pieces can be recovered by merely applying the
EVENODD decoding procedure, as shown in Figure 5.

4.3. Fault-Tolerant Capability. The fault-tolerant capability of
a file depends on the total number of pieces split as well
as the number of pieces in a group. In the same group,
EVENODD could tolerate up to two faulty pieces irrespective
of the number of pieces. If a group contains more pieces,
the number of groups reduces, and hence, the total number
of faults a file can tolerate also reduces. Figure 6 shows the
relationship between the number of split pieces and the fault-
tolerance capability. For the sake of efficiency, a reasonably
small piece size is typically used to split a file in P2P file
sharing systems; for example, in the BitTorrent protocol
specification [34, 37], the default piece size is 256KB, but
sizes of 512 KB and 1MB are often observed. FastTrack adopts
even smaller piece sizes of 64KB [35], while in the eMule
protocol specification [36], a file piece is called a chunk and
has a large size of 9.28MB; each chunk is then further split
into blocks of 180KB. If a piece size is 512 KB, a movie film
of approximately 1 GB comprises approximately 2000 pieces;
the fault-tolerance rate for such sizes is not shown in Figure 6

Yet to download

Finished downloading

A1 A2 A3 RV1 RD1

Figure 5: File recovery using EVENODD decoding procedure.

45

40

35

30

25

20

15

10

5

0

Fa
ul

t-t
ol

er
an

t r
at

io
 (%

)

1 10 19 28 37 46 55 64 73 82 91 100

Pieces per block

Figure 6: The fault-tolerant rate of EVENODD.

in which only files split up to 97 pieces have been shown (the
maximum prime number that is less than 100). In fact, when
the number of file pieces reaches 2000, the fault-tolerance
rate of the EVENODD will be only 0.1%; this is nearly close
to no fault-tolerance capability. One solution for such big
files is to split the file first into a reasonable number of
blocks and then perform EVENODD encoding, respectively,
against each block; however, this could also still enhance
fault-tolerance rates. Of course, the space and time required
for performing such methods also lead to other issues.

4.4. Tamper Detection. Traditional error detecting codes,
such as parity checks and cyclic redundancy checks (CRCs),
produce redundant parity bits from the data. These bits are
then embedded into the data, and operational data errors are
detected by error detecting codes and corrected by forward
error correction (FEC) codes. However, if security is not
considered, traditional error detecting codes cannot fight
purposely devised malicious attacks. In this study, infor-
mation hiding techniques [38, 39] have been employed for
detecting the polluted pieces of files; note that the informa-
tion hiding concept has been used inmanyfields, for example,
secure communication and multimedia security.

5. System Modeling

In this paper, we have expanded the FM developed by Kumar
et al. [15] for the pollution proliferation of P2P file sharing
systems and then deduced amodel for properly analyzing and
evaluating the pollution-avoidance mechanism proposed in

8 International Journal of Distributed Sensor Networks

this paper. A brief introduction of FM will be given in this
section and the model will be deduced. The various param-
eters involved in the following modeling and evaluation are
summarized in Table 1.

5.1. Fluid Model. The primary goal of FM is to develop a
model for P2P file sharing systems; this model should be able
to observe, analyze, and evaluate the pollution proliferations
and to provide important references for the future designs of
antipollutionmechanisms. Moreover, it can be used tomodel
and analyze the proliferation of polluted versions and good
versions of a title in P2P networks.

Two types of peers are defined in FM: attacking peers
that inject polluted copies into P2P systems and benign peers.
Let 𝑀 be the number of benign peers wishing to acquire a
title copy; there are several versions of this title, and for each
version, there are several available copies and some of them
are polluted.The following reasonable assumptions have been
made in FM.

(1) When a peer obtains a good version of a title, it stops
its search.

(2) If a peer inspects and confirms that a downloaded
version has been polluted, it will delete the version
and immediately search again for the said title.

(3) If a peer obtains a good version, it will provide this
version without any deadlines to other peers on the
P2P network for their downloading.

(4) All the peers are homogeneous and exhibit identical
behaviors.

In summary, in the FM, there are three types of peers at
any instant of time: (1) peers that have a good copy, (2) peers
that have a polluted copy, and (3) peers that have no copy.
Moreover, any one of the𝑀peerswill have amaximumof one
copy at any time, regardless of whether it is good or polluted.

In the FM, the inspection time is the time counted
from the moment when a user issues a download request
to the moment when the user finishes inspecting the fully
downloaded file. The average inspection time of a peer is
expressed as 1/𝜇, where 𝜇 is the inspection rate of a peer, or,
in other words, the frequency of the peer deleting a polluted
version and issuing a new search request.

Let](𝑡) represent the set of versions (polluted and good
ones) appearing on the network at time 𝑡. For a version 𝜐 ∈
](𝑡), 𝑛

𝜐
(𝑡) represents the number of copies at time 𝑡. Because

a peer has amaximumof one copy of any single version at any
instant, 𝑛

𝜐
(𝑡) is also the number of copies of a certain version

𝜐 at time 𝑡.
After a user has enquired for a certain title, he will receive

a series of the versions and the number of copies available
for each version of the title on P2P networks. Without
considering the user behavior for the selection, in general, the
probability of a certain specific version 𝜐 being selected could
be modeled as a function of the number of copies of each
available version in the system as follows:

𝑞

𝜐
(𝑡) = 𝑓

𝜐
(𝑛

𝑢
(𝑡) , 𝑢 ∈] (𝑡)) , 𝜐 ∈] (𝑡) . (8)

x, y

x, y + 1 x + 1, y

x + 1, y − 1

Figure 7:TheMarkov state transitions for the Copy Centric Model.

Here, 𝑓𝜐(⋅), 𝜐 ∈](𝑡), is an arbitrary function that satisfies the
following equation:

∑

𝜐∈](𝑡)
𝑞

𝜐
(𝑡) = 1. (9)

The pollution proliferation modeling of the FM could
begin from the two extreme cases of the selection distribution
𝑞

𝜐
(𝑡), 𝜐 ∈](𝑡): the Copy Centric Model and Version Centric

Model. In this paper, we have extended the former to deduce
the conformable pollution proliferationmodel.Thedefinition
of the Copy Centric Model is that any user will randomly
select a copy for download with no particular preferences;
that is, each available copy on the network is treated equally.
Therefore, the probability of each available version being
selected by a user is the ratio of the number of available copies
of this version to the total number of available copies; it is
given as follows:

𝑞

𝜐
(𝑡) =

𝑛

𝜐
(𝑡)

∑

𝑢∈](𝑡) 𝑛𝑢 (𝑡)
. (10)

Let𝑁 represent the number of polluted versions that have
been placed in the network by an attacker, and let us assume
that 𝑁 is invariable with time. Further, assume that there
are 𝑀 benign peers who all wish to obtain good versions
of this title. The FM uses the discrete-state Markov process
approach to analyze the pollution proliferation. Figure 7 is
such aMarkov state chart wherein 𝑥 and𝑦 represent the peers
with uncontaminated and polluted copies, respectively, and
state transitions occur when a user inspects a downloaded
file. As shown in Figure 7, a system can transit from state
(𝑥, 𝑦) to the following states:

(1) (𝑥 + 1, 𝑦): a peer without a copy downloads an
uncontaminated copy at its first request,

(2) (𝑥, 𝑦+1): a peer without a copy downloads a polluted
copy at its first request,

(3) (𝑥 + 1, 𝑦 − 1): a peer with a polluted copy downloads
an uncontaminated copy,

(4) (𝑥, 𝑦): a peer with a polluted copy downloads a
polluted copy at its next request.

International Journal of Distributed Sensor Networks 9

Table 1: Summary of parameters involved in the modeling.

Symbol Description
𝑀

The number of benign peers wishing to acquire a title copy.
𝜇

The frequency of the peer deleting a polluted version and issuing a new search request.
](𝑡) The set of versions (polluted and good ones) appearing on the network at time t.
𝜐

A version.
𝑛

𝜐
(𝑡)

The number of copies of a certain version 𝜐 at time t.
𝑁

The number of polluted versions that have been placed in the network by an attacker.
𝑥

The peers with unpolluted copies.
𝑦

The peers with polluted copies.
𝑥(𝑡)

The total number of peers with good copies at a certain time t.
𝑦(𝑡)

The total number of peers with polluted copies at a certain time t.
𝑝

The probability that a peer selects a polluted copy and downloads it.
𝑝(𝑡)

The probability that a peer selects a polluted copy and downloads it at a certain time t.
𝑚

The number of pieces that a shared file has been split into.

If the rate of inspections is (𝑀 − 𝑥)𝜇 at state (𝑥, 𝑦), then,
according to (10), the probability that a peer selects a polluted
copy and downloads it is

𝑝 =

𝑦 + 𝑁

𝑥 + 𝑦 + 𝑁

. (11)

In order to reduce the complexity of obtaining the
probability distribution of time from any initial state to the
expected state (𝑀, 0), where𝑀 benign peers all obtain good
versions of a title, the FM uses the fluid flow approximation
for modeling the pollution proliferation model. Let 𝑥(𝑡) and
𝑦(𝑡) represent the total number of peers with good copies and
the total number of peers with polluted copies, respectively,
at a certain time 𝑡. Based on the Markov model, at any time 𝑡,
the probability of “a peer that selects a polluted copy and
downloads it” becomes

𝑝 (𝑡) =

𝑦 (𝑡) + 𝑁

𝑥 (𝑡) + 𝑦 (𝑡) + 𝑁

. (12)

When a peer either without a copy or with a polluted copy
has downloaded a good copy, the number 𝑥(𝑡) of good copies
increases. The former will happen at a rate of [𝑀 − 𝑥(𝑡) −
𝑦(𝑡)]𝜇(1 − 𝑝(𝑡)) and the latter at a rate of 𝑦(𝑡)𝜇(1 − 𝑝(𝑡)). The
fluid equation is thus deduced to

�̇� (𝑡) = [𝑀 − 𝑥 (𝑡) − 𝑦 (𝑡)] 𝜇 (1 − 𝑝 (𝑡)) + 𝑦 (𝑡) 𝜇 (1 − 𝑝 (𝑡)) .

(13)

Similarly, when a peer without a copy downloads a pol-
luted copy, the number 𝑦(𝑡) of the polluted copies increases
at the rate of [𝑀−𝑥(𝑡)−𝑦(𝑡)]𝜇𝑝(𝑡); further, when a peerwith a
polluted copy downloads a good copy,𝑦(𝑡)will increase at the
rate of 𝑦(𝑡)𝜇(1 − 𝑝(𝑡)). The fluid equation is thereby deduced
to

̇𝑦 (𝑡) = [𝑀 − 𝑥 (𝑡) − 𝑦 (𝑡)] 𝜇𝑝 (𝑡) − 𝑦 (𝑡) 𝜇 (1 − 𝑝 (𝑡)) . (14)

5.2. Modeling with File Pieces. In P2P file sharing systems,
assume that there is one version of a shared file, which has

been split into𝑚 number of pieces. At time 𝑡, the probability
of a peer downloading a piece of the polluted copy is given
by 𝑝(𝑡) in (12). However, for 𝑥(𝑡) at time 𝑡, for either a peer
without a copy or a peer with a polluted copy downloading
a good copy, the former happens at a rate of speed increase
of (𝑀 − 𝑥(𝑡) − 𝑦(𝑡))𝜇(1 − 𝑃(𝑡))𝑚, while the latter happens at
𝑦(𝑡)𝜇(1 − 𝑃(𝑡))

𝑚. Hence, we deduce a new �̇�(𝑡) as follows:

�̇� (𝑡) = (𝑀 − 𝑥 (𝑡) − 𝑦 (𝑡)) 𝜇(1 − 𝑝 (𝑡))

𝑚

+ 𝑦 (𝑡) 𝜇(1 − 𝑝 (𝑡))

𝑚

.

(15)

However, deducing a new ̇𝑦(𝑡) is more complicated
because, to a user, if a polluted piece is found in a downloaded
file, the file is seen as polluted, and this makes the number of
all possible polluted pieces a critical argument in deducing a
new ̇𝑦(𝑡). Considering the growth of 𝑦(𝑡), to a peer that does
not own any piece, the probability that “it will downloadmore
than one polluted piece from other peers” is as follows:

𝑝(𝑡)

𝑚

+ 𝐶

𝑚

1
× 𝑝(𝑡)

𝑚−1

× (1 − 𝑝(𝑡))

1

+ 𝐶

𝑚

2
× 𝑝(𝑡)

𝑚−2

× (1 − 𝑝 (𝑡))

2

+ ⋅ ⋅ ⋅

+ 𝐶

𝑚

𝑚−1
× 𝑝(𝑡)

1

× (1 − 𝑝 (𝑡))

𝑚−1

.

(16)

This expression includes the cases from “all downloaded
pieces are polluted,” “only one downloaded piece is not
polluted,” and “two downloaded pieces are not polluted” to
“all downloaded pieces are not polluted.” On the other hand,
to a peer that has always downloaded the polluted piece, when
it requests again and then downloads a good copy, the speed

10 International Journal of Distributed Sensor Networks

of increase in 𝑦(𝑡) is 𝑦(𝑡)𝜇(1 − 𝑝(𝑡))𝑚. By substitution, one
can obtain the new ̇𝑦(𝑡) as follows:

̇𝑦 (𝑡) = (𝑀 − 𝑥 (𝑡) − 𝑦 (𝑡)) 𝜇

× {𝑝(𝑡)

𝑚

+ 𝐶

𝑚

1
× 𝑝(𝑡)

𝑚−1

× (1 − 𝑝(𝑡))

1

+ 𝐶

𝑚

2
× 𝑝(𝑡)

𝑚−2

× (1 − 𝑝 (𝑡))

2

+ ⋅ ⋅ ⋅

+𝐶

𝑚

𝑚−1
× 𝑝(𝑡)

1

× (1 − 𝑝 (𝑡))

𝑚−1

}

− 𝑦 (𝑡) 𝜇(1 − 𝑝 (𝑡))

𝑚

.

(17)

5.3. Modeling with EVENODD. In order to simplify the
EVENODD modeling process, assume that a file is split into
𝑚 pieces and the file, after being encoded, will have two pieces
more than the original file. First, consider the probability
that “a peer that owns no any piece downloads more than
three polluted pieces,” which is a series of permutations and
combinations and is expressed as 𝑝

𝑦
(𝑡). The equation is as

follows:

𝑝

𝑦
(𝑡) = 𝑝(𝑡)

𝑚+2

+ 𝐶

𝑚+2

1
× 𝑝(𝑡)

𝑚+1

× (1 − 𝑝(𝑡))

1

+ 𝐶

𝑚+2

2
× 𝑝(𝑡)

𝑚

× (1 − 𝑝 (𝑡))

2

+ ⋅ ⋅ ⋅

+ 𝐶

𝑚+2

𝑚−1
× 𝑝(𝑡)

3

× (1 − 𝑝 (𝑡))

𝑚−1

.

(18)

In this equation, since the file itself can perform self-recovery
from up to two polluted pieces, it is not necessary to consider
the probability of the cases of “downloading one polluted file
piece” and “downloading two polluted file pieces.”

Now, let us consider the case in which a peer owns
a polluted copy and deduce the probability 𝑝

𝑥
(𝑡) that “it

requests again and downloads a good copy.” This is deduced
and shown as follows:

𝑝

𝑥
(𝑡) = (1 − 𝑝(𝑡))

𝑚+2

+ 𝐶

𝑚+2

1
× (1 − 𝑝(𝑡))

𝑚+1

× 𝑝 (𝑡)

+ 𝐶

𝑚+2

2
× (1 − 𝑝 (𝑡))

𝑚

× 𝑝(𝑡)

2

.

(19)

In the case of a file that has been encoded with EVENODD,
a user can immediately stop downloading as long as there
are 𝑚 unpolluted pieces among the downloaded ones; this is
because this file can be recovered by using the EVENODD
decoding procedure. However, this will make the summation
of 𝑝
𝑥
(𝑡) and 𝑝

𝑦
(𝑡) greater than 1, which is theoretically

unreasonable. Nevertheless, the assumption that a peer will
stop downloading after having downloaded all the pieces of a
file is still reasonable. The first item of the latter two items is
the probability of “requesting a download again and acquiring
one polluted piece”, and the second item is the probability
of “requesting a download again and getting two polluted
pieces”. The latter two cases will cause no harm because
the file can be recovered by using the EVENODD decoding

Fr
ac

tio
n

of
 to

ta
l n

um
be

r
of

 p
ee

rs

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

Time (day)

0

10
00
0

20
00
0

3
00
00

4
00
00

5
00
00

6
00
00

7
00
00

80
00
0

9
00
00

10
00
00

Good copy
Polluted copy

Figure 8: Pollution proliferation without EVENODD.

procedure. �̇�(𝑡) and ̇𝑦(𝑡) can then be deduced as follows,
respectively:

̇𝑦 (𝑡) = (𝑀 − 𝑥 (𝑡) − 𝑦 (𝑡)) 𝜇𝑝

𝑦
(𝑡) − 𝑦 (𝑡) 𝜇𝑝

𝑥
(𝑡) , (20)

�̇� (𝑡) = (𝑀 − 𝑥 (𝑡) − 𝑦 (𝑡)) 𝜇𝑝

𝑥
(𝑡) + 𝑦 (𝑡) 𝜇𝑝

𝑥
(𝑡) . (21)

6. Evaluation

In this section, we present our evaluation results of the
antipollutionmechanism proposed in this paper.The evalua-
tion was performed using two approaches—bymodeling and
by simulations.

6.1. Evaluation by Modeling. It is difficult to estimate the
distributions of 𝑥(𝑡) and 𝑦(𝑡) in (15) and (17), respectively, by
inspecting the equations in Section 5.2; numerical analysis is
used to acquire the approximation solutions of the formulas.
Let 𝑥(0) = 1000, 𝑁 = 1000, 𝑚 = 5, 𝜇 = 1 (query/day),
and𝑀 = 100000 be the initial values. Substituting them into
(15) and (17) with time varying beyond a major swing in the
number of peers that own good or polluted copies yields the
result shown in Figure 8; here, the dotted and darker curves
represent the number of polluted and good copies, respec-
tively, normalized as a fraction of the total number of peers.
From this figure, peers that have downloaded a polluted piece
are barely able to obtain a good copy for a very long time.
This result is quite predictable because the probability is very
strict for a peer to obtain a good and complete file for large𝑚
values. For a popular file, if an attacker produces false peers
that are close in number to the number of peers that own good
copies when it has just begun disseminating, the attack would
become very threatening.

Similarly, it is difficult to estimate the distributions of
𝑥(𝑡) and 𝑦(𝑡) from (20) and (21), respectively; in fact, these
equations are even more complicated than (15) and (17).
An identical numerical analysis approach is used to deduce
the approximation solutions of these formulae by setting
the initial values for 𝑥(0), 𝑁, 𝑚, 𝜇, and 𝑀 identical to
those for (15) and (17). The result is shown in Figure 9;
the light gray and darker curves represent the number of
polluted and good copies, respectively. It is obvious that
these curves fall and rise continuously and quickly from the
very beginning and converge to become flat at approximately

International Journal of Distributed Sensor Networks 11
Fr

ac
tio

n
of

 to
ta

l n
um

be
r

of
 p

ee
rs

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

0 42 6 8 10 12 14 16 18 20 22 24

Time (day)

Good copy
Polluted copy

Figure 9: Pollution proliferation with EVENODD.

the 16th day as compared to the more than 100000 days
in Figure 8. This means that when the attacker begins to
disseminate polluted copies, the proposedmechanism begins
to produce a suppression effect, and the pollution attack could
be exterminated on the 16th day.

Although there is a large difference between the conver-
gence times in Figures 8 and 9, the curve patterns of these two
figures are similar.The initial values of both the environment
parameters 𝑥(0) and 𝑁 being equal to 1000 imply that, for
each file piece, the probabilities that, “on the first day, a peer
has downloaded a polluted piece” and, “on the first day, a peer
has downloaded a unpolluted piece” are identical. However,
when a single piece downloaded by a peer is polluted, the
downloaded file will be treated as a polluted one. As a result,
on the first day, the number of polluted copies is higher than
that of the good copies. Under the assumptions that a peer
who owns a complete and good copy will share this file indef-
initely and the peers who have downloaded polluted files will
request to download again continuously until they receive a
complete and good copy, the number of polluted copies will
decrease and the number of good copies will increase with
time. In this manner, adopting the EVENODD procedure
that tolerates two polluted pieces downloaded by a peer
clearly makes the convergence speed in Figure 9 faster than
that in Figure 8.

6.2. Evaluation by Simulations. The evaluation results in
the previous section are obtained from the equations with
many postulations. In this section, we describe the simu-
lation approach that was used to verify the accuracies of
the obtained results. Several simulation experiments were
conducted to evaluate the use of EVENODD in suppressing
and eliminating pollution attacks in P2P file sharing systems.
In the experiments, PCs (3.0GHz processor; 2 GBDDR II
800RAM)were used, andVisual C++was selected as the pro-
gramming tool.

6.2.1. Behavior of Nodes. In P2P file sharing systems, a peer
must act and download before possibly receiving any polluted
file. Therefore, the focus of this simulation experiment was
on peer behaviors. General impact factors such as network

traffic, framework, and search time that are considered in
the simulation experiments of P2P file sharing networks were
not be considered in this experiment. The conditions and
assumptions of the simulation environments of this experi-
ment were as follows.

(1) The number of peers that share a complete and
healthy file on the network, the number of benign
peers that demand this file, and the number of
attacking peers are fixed and maintained constant
from the beginning of sharing the file.

(2) None of the peers leave the network.

(3) A peer that has successfully downloaded a certain file
definitely shares all the pieces of this filewith the peers
that have not completed downloading.

These assumptions are in accordance with the modeling
criteria described in the previous section. In addition, the
procedure followed by a benign peer for requesting a file is
fairly simple and is as follows.

(1) Select a file piece that is still missing.

(2) Choose a peer that owns the piece and will provide
the benign peer with the piece.

(3) Check whether the requested file has been completely
downloaded, and if so, stop selecting pieces and peers.

6.2.2. Simulation Results. On the basis of the conditions and
assumptions and setting the initial vales of 𝑥(0) = 100, 𝑁 =
100, 𝑚 = 5, 𝜇 = 1 (query/day), and 𝑀 = 2000, the first
experiment was conducted on the pollution evolution in P2P
file sharing systems that do not use EVENODD. The results
are shown in Figure 10. When a P2P file sharing network was
attacked, as much as 92% of the peers were polluted from the
very beginning. On the 4th day, the number of polluted peers
decreased to approximately 80%, whereas after the 4th day,
the number of polluted peers significantly decreased. More-
over, on the 10th day, all the peers on the file sharing network
obtained a good copy of the file. Since, at time 𝑡, a peer can
only own a copy of a file, the number of polluted peers was
also the number of polluted copies. Moreover, because of
the assumption that a peer that owns a good copy of a file
will definitely share the file with other peers and the peers
that have realized that they have downloaded a polluted copy
will immediately request a new download, all the peers in the
system ultimately received good copies.

Figure 11 presents the experimental results from the
EVENODD procedure on a P2P file sharing network; the
number of polluted copies decreased fast after the first day,
and on the 4th day, all the peers in the P2P file sharing
network obtained a good copy of a file. In comparison with
Figure 10, this experimental result confirms that the usage of
EVENODD enables the efficient suppression and removal of
file pollution in a shorter time on a P2P file sharing network;
the convergence speed is approximately 40%∼60% faster.

12 International Journal of Distributed Sensor Networks

Time (day)
Good copy
Polluted copy

Fr
ac

tio
n

of
 to

ta
l n

um
be

r
of

 p
ee

rs
1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

0 42 6 8 10

Figure 10: Pollution proliferation without EVENODD.

Time (day)

Good copy
Polluted copy

Fr
ac

tio
n

of
 to

ta
l n

um
be

r
of

 p
ee

rs

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

0 42 3 5 7 91 6 8 10

Figure 11: Pollution proliferation with EVENODD.

7. More Evaluation by Modeling

The accuracy of the model developed in Section 5.3 can
be demonstrated by comparing the modeling evaluation
results with those of simulation in Section 6. In this section,
additional evaluation of the proposed model mechanism is
conducted. In this further evaluation, two kinds of network
scale settings are used: a large-scale network, as described
in Section 6.1, in which 𝑥(0) = 1000, 𝑁 = 1000, 𝑚 = 5,
𝜇 = 1 (query/day), and𝑀 = 100000; a small-scale network,
as described in Section 6.2, with 𝑥(0) = 100,𝑁 = 100,𝑚 = 5,
𝜇 = 1 (query/day), and𝑀 = 2000.

7.1. Amending Equations. In Sections 6.1 and 6.2, the initial
environmental parameter configurations were different; they
were for large-scale and small-scale networks, respectively.
In order to understand the precision of the experiments
described in Section 6.2, the settings in small-scale network
are used to redo the calculations in Section 6.1.The results are
shown in Figure 13.

From Figures 11 and 13, which are the evaluation results of
themodel and simulation experiment, respectively, the pollu-
tion situations can be observed to be continuingly decreasing
from the beginning of the first day. However, the simula-
tion results show that the file pollution in the system was
totally eliminated by the 4th day, while the model results

Fr
ac

tio
n

of
 to

ta
l n

um
be

r
of

 p
ee

rs

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

0

10
00

80
00

70
00

60
00

50
00

40
00

30
00

20
00

90
00

Time (day)
Good copy
Polluted copy

Figure 12: Pollution proliferation in a small-scale network without
EVENODD.

Time (day)

Good copy
Polluted copy

Fr
ac

tio
n

of
 to

ta
l n

um
be

r
of

 p
ee

rs

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

0 84 6 10 14 182 12 16 20

Figure 13: Pollution proliferation in a small-scale network with
EVENODD.

show that the elimination happened only by the 16th day.
Similar results were obtained when comparing the results of
Figures 10 and 12, and here, the differences in the durations of
the pollution convergence were even larger. This implies the
deducedmodel differs from the practical one.The reasons for
such a situation may be obtained by examining the following
loopholes existing during the model deduction.

(1) In themodel analysis, time is discrete (day by day). As
a result, each peer sees the previous day’s distributions
of the copies in the P2P file sharing network.

(2) If a peer has downloaded a polluted piece, the entire
file containing the piece will be considered as polluted
regardless of the presence of other unpolluted file
pieces, and this peer will also be considered a polluted
peer.

(3) Similar to (2), as long as a peer has downloaded a
piece from a peer that is believed to be polluted, it
will be seen as a polluted peer, even if the downloaded
piece is a good one.

In order to deduce a model that is more realistic, a new
assumption will be added—a peer will delete all the polluted
file pieces that were previously downloaded before requesting

International Journal of Distributed Sensor Networks 13
Fr

ac
tio

n
of

 to
ta

l n
um

be
r

of
 p

ee
rs

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

Time (day)

Good copy Polluted copy
Good copy func. Polluted copy func.

0 84 6 102

Figure 14: The pollution proliferation without using EVENODD
after modifying the assumption.

Time (day)

Good copy Polluted copy
Good copy func. Polluted copy func.

0 84 6 102 12

Fr
ac

tio
n

of
 to

ta
l n

um
be

r
of

 p
ee

rs

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

Figure 15: The pollution proliferation that uses EVENODD after
modifying the assumption.

a download again. Under this assumption, the probability
that a peer will obtain a polluted piece is modified as follows:

𝑝 (𝑡) =

𝑁

𝑥 (𝑡) + 𝑁

. (22)

Based on the modified assumptions, the evaluations of
Sections 6.1 and 6.2 are performed again to yield the results
shown in Figures 14 and 15, which are the evaluation results
of a P2P file sharing system adopting and not adopting
EVENODD, respectively. In these twofigures, both the results
of model evaluations and simulation experiments have been
deliberately combined for comparisons, and from them, it is
obvious that the model with the modified assumptions has a
curved shape similar to the simulations of the practical
situation.

Furthermore, the assumption in the Fluid Model that
if a peer obtains a good version it will provide it without
deadlines to other peers for downloading is also unrealistic.
Several types of peer that will be reluctant to share down-
loaded files exist, including free riding peers as well as those
that leave the P2P file sharing systemnaturally. To account for
this, a new parameter 𝑃

𝑆
is added to represent the probability

that a peer obtaining a good version will share it indefinitely.
The parameter 𝑃

𝑆
is assumed to be an average value and will

0 2 3 4 51

Time (day)

Fr
ac

tio
n

of
 to

ta
l n

um
be

r
of

 p
ee

rs

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

PS(t) = 1

PS(t) = 0.8

PS(t) = 0.6

PS(t) = 0.4

PS(t) = 0.2

Figure 16:The effects of 𝑃
𝑆
on the elimination of polluted copies for

values of 𝑃
𝑆
of 1, 0.8, 0.6, 0.4, and 0.2.

not be changed during the process of pollution elimination.
Using 𝑃

𝑆
, (21) can be modified as follows:

�̇� (𝑡) = [(𝑀 − 𝑥 (𝑡) − 𝑦 (𝑡)) 𝜇𝑝

𝑥
(𝑡) + 𝑦 (𝑡) 𝜇𝑝

𝑥
(𝑡)] ∗ 𝑃

𝑆
.

(23)

Because 𝑃
𝑆
has no effect on ̇𝑦(𝑡), (20) stays the same; the

evaluation in the following subsections is performed using
(20) and (23). Figure 16 shows the effects of 𝑃

𝑆
on the func-

tioning of the proposed mechanism for values of 𝑃
𝑆
of 1, 0.8,

0.6, 0.4, and 0.2.
The curves in Figure 16 show variation in the number of

polluted copies; as can be seen, although 𝑃
𝑆
has an impact on

the mechanism, pollution is still eliminated in about two or
three days. This demonstrates that the proposed mechanism
can efficiently avoid pollution.

7.2. Impact of Network Scale. In this subsection, we investi-
gate the impact of network scale on the convergence time of
pollution in the proposedmechanism.While a comparison of
Figures 8 and 13 would suggest that there is an effect on con-
vergence time owing to network scale, the proportional rela-
tion among𝑀,𝑁, and𝑋(0) in themodel would seem to con-
travene this. To check this, a new parameter 𝑅 can be added
to represent the relations between any two parameters. 𝑅 is
defined as

𝑅

𝐴-𝐵 =
Value of parameter 𝐴
Value of parameter 𝐵

. (24)

In the large-scale network setting, for example, 𝑅
𝑀-𝑁 will

equal 100, as𝑀 = 100000 and𝑁 = 1000. For both the large-
and small-scale network settings, the values of 𝑁 and 𝑋(0)
were varied in order to fix 𝑅

𝑀-𝑁 and 𝑅𝑀-𝑋(0) at the same val-
ues in both scale networks. The results of this experiment are
given in Table 2, which shows a day-by-day breakdown of the
proportion of good copies in each network.

It can be seen that the results in columns 2 and 4 and
columns 3 and 5 of Table 2, respectively, are identical. Based
on this, it would appear that network scale has no effect on

14 International Journal of Distributed Sensor Networks

Table 2: The variation of good copies in large and small network.

Time (day)
𝑀 = 100000 𝑀 = 2000

𝑁 = 2000, 𝑋(0) = 2000 𝑁 = 2000, 𝑋(0) = 1000 𝑁 = 40, 𝑋(0) = 40 𝑁 = 40, 𝑋(0) = 20

𝑅

𝑀−𝑁
= 50, 𝑅

𝑀−𝑋(0)
= 50 𝑅

𝑀−𝑁
= 50, 𝑅

𝑀−𝑋(0)
= 100 𝑅

𝑀−𝑁
= 50, 𝑅

𝑀−𝑋(0)
= 50 𝑅

𝑀−𝑁
= 50, 𝑅

𝑀−𝑋(0)
= 100

0 0.168152823 0.037562227 0.168152823 0.037562227
1 0.952718092 0.429983234 0.952718092 0.429983234
2 0.999632505 0.995571964 0.999632505 0.995571964
3 0.999941027 0.999822007 0.999941027 0.999822007
4 0.999982692 0.999961957 0.999982692 0.999961957
5 0.99999384 0.999987828 0.99999384 0.999987828
6 0.999997645 0.99999553 0.999997645 0.99999553
7 0.999999075 0.999998271 0.999999075 0.999998271
8 0.999999632 0.999999317 0.999999632 0.999999317
9 0.999999853 0.999999728 0.999999853 0.999999728
10 0.999999941 0.999999892 0.999999941 0.999999892

the proposedmechanism as long as the ratios between𝑀 and
𝑁 and𝑀 and 𝑋(0), respectively, are the same in both scale
networks.

7.3. Impact of Fraction of Initial Good Copies and Polluted
Copies. This subsection conducted an experiment to inspect
the pollution attack resistance ability of a P2P system that uses
EVENODD.The aimwas to verify the impacts on the conver-
gence times caused by the variance of the initial values 𝑋(0)
and 𝑁. A parameter 𝐾 that used to represent the variance is
defined as

𝐾 =

𝑁

𝑋 (0)

. (25)

A larger value of𝐾 represents a fiercer pollution attack by the
attacker in the beginning. The experimental result is shown
in Figure 17, the pollution convergence time increased with
𝐾 in both large and small-scale networks. However, in P2P
file sharing systems that use EVENODD, the increase in 𝐾
has an obviously smaller impact on the convergence speed—
only approximately 1/10th that of the P2P file sharing systems
without EVENODD. This experiment confirms that using
EVENODD to fight against and remove file pollution attacks
in P2P file sharing networks is effective and robust.

7.4. Impact of Degree of Pollution Attack. The parameters
𝑅 and 𝐾 both indicate the degree of pollution attack; for
example, a larger value of𝐾 or a smaller value of 𝑅

𝑀-𝑁 repre-
sents a more fierce attack. In this subsection, an experiment
to inspect the impact of the number of split pieces on the
convergence time of pollution is described. This assessment
is divided into two parts, one for 𝐾 = 1 and another for 𝐾 =
2. In the first part, parameters of a large-scale network are
adopted—𝑀 = 100000, 𝜇 = 1 (query/day), and 𝑃

𝑆
= 0.6—

and the setting of 𝐾 = 1 implies that 𝑁 = 𝑋(0) and also
that 𝑅

𝑀-𝑁 = 𝑅𝑀-𝑋(0). The first part of the experiment was
performed using three sets each of 𝑁 and 𝑋(0), with the
results shown in Figure 18. In this figure, the curves represent
the proportion of polluted copies in the P2P file sharing
system.

1800
1600
1400
1200
1000
800
600
400
200
0

Ti
m

e (
da

y)

1 2 3 4 5 6 7 8 9 10

K = N/X(0)

Using EVENODD scheme
Using no tolerating method

Figure 17: The resistance ability of a P2P system a subject to
pollution attack.

Figure 18(c) shows the results of a more fierce attack. As
can be seen, the larger number of split pieces results in the
slower elimination of polluted copies, as the pollution attack
will be more severe in the beginning. Next, an experiment
similar to the first part was conducted, with the results shown
in Figure 19.

Figure 19 shows the same results as in Figure 18; this is
to be expected, as the analysis in Section 4.3 determined that
increasing the number of split pieces will lower the fault toler-
ance capability of EVENODD.Aswill be discussed in the next
subsection, a more fierce attack will present challenges for
the proposed mechanism not only in terms of efficiency but
also in terms of network and storage overhead.

7.5. Comparison. The analytical models in the classic antipol-
lutionmechanisms Scrubber [6], Credence [12], and Blacklist
[13] are implemented and compared with the proposed
mechanism in terms of convergence time. In this evaluation,
the large-scale network settings described in Section 6.1 are
used. Parameters specific to Scrubber and Credence adopted
the settings from [6], but the user feedback and𝛽 are set to 0.8
and 1.0, respectively, for a more realistic assessment. Because

International Journal of Distributed Sensor Networks 15

1
0.8
0.6
0.4
0.2
0Fr

ac
tio

n
of

 to
ta

l
nu

m
be

r o
f p

ee
rs

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Time (day)

m = 5

m = 7

m = 11

m = 13

m = 17

m = 19

(a)

1
0.8
0.6
0.4
0.2
0Fr

ac
tio

n
of

 to
ta

l
nu

m
be

r o
f p

ee
rs

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Time (day)

m = 5

m = 7

m = 11

m = 13

m = 17

m = 19

(b)

1
0.8
0.6
0.4
0.2
0Fr

ac
tio

n
of

 to
ta

l
nu

m
be

r o
f p

ee
rs

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Time (day)

m = 5

m = 7

m = 11

m = 13

m = 17

m = 19

(c)

Figure 18: Elimination speed of polluted copies for values of 𝑚 of 5, 7, 11, 13, 17, and 19 in a large-scale network—𝑀 = 100000, 𝜇 = 1
(query/day), 𝑃

𝑆
= 0.6, and 𝐾 = 1: (a)𝑁 = 100,𝑋(0) = 100; (b)𝑁 = 200,𝑋(0) = 200; (c)𝑁 = 1000,𝑋(0) = 1000.

the derivation of the analyticalmodel in this paper is based on
the Fluid Model [15], parameters that are specific to Blacklist
adopted the settings from that paper. The experiment results
are shown in Figure 20.

7.6. Discussion. Most research to date focusing on the devel-
opment of pollution countering measures has adopted some
sort of reputation system based on a globally agreed-upon
voting scheme. However, such systems have several inherent
weaknesses. First, reputation systems face the cold start
problem [26] as, for example, in the case where a new user
will have to belong to the system for a period of time in order
to build up sufficient reputation. Second, because reputation
systems are vulnerable to malicious attacks [40] such as the
Sybil attack, additional defensive solutions must be invented
and inserted into the system. Third, users may avoid voting
or provide a false vote, a tack taken deliberately by malicious
users and accidentally by good users who forget to vote or
mistakenly cast a reverse vote. Fourth, a reputation system
must usually be accompanied by an incentivemechanism [41]
that encourages users to provide truthful feedback while also
allowing good users to recover from damaged reputation.
Together, these potential pitfalls make existing pollution
countering schemes based on reputation complicated and
difficult to implement.

The major drawback of the proposed mechanism lies in
its requirement for additional network and storage overhead,
with the analysis in Section 4.2 showing that overhead factors
increase as the number of split pieces decreases. However, the
experiment conducted in Section 7.4 indicates results con-
trasting with these in terms of efficiency. Instead of proposing

an appropriate number of split pieces, this paper proposes
that different types of shared file should be split into different
numbers of pieces. For example, a large file split into a small
number of pieces will result in high network and storage
overhead; furthermore, document files are suited to being
broken into smaller numbers of file pieces because they are
generally small and their data integrity is important. Another
defect of the proposed mechanism comes from the overhead
incurred by the tamper detection scheme. When no tamper
detectionmeasures are imposed on the proposedmechanism,
a user must inspect a downloaded file manually, which will
increase the time used for downloading a file and the burden
of pollution elimination. On the other hand, if a tamper
detection technique as described in Section 4.4 is adopted,
the proposed mechanism will become more complicated and
cause more network and storage overhead (in the form of
additional parity data, e.g.).

Theproposedmechanism is very simple and requires only
the implementation of EVENODD encoding and decoding
procedures on each peer node of a P2P file sharing system.
Moreover, as shown in the experimental results, pollution can
be effectively suppressed whether or not users can discover
and delete polluted files in a timely manner. If reputation-
based pollution countering measures can be used in con-
junction with the proposed mechanism, file pollution can
be eliminated even more effectively.

7.7. Future Work. In this study, we successfully derived an
analyticalmodel and obtained numerical results within only a
limited space owing to numerous assumptions. However, the
analysis of the proposed mechanism can be more realistic if

16 International Journal of Distributed Sensor Networks

1

0.8
0.6
0.4
0.2
0Fr

ac
tio

n
of

 to
ta

l
nu

m
be

r o
f p

ee
rs

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Time (day)

m = 5

m = 7

m = 11

m = 13

m = 17

m = 19

(a)

1

0.8
0.6
0.4
0.2
0Fr

ac
tio

n
of

 to
ta

l
nu

m
be

r o
f p

ee
rs

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Time (day)

m = 5

m = 7

m = 11

m = 13

m = 17

m = 19

(b)

1
0.8
0.6
0.4
0.2
0Fr

ac
tio

n
of

 to
ta

l
nu

m
be

r o
f p

ee
rs

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Time (day)

m = 5

m = 7

m = 11

m = 13

m = 17

m = 19

(c)

Figure 19: Elimination speed of polluted copies for values of 𝑚 of 5, 7, 11, 13, 17, and 19 in a large-scale network—𝑀 = 100000, 𝜇 = 1
(query/day), 𝑃

𝑆
= 0.6, and 𝐾 = 2: (a)𝑁 = 100,𝑋(0) = 50; (b)𝑁 = 200,𝑋(0) = 100; (c)𝑁 = 1000,𝑋(0) = 500.

0 2 4 6 8 10 12 14 16 18 20

Time (day)

Fr
ac

tio
n

of
 to

ta
l n

um
be

r
of

 p
ee

rs

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Scrubber
Credence

Blacklist
EVENODD

Figure 20: Convergence time of Scrubber, Credence, Blacklist, and
the proposed mechanism.

some of these assumptions are not made. First, we consider
that the number of polluters is varied. Polluters who are in
the systemmay collude withmoremalicious peers than those
who are not in the system in order to launch a more fierce
attack butmay give up and exit the system due to the presence
of an antipollution mechanism. This variable can be taken
into consideration in the derivation of the probability that
a peer selects a polluted copy and downloads it (see (22)).
Second, since a peer can join or leave a P2P file sharing
system at any time, the number of peers is varied from the
beginning of file sharing. This includes two variables: one is
the probability that a peer stops sharing a downloaded file and

leaves the system after finishing the download and the other
is that new peers who query for the file join the system in each
round. In the former, the files downloaded by peers who stop
sharing the file after downloading can be polluted or unpol-
luted. This implies that the number of polluted and unpol-
luted versions can be reduced. As in the case of the latter,
not only benign peers but also polluters can join the system.

8. Conclusion

Pollution attacks are conducted in P2P file sharing systems
to stop the downloading of copyrighted products; further,
in recent years, many researchers have attempted to develop
mechanisms for legally downloading copyrighted products.
We believe that even if the dispute over copyrighted product
dissemination ends in the near future, file pollution attacks
might become a tool for malicious users to attack P2P file
sharing systems, and moreover, this will seriously impact the
efficiency of P2P file sharing systems and even degrade the
network effectiveness. Hence, we have attempted establish a
mechanism to suppress and eliminate the pollution attacks
in P2P file sharing systems. By sectioning a file into suitable
number of pieces and by applying EVENODD to these pieces,
the proposed approach has successfully achieved this goal.
Both the correctness and efficiency of the approach were
verified by simulation experiments; the evaluation results
demonstrate that the application of EVENODD to a P2P
file sharing system could effectively reduce 40 to 60% of
the pollution duration. Further, EVENODD could be easily
embedded in the present P2P file sharing software without
requiring any changes to its underlying infrastructures.

International Journal of Distributed Sensor Networks 17

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] N. S. Good and A. Krekelberg, “Usability and privacy: a study
of Kazaa P2P file-sharing,” in Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems (CHI ’03), pp.
137–144, Lauderdale, Fla, USA, April 2003.

[2] S. Sen and J. Wang, “Analyzing peer-to-peer traffic across large
networks,” IEEE/ACMTransactions onNetworking, vol. 12, no. 2,
pp. 219–232, 2004.

[3] Y. K. Kwok, “Autonomic peer-to-peer systems: incentive and
security issues,” in Autonomic Computing and Networking, pp.
205–236, Springer, New York, NY, USA, 2009.

[4] J. Liang, R. Kumar, Y. Xi, and K. W. Ross, “Pollution in P2P file
sharing systems,” in Proceedings of the 24th Annual Joint Con-
ference of the IEEE Computer and Communications Societies
(INFOCOM ’05), vol. 2, pp. 1174–1185, Miami, Fla, USA, March
2005.

[5] N. Christin, A. S.Weigend, and J. Chuang, “Content availability,
pollution and poisoning in file sharing peer-to-peer networks,”
in Proceedings of the 6th ACM Conference on Electronic Com-
merce (EC ’05), pp. 68–77, Vancouver, Canada, June 2005.

[6] C. Costa, V. Soares, J. Almeida, andV. Almeida, “Fighting pollu-
tion dissemination in peer-to-peer networks,” in Proceedings of
the ACMSymposium onApplied Computing (SAC ’07), pp. 1586–
1590, Seoul, Republic of Korea, March 2007.

[7] F. Benevenuto, C. Costa, M. Vasconcelos, V. Almeida, J.
Almeida, and M. Mowbray, “Impact of peer incentives on the
dissemination of polluted content,” in Proceedings of the ACM
Symposium on Applied Computing (SAC ’06), pp. 1875–1879,
Dijon, France, April 2006.

[8] S. Shin, J. Jung, and H. Balakrishnan, “Malware prevalence in
the Kazaa file-sharing network,” in Proceedings of the 6th ACM
SIGCOMM Conference on Internet Measurement (IMC ’06), pp.
333–338, Rio de Janeiro, Brazil, October 2006.

[9] J. Liang, N. Naoumov, and K. W. Ross, “The index poisoning
attack in P2P file sharing systems,” in Proceedings of the 25th
IEEE International Conference on Computer Communications
(INFOCOM ’06), pp. 1–12, Barcelona, Spain, April 2006.

[10] P. Rodriguez, S.M. Tan, and C. Gkantsidis, “On the feasibility of
commercial, legal P2P content distribution,” ACM SIGCOMM
Computer Communication Review, vol. 36, no. 1, pp. 75–78,
2006.

[11] W. Dong, S. B. Yang, and X. Q. Liu, “Artificial immunology
based anti-pollution P2P file sharing system,” in Proceedings of
the 6th International Conference on Grid and Cooperative Com-
puting (GCC ’07), pp. 82–87, Los Alamitos, Calif, USA, August
2007.

[12] K. Walsh and E. G. Sirer, “Fighting peer-to-peer spam and
decoys with object reputation,” in Proceedings of the ACM
SIGCOMMWorkshop on Economics of Peer-to-Peer Systems, pp.
138–143, Philadelphia, Pa, USA, August 2005.

[13] J. Liang, N. Naoumov, and K. W. Ross, “Efficient blacklisting
and pollution-level estimation in P2P file-sharing systems,” in
Technologies for Advanced Heterogeneous Networks, vol. 3837 of
Lecture Notes in Computer Science, pp. 1–21, Springer, Berlin,
Germany, 2005.

[14] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: an
efficient scheme for tolerating double disk failures in raid archi-
tectures,” IEEE Transactions on Computers, vol. 44, no. 2, pp.
192–202, 1995.

[15] R. Kumar, D. D. Yao, A. Bagchi, K. W. Ross, and D. Rubenstein,
“Fluid modeling of pollution proliferation in P2P networks,” in
Proceedings of the Joint International Conference on Measure-
ment and Modeling of Computer Systems, pp. 335–346, June
2006.

[16] P. Dhungel, X. Hei, K. W. Ross, and N. Saxena, “The pollu-
tion attack in P2P live video streaming: measurement results
and defenses,” in Proceedings of the Workshop on Peer-to-peer
Streaming and IP-TV (P2P-TV ’07), pp. 323–328, Kyoto, Japan,
August 2007.

[17] D. Dumitriu, E. Knightly, A. Kuzmanovic, I. Stoica, and W.
Zwaenepoel, “Denial-of-service resilience in peer-to-peer file
sharing systems,” ACM SIGMETRICS Performance Evaluation
Review, vol. 33, no. 1, pp. 38–49, 2005.

[18] C. Shi, D. Han, X. Hu, and Y. Yu, “A unified model of pollution
in P2P networks,” in Proceedings of the IEEE International
Symposium on Parallel and Distributed Processing Symposium
(IPDPS ’08), pp. 1–12, Miami, Fla, USA, April 2008.

[19] R. Thommes and M. Coates, “Epidemiological modelling of
peer-to-peer viruses and pollution,” in Proceedings of the 25th
IEEE International Conference on Computer Communications
(INFOCOM ’06), vol. 6, pp. 1–12, Barcelona, Spain, April 2006.

[20] Q. Gu, K. Bai, H. Wang, P. Liu, and C. H. Chu, “Modeling of
pollution in P2P file sharing systems,” in Proceedings of the 3rd
IEEE Consumer Communications and Networking Conference
(CCNC ’06), pp. 1033–1037, Las Vegas, Nev, USA, January 2006.

[21] U. Lee, M. Choi, J. Cho, M. Y. Sanadidi, and M. Gerla, “Under-
standing pollution dynamics in P2P file sharing,” in Proceedings
of the InternationalWorkshop on Peer-to-Peer Systems, vol. 6, pp.
1–6, Santa Barbara, Calif, USA, 2006.

[22] S. Yang, H. Jin, B. Li, and X. Liao, “A modeling framework of
content pollution in peer-to-peer video streaming systems,”
Computer Networks, vol. 53, no. 15, pp. 2703–2715, 2009.

[23] W. Dong, S. B. Yang, and L.-T. Guo, “Object reputation based
anti-pollution P2P file sharing system,” in Proceedings of the 1st
International Conference on Digital Information Management,
pp. 538–543, Bangalore, India, December 2006.

[24] Z. Cai, R. Chen, J. Feng, C. Tang, Z. Chen, and J. Hu, “A holistic
mechanism against file pollution in peer-to-peer networks,” in
Proceedings of the 24th Annual ACM Symposium on Applied
Computing (SAC ’09), pp. 28–34, Honolulu, Hawaii, USA,
March 2009.

[25] M. P. Barcellos, L. P. Gaspary, W. L. da Costa Cordeiro, and R.
S. Antunes, “A conservative strategy to protect P2P file sharing
systems from pollution attacks,” Concurrency Computation
Practice and Experience, vol. 23, no. 1, pp. 117–141, 2011.

[26] K. Shin and D. S. Reeves, “Winnowing: protecting P2P systems
against pollution through cooperative index filtering,” Journal
of Network and Computer Applications, vol. 35, no. 1, pp. 72–84,
2012.

[27] I. S. Reed and G. Solomon, “Polynomial codes over certain
finite fields,” Journal of the Society for Industrial and Applied
Mathematics, vol. 8, no. 2, pp. 300–304, 2006.

[28] P. Corbett, B. English, A. Goel et al., “Row-diagonal parity for
double disk failure correction,” inProceedings of the 3rdUSENIX
Conference on File and Storage Technologies (FAST ’04), pp. 1–14,
San Francisco, Calif, USA, 2004.

18 International Journal of Distributed Sensor Networks

[29] L. Xu and J. Brack, “X-code: MDS array codes with optimal
encoding,” IEEETransactions on InformationTheory, vol. 45, no.
1, pp. 272–276, 1999.

[30] L. Xu, V. Bohossian, J. Bruck, and D. G. Wagner, “Low-density
MDS codes and factors of complete graphs,” IEEE Transactions
on Information Theory, vol. 45, no. 6, pp. 1817–1826, 1999.

[31] M. Blaum, J. Bruck, and A. Vardy, “MDS array codes with
independent parity symbols,” IEEE Transactions on Information
Theory, vol. 42, no. 2, pp. 529–542, 1996.

[32] C. S. Tau and T. I. Wang, “Parity placement schemes to facilitate
recovery from triple column disk failure in disk array sys-
tems,” IEICE Transactions on Fundamentals of Electronics, Com-
munications and Computer Sciences, vol. 89, no. 2, pp. 583–591,
2006.

[33] C. S. Tau and T. I. Wang, “Independent row-oblique parity
for double disk failure correction,” IEICE Transactions on Fun-
damentals of Electronics, Communications and Computer Sci-
ences, vol. 89, no. 2, pp. 592–599, 2006.

[34] B. Cohen, “The bittorrent protocol specification version 11031,”
2008.

[35] T. Karagiannis, A. Broido, N. Brownlee, K. Claffy, and M.
Faloutsos, “File-sharing in the internet: a characterization of
P2P traffic in the backbone,” Tech. Rep., University of Califor-
nia, Riverside, Calif, USA, 2003.

[36] Y. Kulbak and D. Bickson, “The eMule Protocol Specification,”
eMule Project, 2005, http://sourceforge.net/.

[37] E. Costa-Montenegro, J. C. Burguillo-Rial, F. Gil-Castieira,
and F. J. Gonzlez-Castao, “Implementation and analysis of
the BitTorrent protocol with a multi-agent model,” Journal of
Network and Computer Applications, vol. 34, no. 1, pp. 368–383,
2011.

[38] N. F. Johnson, Z. Duric, S. Jajodia, andN.Memon, “Information
hiding: steganography and watermarking-attacks and counter-
measures,” Journal of Electronic Imaging, vol. 10, no. 3, pp. 825–
826, 2001.

[39] C. C. Chang, T. D. Kieu, and W. C. Wu, “A lossless data
embedding technique by joint neighboring coding,” Pattern
Recognition, vol. 42, no. 7, pp. 1597–1603, 2009.

[40] E. Koutrouli and A. Tsalgatidou, “Taxonomy of attacks and
defense mechanisms in P2P reputation systems—lessons for
reputation system designers,” Computer Science Review, vol. 6,
no. 2-3, pp. 47–70, 2012.

[41] H. Zhao, X. Yang, and X. Li, “An incentive mechanism to
reinforce truthful reports in reputation systems,” Journal of Net-
work andComputerApplications, vol. 35, no. 3, pp. 951–961, 2012.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

