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Data aggregation is an important method to reduce the energy consumption in wireless sensor networks (WSNs); however,
it suffers from the security problems of data privacy and integrity. Existing solutions either have large communication and
computation overheads or only produce inaccurate results. This paper proposes a novel secure data aggregation scheme based
on homomorphic primitives inWSNs (abbreviated as SDA-HP).The scheme adopts a symmetric-key homomorphic encryption to
protect data privacy and combines it with homomorphic MAC synchronically to check the aggregation data integrity. It compares
the scheme with the previously known methods such as SIES, iPDA, and iCPDA in terms of the data privacy protection efficiency,
integrity performance, computation overhead, communication overhead, and data aggregation accuracy. Simulation results and
performance analysis show that our SDA-HP requires less communication and computation overheads than previously known
methods and can effectively preserve data privacy, check data integrity, and achieve high data transmission efficiency and accurate
data aggregation rate while consuming less energy to prolong network lifetime. To the best of our knowledge, this is the first work
that provides both integrity and privacy based on homomorphic primitives.

1. Introduction

Currently, wireless sensor networks (WSNs) have many pop-
ular applications, such as real-time accident reporting, envi-
ronment monitoring, and military investigation. In WSNs,
sensors are deployed to gather different kinds of data within
a certain range and send them to the base station (BS).
Sensors are restricted by energy consumption due to battery
supply and computational capacity; therefore, energy saving
technologies must be considered. Data aggregation [1] is
one of the important approaches to facilitate the utilization
of WSNs. However, WSNs are often deployed in an open
and hostile environment; the inherent characteristics of
WSNs and data aggregation algorithms make WSNs data
aggregation face many security and performance challenges,
such as data integrity; privacy protection, and how to enhance
the security and performance becomes the key issues for
practical applications.

In recent years, some schemes [2–5] have been pro-
posed focusing on guaranteeing the data privacy during data
aggregation phase, but these do not protect the integrity of
aggregation data sent to the BS. A compromised aggregator
may arbitrarily forge aggregation data and let the BS accept
them. Other schemes [6–8] are proposed to guarantee the
data integrity, but these lead to the leakage of data privacy
due to decryption at aggregator. In this paper, we aim to
bridge this gap in secure data aggregation and focus on
preserving data privacy and integrity simultaneously through
data aggregation phase in WSNs.

Many innovative secure data aggregation schemes have
been proposed, and a survey of these works is presented in
the literature [1].These solutions fall into twomain categories:
hop-by-hop and end-to-end secure data aggregation. The
hop-by-hop schemes are vulnerable to attacks because the
data will be decrypted on aggregators and often have to
enhance the security by using the expensive encryption

Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2014, Article ID 962925, 11 pages
http://dx.doi.org/10.1155/2014/962925



2 International Journal of Distributed Sensor Networks

and decryption algorithms; thus, the communication and
computation overheads are large. The end-to-end schemes
seemmore secure; the data are transparent to the aggregators
which can aggregate and transfer the encrypted data without
decrypting them, and the end-to-end privacy is achieved by
using homomorphic encryption (HE). HE allows the cipher-
text to be aggregated directly, then the decrypted aggregation
resultmatches the result of aggregation operations performed
on plaintext. HE has been widely used for data aggregation in
WSNs [9, 10]. However, the existing HE schemes suffer from
the data integrity issue.

Since the incoming packets have been aggregated by
aggregators, data integrity cannot be checked by the con-
ventional MACs method. Therefore, we propose a novel
integrity protection scheme for data aggregation based on
homomorphic MAC (HM). HM is an energy-efficient sym-
metric approach, and it is first designed to check the integrity
of network coded data [11]. However, it cannot be used
directly inWSNs due to its complicated set of parameters and
steps. Therefore, we remove an unnecessary step and some
parameters in the original scheme and then adapt it to protect
the integrity of data aggregation for energy constraint WSNs,
and combine it with the symmetric-key HE [12] to protect
data privacy. Then, we originally propose a novel secure
data aggregation scheme based on homomorphic primitives
(SDA-HP).This scheme relies on the combination of a revised
version of the HM and the new symmetric-key HE [12]
synchronically for WSNs. To the best of our knowledge,
our proposed method is the first work that addresses data
aggregation supporting both integrity and confidentiality
based onhomomorphic primitives.Theproposed scheme can
significantly improve the transmission efficiency and energy
efficiency, shorten the communication delay, and achieve
accurate data aggregation.

The rest of this paper is organized as follows. Section 2
presents the existing approaches to privacy protection and
integrity in WSNs. Section 3 discusses the background and
assumptions about the problem we are trying to solve.
Section 4 presents a new secure data aggregation scheme
based on homomorphic primitives. Section 5 analyzes the
security performance and experimental results to prove the
effectiveness and efficiency of our scheme. Section 6 gives
conclusions and some future work.

2. Related Work

To solve both integrity and privacy issues for data aggre-
gation phase in WSNs, Ozdemir and Çam [13] propose an
authentication protocol to integrate false data detection with
data aggregation and confidentiality; themonitoring nodes of
every aggregator also perform data aggregation and compute
theMACs for data verification; then, the sensors between two
consecutive aggregators verify the integrity of the encrypted
data. However, it has some flaws: (i) topological constraints
that require at least 𝑇 nodes on the path between any two
consecutive data aggregators, (ii) nonneighboring sensors
which need to spend longer time to establish pairwise keys,
whichmay incur attacks for adversary, and (iii) compromised

nodes which are likely to obtain group key through group key
establishment process, which causes the data privacy leakage.

He et al. present two new data aggregation schemes,
named iPDA [14] and iCPDA [15], which piggyback on
SMART [2] and CPDA [2] schemes respectively. iPDA
achieves privacy protection through data slicing and assem-
bling technique as SMART and achieves integrity through
redundancy by constructing disjoint aggregation trees. In
iCPDA protocol, cluster members can detect data pollution
attacks through monitoring the cluster leaders, so iCPDA
spends a little more message overhead to achieve data
integrity. However, both schemes need much more commu-
nication and computation overheads.

Chan et al. [16] present the first provably secure hierarchi-
cal data aggregation scheme based on aggregation-commit-
verify approach, which forces the adversary to commit to its
choice of aggregation results and then allows the sensors to
verify whether their aggregation contributions are correct or
not. Although this secure aggregation scheme can be used
for arbitrary topologies and multiple malicious nodes, the
communication and computation overheads are still very
large. Then, Frikken and Dougherty [17] improve Chan’s
scheme by reducing the maximum communication per node
from 𝑂(Δ log2 𝑛) to 𝑂(Δ log 𝑛), where Δ is the maximum
degree of the aggregation tree and 𝑛 is the number of nodes
in WSNs.

In order to mitigate the drawbacks of the hop-by-hop
schemes, some end-to-end protocols are proposed. Chen
et al. [18] propose a recoverable concealed data aggrega-
tion scheme for data integrity in WSNs, named RCDA. It
integrates the aggregate signature scheme to ensure data
integrity and authenticity and can recover all sensing data
even these data which have been aggregated; however, it
is not practical for large scale network deployment due
to its high costs. Castelluccia et al. [19] present a simple
and provably secure scheme based on an extension of the
one-time pad encryption technique. This scheme allows
efficient additive aggregation of encrypted data, and only one
modular addition overmodulo 𝑛 is necessary for aggregation.
The privacy and integrity of the scheme are based on the
indistinguishability of a pseudorandom function, but its
aggregation authentication scheme is only against outsider
attacks. Papadopoulos et al. [20] present a scheme, named
SIES, that provides both integrity and confidentiality through
combination of homomorphic encryption and secret sharing.
It can cover numerous aggregates and return exact results.
Although this scheme only introduces a small amount of
bandwidth consumption, the data transmission efficiency is
low due to the oversize space of secret keys.

Garofalakis et al. [21] and Roy et al. [22] propose some
lightweight secure data aggregation schemes which return
approximate aggregation results securely based on synopsis
diffusion approach. It can tolerate the malicious activities in
the compromised nodes that contribute false subaggregate
values. Though secure approximate aggregation is an inter-
esting domain, it is orthogonal to our work.
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Figure 1: Aggregation tree.

3. Background and Assumptions

Section 3.1 describes in-network aggregation techniques.
Section 3.2 provides some useful homomorphic primitive
tools.

3.1. In-Network Aggregation

3.1.1. System Architecture. We assume a large number of
sensors to form a query-based WSN, where a multihop
routing protocol can be applied. Sensors will be organized
as a tree topology where BS locates at the root, as shown in
Figure 1. Each sensor acts as either a leaf sensor (L) or an
aggregator (A), or both. Aggregation tree is constructed by
using the TAG [23] protocol, and the BS is assumed to broad-
cast an authenticated query before aggregation. Each node
collects environmental readings and an aggregator performs
sum aggregation due to resource constrains. Without loss of
generality, we focus on additive aggregation. It is not a too
restrictive assumption, in respect of that it serves as the base
of many other statistics aggregations, such as count, average,
and variance.

3.1.2. Attack Model. We assume there are some polynomially
bounded adversary that can perform attacks to break the
privacy and integrity of aggregation results.

In this paper, we focus on two types of attacks:

(i) eavesdropping attacks: overhearing the sensors trans-
mission data over its neighboring wireless links, the
privacy of system can be compromised;

(ii) stealthy attacks: it is an intelligent attack to disinform
a sensor network in a manner that to escape from
attack discovery; that is, the BS accepts false sensors
aggregation data.

Our goal is to propose a secure data aggregation scheme,
which is robust against eavesdropping and stealthy attacks,
efficient in keeping the additional overhead as small as
possible, and effective in achieving accurate aggregation
results.

3.2. Homomorphic Primitive Tools

3.2.1. Homomorphic Encryption. HE allows direct addition
and multiplication of ciphertexts. Let 𝑚

1
and 𝑚

2
be two

plaintexts and let ⊗, × be the homomorphic operations
on the ciphertexts and plaintexts, respectively; we have
Enc(𝑚

1
)⊗Enc(𝑚

2
) = Enc(𝑚

1
×𝑚
2
), where Enc(𝑚) represents

the ciphertext of 𝑚. For example, original Rivest’s scheme
[24] is homomorphic, supposing that 𝑝 and 𝑞 are large
primes and 𝑛 = 𝑝𝑞, where 𝑛 is a public key, and (𝑝, 𝑞)

is a private key. The encryption function is 𝐸
(𝑝,𝑞)

(𝑚) =

(𝑚mod𝑝, 𝑚mod 𝑞). We can reduce the two components
mod𝑝 and mod 𝑞 through applying the Chinese remainder
theorem (CRT) [25]. Component-wise multiplications and
additions of ciphertexts result in the corresponding multipli-
cations and additions of plaintexts.

If 𝐸
(𝑝,𝑞)

(𝑚
1
) = (𝑥

1
, 𝑦
1
) and 𝐸

(𝑝,𝑞)
(𝑚
2
) = (𝑥

2
, 𝑦
2
), then

𝐸
(𝑝,𝑞)

(𝑚
1
+ 𝑚
2
) = Add (𝐸

(𝑝,𝑞)
(𝑚
1
) , 𝐸
(𝑝,𝑞)

(𝑚
2
))

= (𝑥
1
+ 𝑥
2
mod 𝑛, 𝑦

1
+ 𝑦
2
mod 𝑛)

𝐸
(𝑝,𝑞)

(𝑚
1
𝑚
2
) = Multi (𝐸

(𝑝,𝑞)
(𝑚
1
) , 𝐸
(𝑝,𝑞)

(𝑚
2
))

= (𝑥
1
𝑥
2
mod 𝑛, 𝑦

1
𝑦
2
mod 𝑛) .

(1)

3.2.2. Homomorphic MAC. Homomorphic MAC [11] should
satisfy the following properties.

(i) Homomorphism: given (message, tag) pairs (𝑚
1
, 𝑡
1
)

and (𝑚
2
, 𝑡
2
), we can compute a valid tag 𝑡

𝑎
= 𝑤
1
𝑡
1
+

𝑤
2
𝑡
2
for an aggregated message 𝑚

𝑎
= 𝑤
1
𝑚
1
+

𝑤
2
𝑚
2
, where 𝑤

1
and 𝑤

2
are weights of 𝑚

1
and 𝑚

2
,

respectively.

(ii) Security against the chosen message attack: it is
infeasible for the adversary to create a valid tag for
an aggregated message even under a chosen message
attack.

The modified homomorphic MAC includes three
polynomial-time algorithms.

(i) Sign algorithm: 𝑡
𝑖
= sign(𝑘, rid, 𝑚

𝑖
, id
𝑖
), where id

𝑖
and

𝑚
𝑖
are the id and raw message of node 𝑖, respectively,

rid is the id of report, and 𝑘 is key.

(ii) Aggregation algorithm: 𝑡 = aggregate((𝑚
1
, 𝑡
1
, 𝑤
1
),

. . . , (𝑚
𝑗
, 𝑡
𝑗
, 𝑤
𝑗
)), that is; we can compute a tag 𝑡 =

∑
𝑗

𝑖=1
𝑤
𝑖
𝑡
𝑖
for the aggregated message 𝑚 = ∑

𝑗

𝑖=1
𝑤
𝑖
𝑚
𝑖

in the absence of key.

(iii) Verify algorithm: verify(𝑘, rid, 𝑚, 𝑡); that is, BS can
verify the integrity of aggregation result by using 𝑘,
rid, and tag 𝑡.

Definition 1. Let T be a homomorphic MAC scheme and
let Adv(A,T) be the probability that adversaries A wins
the security game [11]; if Adv(A,T) is negligible for all
polynomial time adversariesA, then the schemeT is secure.
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Figure 2: Sequence flow diagram of SDA-HP.

4. Secure Data Aggregation Based on
Homomorphic Primitives

This section describes the details of SDA-HP scheme. The
sequence flow diagram of SDA-HP consists of tree formatting
phase, key generation phase, sign-encrypt phase, aggregation
phase, and decrypt-verify phase, as shown in Figure 2.

4.1. Tree Formatting Phase. An aggregation tree is con-
structed according to the standard aggregation protocol
TAG [23]; the formation method of the aggregation tree is
illustrated as follows.

Step 1. BS is appointed to be the root, which broadcasts a
message requesting sensors to generate an aggregation tree. In
that message, it contains its own ID and its level information
𝐿V (e.g., zero).

Step 2. When receiving the message from BS, any sensor not
in the aggregation tree should assign its own level 𝐿V to be the
level in themessage plus one 𝐿V+1 and select the sender node
as its parent, through which the sensor will route messages to
the root.

Step 3. Each node of the aggregation tree rebroadcasts the
message containing its own ID and level.When it receives the
message, if any node has already been in the tree, it will reject
the message, otherwise, the node also assigns its level 𝐿V to
be the level in the message plus one 𝐿V + 1. When all nodes
have been covered and their level and parent information are
generated, an aggregation tree is constructed.

Step 4. During the aggregation phase, each sensor listens
for messages from its children and then computes a partial

state record which is the aggregate of children values with
its own sensor readings. Eventually, the partial state record
is transmitted upward along the tree, until the complete
aggregated result converges at the root.

4.2. Key Generation Phase. This scheme uses 2𝑑 + 2 private
keys, which are denoted by 𝐾 = (𝑝, 𝑞, 𝑟

1
, . . . , 𝑟

𝑖
, . . . , 𝑟

𝑑
,

𝑠
1
, . . . , 𝑠

𝑖
, . . . , 𝑠

𝑑
), where 𝑝 and 𝑞 are large primes, 1 ≤ 𝑖 ≤ 𝑑,

and uses one public key, which is 𝑛 = 𝑝𝑞. We can preload
these keys into sensors so that they can work correctly after
being spread out, or the sensors can load the keys shared with
BS.

4.3. Sign-Encrypt Phase. The encryption function is of the
form:

𝐸
𝐾
(⋅) : Z

𝑛
󳨀→ (Z

𝑛
× Z
𝑛
)
𝑑

. (2)

To formally present our scheme, message𝑚
𝑖
is formed as

𝑑 arbitrary numbers of 𝑙 bits. Let 𝑏 = 2
𝑙; then the message

space is F𝑑
𝑏
. In other words, message 𝑚

𝑖
can be represented

as a vector of 𝑑 numbers (𝑚
𝑖1
, 𝑚
𝑖2
, . . . , 𝑚

𝑖𝑑
), where 𝑚

𝑖
=

∑
𝑑

𝑗=1
𝑚
𝑖𝑗
mod 𝑛 and𝑚

𝑖𝑗
∈ F
𝑏
.

To generate and verify tags, there is one global MAC key
that consists of (𝑘

1
, 𝑘
2
), which is shared between contributors

and verifiers. LetK
1
andK

2
denote the key spaces of 𝑘

1
and

𝑘
2
, respectively, letI denote the space of node identities, and

let R denote the space of report identifies. We implement
the pseudorandom generator 𝐺 : K

1
→ F𝑑

𝑏
and the

pseudorandom function 𝐹 : (K
2
× I × R) → F

𝑏
using

AES [26]. The details of this phase are given as follows.
Sign-encrypt (𝑘, rid, 𝑚

𝑖
, id
𝑖
, 𝑟
𝑖
, 𝑠
𝑖
, 𝑝, 𝑞), by a contributor

node 𝑖.

(1) 𝑢 = 𝐺(𝑘
1
) ∈ F𝑑
𝑏
.

(2) V
𝑖
= 𝐹(𝑘

2
, id
𝑖
, rid) ∈ F

𝑏
.

(3) 𝑡
𝑖
= 𝑢 ∘ 𝑚

𝑖
+ V
𝑖
∈ F
𝑏
//, where ∘ stands for the inner

product of vectors 𝑢 and𝑚
𝑖
over finite field F

𝑏
.

(4) Randomly generate 𝑟
𝑖
< 𝑝 and 𝑠

𝑖
< 𝑞, ∀𝑖 ∈ [1, 𝑑]

which are secret.
(5) Consider

𝐸
𝐾
(𝑚
𝑖
) = ((𝑚

𝑖1
𝑟
1
mod𝑝, 𝑚

𝑖1
𝑠
1
mod 𝑞) ,

(𝑚
𝑖2
𝑟
2
mod𝑝, 𝑚

𝑖2
𝑠
2
mod 𝑞) , . . . ,

(𝑚
𝑖𝑑
𝑟
𝑑
mod𝑝, 𝑚

𝑖𝑑
𝑠
𝑑
mod 𝑞))

= ((𝑥
𝑖1
, 𝑦
𝑖1
) , (𝑥
𝑖2
, 𝑦
𝑖2
) , . . . , (𝑥

𝑖𝑑
, 𝑦
𝑖𝑑
)) ∈ F

2𝑑

𝑏
.

(3)

4.4. Aggregation Phase. Aggregate ((𝐸
𝐾
(𝑚
1
), 𝑡
1
, 𝑤
1
), . . . ,

(𝐸
𝐾
(𝑚
𝑖
), 𝑡
𝑖
, 𝑤
𝑖
)), by an aggregator.

(1) 𝑦 = ∑
𝑗

𝑖=1
𝑤
𝑖
𝐸
𝐾
(𝑚
𝑖
)mod 𝑛 ∈ F2𝑑

𝑏
//, where the additive

operation is over F
𝑏
and 𝑤

𝑖
is weight of𝑚

𝑖
.

(2) 𝑡 = ∑
𝑗

𝑖=1
𝑤
𝑖
𝑡
𝑖
∈ F
𝑏
.
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4.5. Decrypt-Verify Phase. Decrypt-verify (𝑘, rid, 𝑚
𝑖
, 𝑡
𝑖
), by

the BS with the knowledge of contributor identities and
weights.

(1) Suppose 𝑦 = ∑
𝑗

𝑖=1
𝑤
𝑖
𝐸
𝐾
(𝑚
𝑖
)mod 𝑛 = ((𝑥

1
, 𝑦
1
),

(𝑥
2
, 𝑦
2
), . . . , (𝑥

𝑑
, 𝑦
𝑑
)),

𝑦
󸀠
= ((𝑥

1
𝑟
−1

1
mod𝑝, 𝑦

1
𝑠
−1

1
mod 𝑞) ,

(𝑥
2
𝑟
−1

2
mod𝑝, 𝑦

2
𝑠
−1

2
mod 𝑞) , . . . ,

(𝑥
𝑑
𝑟
−1

𝑑
mod𝑝, 𝑦

𝑑
𝑠
−1

𝑑
mod 𝑞))

= ((𝑥
󸀠

1
, 𝑦
󸀠

1
) , (𝑥
󸀠

2
, 𝑦
󸀠

2
) , . . . , (𝑥

󸀠

𝑑
, 𝑦
󸀠

𝑑
)) .

(4)

//Multiply each component with the corresponding
𝑟
−1

𝑖
and 𝑠
−1

𝑖
in mod𝑝 and mod 𝑞, respectively.

(2) Use CRT to find𝑚 = (𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑑
(mod 𝑛))

𝑚
1
(mod 𝑛) = 𝑥

󸀠

1
𝑞𝑞
−1

+ 𝑦
󸀠

1
𝑝𝑝
−1

(mod 𝑛)

𝑚
2
(mod 𝑛) = 𝑥

󸀠

2
𝑞𝑞
−1

+ 𝑦
󸀠

2
𝑝𝑝
−1

(mod 𝑛)

...

𝑚
𝑑
(mod 𝑛) = 𝑥

󸀠

𝑑
𝑞𝑞
−1

+ 𝑦
󸀠

𝑑
𝑝𝑝
−1

(mod 𝑛) .

(5)

(3) 𝑚 = ∑
𝑑

1
𝑚
𝑖
.

(4) 𝑢 = 𝐹(𝑘
1
) ∈ F𝑑
𝑏
.

(5) V = ∑
𝑗

𝑖=1
[𝑤
𝑖
⋅ 𝐹(𝑘
2
, id
𝑖
, rid)] ∈ F

𝑏
.

(6) If 𝑢 ∘ 𝑚 + Vmod 𝑏 = 𝑡, BS accepts the result 𝑚, else
refuses the result𝑚.

4.6. An Example of SDA-H. Let𝑝 = 11, 𝑞 = 13; then, 𝑛 = 143.
For simplicity, let 𝑑 = 2; that is, each plaintext message is split
into 2 separated parts. Let 𝑟

1
= 5, 𝑟
2
= 7, 𝑠
1
= 6, 𝑠
2
= 8.

Suppose there are two plaintexts in Z
143

: 𝑚
1
= 7 and

𝑚
2
= 10; corresponding weights are 𝑤

1
= 4 and 𝑤

2
= 3,

respectively. Suppose 𝑢 = (2, 4) ∈ F2
64
, V
1
= 3, V

2
= 5 ∈ F

64
,

which are computed by the pseudorandom function using
AES. The scheme runs as follows.

Step 1. Sign-encrypting𝑚
1
and𝑚

2
.

Decompose𝑚
1
into𝑚

11
= 2 and𝑚

12
= 5:

𝑡
1
= 𝑢 ∘ 𝑚

1
+ V
1
= (2, 4) ∘ (2, 5) + 3 = 27

𝐸
𝐾
(𝑚
1
) = ((2 × 5mod 11, 2 × 6mod 13) ,

(5 × 7mod 13, 5 × 8mod 13))

= ((10, 12) , (2, 1)) .

(6)

Decompose𝑚
2
into𝑚

21
= 3 and𝑚

22
= 7:

𝑡
2
= 𝑢 ∘ 𝑚

2
+ V
2
= (2, 4) ∘ (3, 7) + 5 = 39

𝐸
𝐾
(𝑚
2
) = ((2 × 5mod 11, 2 × 6mod 13) ,

(5 × 7mod 13, 5 × 8mod 13))

= ((10, 12) , (2, 1)) .

(7)

Step 2. Aggregating (𝐸
𝐾
(𝑚
1
), 𝑡
1
, 𝑤
1
), . . . , (𝐸

𝐾
(𝑚
𝑖
), 𝑡
𝑖
, 𝑤
𝑖
):

𝑦 = (𝑤
1
𝐸 (𝑚
1
) + 𝑤
2
𝐸 (𝑚
2
))

= ((4 × 10 + 3 × 4, 4 × 12 + 3 × 5) ,

(4 × 2 + 3 × 5, 4 × 1 + 3 × 4))mod 143

= ((52, 63) , (23, 16)) ,

𝑡 =

𝑗

∑

𝑖=1

𝑤
𝑖
𝑡
𝑖
= 4 × 27 + 3 × 39mod 64 = 33.

(8)

Step 3. Decrypt verifying:

𝑟
−1

1
= 5
−1

≡ 9mod 11, 𝑟
−1

2
= 7
−1

≡ 8mod 11

𝑠
−1

1
= 6
−1

≡ 11mod 13, 𝑠
−1

2
= 8
−1

≡ 5mod 13

𝑝
−1

= 11
−1

≡ 6mod 13, 𝑞
−1

= 13
−1

≡ 6mod 11

𝑦
󸀠
= ((52 × 9mod 11, 63 × 11mod 13) ,

(23 × 8mod 11, 16 × 5mod 13))

= ((6, 4) , (8, 2)) .

(9)

Using CRT, the two components of the result𝑚 are

𝑚
1
= 6 × 13 × 6 + 4 × 11 × 6 (mod 143) = 17

𝑚
2
= 8 × 13 × 6 + 2 × 11 × 6 (mod 143) = 41

𝑚 = 𝑚
1
+ 𝑚
2
= 58.

(10)

For computing homomorphicMAC, aswe know from the
above:

𝑢 = (2, 4)

V = (4 × 3 + 3 × 5) = 27

𝑢 ∘ 𝑚 + V = (2, 4) ∘ (17, 41) + 27mod 64 = 33 = 𝑡.

(11)

Hence; the result𝑚 is accepted.

Actually, we may set 𝑟
𝑖
= 𝑠
𝑖
= 𝑐, ∀𝑖, where 𝑐 is a random

number, to reduce the temporary key storage requirement of
each sensor.

In SDA-HP, for the convenience of performance analysis,
we let 𝑑 = 2, 𝑙 = 32. Considering the over flow during
aggregation phase, we add the extra log

2
𝑁 bits in𝑚

𝑖
. Figure 3

depicts the data format of 𝐸
𝐾
(𝑚
𝑖
) and the tag of𝑚

𝑖
. The extra

bits required cannot be more than log
2
𝑁 when 𝑁 numbers

are aggregated. Since the padding in 𝑚
𝑖
can be up to 2 bytes,

our scheme can support up to 𝑁 = 2
16 sources. We also can

moderately expand the extra bits to meet the requirement.
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xi1 yi1 xi2 yi2 ti

2bytes 2bytes 2bytes 2bytes 2bytes 4bytes4bytes4bytes4bytes4bytes

0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

Figure 3: Data format of 𝐸
𝐾
(𝑚
𝑖
) and𝑚

󸀠

𝑖
tag.

Table 1: Simulation parameters.

Radio parameters Topology parameters
White Gaussian
noise Noise floor Number of

nodes
Terrain

dimensions

4 dB −105 dB 600 400 meters ×
400 meters

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

(m)

(m
)

Figure 4: Nodes distribution.

5. Simulation and Analysis

In this section, we evaluate performances of SDA-HP scheme
in terms of security properties, power analysis, and aggre-
gation accuracy. The simulation is conducted in TOSSIM
system operated by TinyOS 2.0. Table 1 shows the parameters
setting in the simulation, and Figure 4 depicts the topology
of nodes, where the BS coordinate is (200,200).

5.1. Privacy Protection. Secure to ciphertext-only attacks:
SDA-HP is secure as long as factoring integer composite of
large primes is difficult. In addition, test for encrypted zero
in SDA-HP is unlikely according to the literature [12]. It is
hard for an adversary to breach all encryption keys or find
the plaintext𝑚

𝑖
if it knows only the ciphertext 𝐸

𝐾
(𝑚).

We denote 𝑎 as the probability that one key is broken and
𝑝(𝑎) as the probability that plaintext𝑚

𝑖
is disclosed for a given

𝑎, and then take𝑝(𝑎) as a confidentiality performancemetric.
When the message is broken down into 𝑑 numbers, the num-
ber of keys is 2(𝑑+1), so 𝑝(𝑎) = 𝑎

2(𝑑+1). In the predistribution
phase, a large key pool of 𝐾 keys is generated and 2(𝑑 + 1)

keys are randomly selected from the key pool independently;
therefore, the probability that an adversary breaches all keys
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Figure 5: 𝑝(𝑎) under SDA-HP.

can be approximated by 𝑝(𝑎) = (1/𝐾)
2(𝑑+1)

= 𝑎
2(𝑑+1).

Figure 5 describes the system confidentiality performance
under different values of 𝑑. Obviously, the larger the value of
𝑑, the better data confidentiality, can be achieved. However,
a larger 𝑑 will also require larger temporary storage space
and computation and communication overheads, so there
is a design tradeoff between the confidentiality protection,
storage space, computation overhead, and communication
overhead.

In the scheme, we proposed to limit 𝑑 to a value in the
range of 2–4 to balance the security protection and energy
consumption.

The scheme SDA-HP uses homomorphic encryption to
achieve end-to-end data confidentiality, so addition and
scalar multiplication of the ciphertexts are just component-
wise vector addition and scalar multiplication of the corre-
sponding 𝑑-tuples. Even if the aggregation data is disclosed,
the adversary can only get the aggregation result but not
sensor data.

5.2. Integrity Performance

Definition 2. Assuming 𝐹 and 𝐺 are secure,B
1
is a 𝐹 adver-

sary, andB
2
is a 𝐺 adversary. One defines Adv(B

1
, 𝐹) isB󸀠

1

advantage in winning the 𝐹 security game, and Adv(B
2
, 𝐹) is

B󸀠
2
advantage in winning the 𝐺 security game.

Theorem 3. Assuming 𝐹 and 𝐺 are secure, the homomorphic
MAC scheme is secure for any fixed 𝑏 and 𝑛. Also, for all
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homomorphic MAC scheme T adversaries A, there are the 𝐹
adversary B

1
and the 𝐺 adversary B

2
which suffice for the

inequation, which is Adv(A,T) ≤ Adv(B
1
, 𝐹)+Adv(B

2
, 𝐺)+

(1/𝑏).

Proof. We use three games to prove the theorem. Supposing
𝐸
𝑖
is the event, the A wins the homomorphic MAC security

game in Game 𝑖 for 𝑖 = 1, 2, 3.
Game 1 is the same to Attack Game 1 [11] applied to the

schemeT. So there is

Pr (𝐸
1
) = Adv (A,T) . (12)

In Game 2, if we use a truly random string instead of the
output of𝐺 in the schemeT, that is, the challenger computers
𝑢
𝑅

← F𝑑
𝑏
instead of 𝑢 ← 𝐺(𝑘

1
) in the process of Sign-encrypt,

then Game 2 is the same as Game 1. So there is an𝐺 adversary
B
2
such that

󵄨󵄨󵄨󵄨Pr (𝐸1) − Pr (𝐸
2
)
󵄨󵄨󵄨󵄨 = Adv (B

2
, 𝐺) . (13)

In Game 3, if we use a truly random string instead of 𝐹 in the
schemeT, that is, the challenger computers V

𝑖

𝑅

← F
𝑞
instead

of V
𝑖
← 𝐹(𝑘

2
, id
𝑖
, rid) in the process of Sign-encrypt, then the

Game 3 is the same to the Game 2. So there is a 𝐹 adversary
B
1
such that

󵄨󵄨󵄨󵄨Pr (𝐸2) − Pr (𝐸
3
)
󵄨󵄨󵄨󵄨 = Adv (B

1
, 𝐹) . (14)

The challenger in Game 3 works as follows:

initialization : 𝑢
𝑅

← F
𝑑

𝑏
. (15)

The adversary submits MAC queries (𝑚
𝑗
, rid
𝑖
), and the

challenger responds to rid
𝑖
as follows.

For 𝑗 = 1, 2, . . . , 𝑛 do

V
𝑗

𝑅

←󳨀 F
𝑏
, 𝑇
𝑗
←󳨀 (𝑢 ⋅ 𝑚

𝑗
) + V
𝑗
∈ F
𝑏

(16)

send (𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑛
) toA.

Then, the adversary A outputs (rid∗, 𝑇∗, 𝑚∗). We first
compute the V∗

𝑗
as follows.

If rid∗ = rid
𝑖
, then;

set (V∗
1
, V∗
2
, . . . , V∗

𝑛
) ← (V

1
, V
2
, . . . , V

𝑛
)//forgery type 2;

else for 𝑗 = 1, 2, . . . , 𝑛 set V∗
𝑗

𝑅

← F
𝑏
//forgery type 1.

Let 𝑚∗ = (𝑚
∗

1
, 𝑚
∗

2
, . . . , 𝑚

∗

𝑛
). The adversary wins if 𝑇∗ =

(𝑢 ⋅ 𝑚
∗
) + ∑
𝑛

𝑗=1
V∗
𝑗
. For adversary type 2,𝑚∗ ∉ 𝑚

𝑗
.

Let 𝐸
∗ be the event that the adversary outputs an

adversary type 1. According to the literature [11], we can
obtain

Pr (𝐸
3
) = Pr (𝐸

3
∧ 𝐸
∗
) + Pr (𝐸

3
∧ ¬𝐸
∗
)

=
1

𝑏
(Pr (𝐸∗) + Pr (¬𝐸∗)) = 1

𝑏
.

(17)

All the above equations prove the theorem.

Table 2: Computation effort for SDA-HP.

Computation overhead (at S) Computation overhead (at A)
𝑑 + × % + × %
2 3 6 5 8 0 4
3 5 9 7 12 0 6
4 7 12 9 16 0 8
5 9 15 11 20 0 10
8 15 24 17 32 0 16
10 19 28 19 40 0 20

5.3. Computation Overhead. We evaluate the computation
overhead of SDA-HP for the Micaz Mote with an Atmega 128
CPU and compare it with the known algorithms such as SIES,
iPDA and iCPDA. Both SDA-HP and SIES adopt symmetric-
key homomorphic encryption, and both iPDA and iCPDA
use simple hop-by-hop encryption with RC5. Therefore, the
computational overhead can be determined by the following
equation:

𝐸
𝑗
= 𝑁
𝑐
Cal + 𝑁

𝑒
Enc + 𝑁

𝑑
Dec, (18)

where Enc and Dec are the energy consumptions for one
encryption and decryption process of 10 bits value, and Cal
represents the energy consumption of one computational
operation. 𝑁

𝑐
, 𝑁
𝑒
, and 𝑁

𝑑
denote the number of operations

of computation, encryption, and decryption, respectively.
In SIES, it only needs some basic procedures, which

involve three HMAC operations, one modular addition and
one modular multiplication for every sensor.

In SDA-HP, we suggest that the keys and the parameters
generation phase can be performed by the manufacturer
before theWSN is deployed; furthermore, the pseudorandom
generator is performed using AES regularly, so the energy
consumption for the preconfiguration and pseudorandom
function are not considered here. The computational over-
head for an encryption and integrity protection at the sensor
nodes depends on the choice of 𝑑.We illustrate the number of
major operations with different 𝑑 for every sensor in Table 2.
Apparently, the computation and communication overheads
increase with the increasing of 𝑑. Considering the security
performance and the data overhead, we propose to use a
moderate value of 𝑑, which is 𝑑 ≤ 4. SDA-HP retains a
comparable performance to SIES, which is in the order of
hundreds of milliseconds. As expected, the overhead of all
values increases linearly with 𝑑.

However, iPDA and iCPDA involve generating an exces-
sive number of sketches and performing some hop-by-hop
RC5 encryptions and decryptions. iPDA requires in total
six encryptions and decryptions and seven computational
operations. iCPDA includes two encryptions and decryptions
and seventeen computational operations for each leaf sensor.

To determine energy consumptions and computational
time of encryption operations for each sensor, we use the cost
functions for common operations listed by Groat et al. [27],
which are given in Tables 3 and 4. Table 3 depicts the costs of
the transmission and reception of 1 bit of data and computes
for 1CPUclock cycle. Table 4 shows time spent to encrypt and
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Table 3: Energy consumption of common operations [27].

Operation MICAz TelosB
Computer per clock tick 3.5 nJ 1.2 nJ
Transmit 1 bit 0.6 𝜇J 0.72 𝜇J
Receive 1 bit 0.67 𝜇J 0.81 𝜇J

Table 4: Cost to encrypt/decrypt 10 bits of data [27].

Method, architecture Time (ms) Energy (𝜇J)
IDEA Enc, MICAz 2902.12 74.86
IDEA Dec, MICAz 8350.80 215.41
IDEA Enc, TelosB 2673.58 12.83
IDEA Dec, TelosB 7693.27 36.93
RC5 Enc, MICAz 7037.25 181.53
RC5 Dec, MICAz 7035.89 181.49
RC5 Enc, TelosB 6483.06 31.12
RC5 Dec, TelosB 6481.81 31.11
RC4, MICAz 2018.00 52.05
RC4, TelosB 1859.08 8.92

decrypt 10 bits of data on the TelosB andMICAz architectures
with RC5, RC4, and IDEA.

In Figure 6, we assess the computational time for each leaf
sensor. In order to control the relative error within 10%, we
ran every experiment over 25 times and reported the average
cost value.The computational time in SIES and SDA-HP is in
the order of few milliseconds, which outperforms iPDA and
iCPDAby approximately three orders ofmagnitude, since the
computation-expensive RC5 encryptions and decryptions are
performed in iPDA and iCPDA during sending or receiving
data slice. Furthermore, the computational cost of SIES, iPDA
and iCPDA is independent of 𝑑. Therefore, the comparison
result for computation overhead is SIES < SDA-HP < iPDA
(𝑙 = 2) < iCPDA (𝑝

𝑐
= 0.3). Actually, since the SDA-HP

needs to compute the tags of every message to check the
data integrity, it has to spend more computation time than
SIES. Although SIES also achieves data integrity by attaching
the secret sharing in message, the secret sharing occupies
28 bytes space, and the data transmission efficiency is only
4/32 = 12.5%. However, as we can see from Figure 3, the
primary sensor data of SDA-HP occupies 12 bytes, so the data
transmission efficiency is 12/30 = 40%, which outperforms
SIES by 27.5%.

5.4. Communication Overhead. We compare the communi-
cation overhead among SDA-HP, SIES, iPDA, and iCPDA.
The above four schemes adopt TAG to construct the aggrega-
tion tree.The data packet size for SDA-HP, iPDA, and iCPDA
is 30 bytes, and the packet size for SIES is 32 bytes. In order to
make the comparison fairly, we evaluate the communication
overhead through the sum of sending bytes of all sensors
during one aggregation tree construction and aggregation
phase for these four schemes. In order to reduce the relative
error, we run every experiment over 25 times and record
the average value. Figure 7 shows that the communication

overhead for the four schemes is independent of epoch
duration, and the comparison result is SDA-HP < SIES <

iCPDA (𝑝
𝑐
= 0.3) < iPDA (𝑙 = 2).

The theoretical analysis is as the following.
SDA-HP uses the homomorphic encryption to provide

data confidentiality preserving and homomorphic MAC to
check the aggregation data integrity. The number of data
packets sent from every sensor is the same as the TAG,
including one “hello” packet and one aggregation packet.
Accordingly, the number of packets sent from all sensors is
𝑂(2𝑁), and the total bytes are 3.6 × 10

4, s.t.𝑁 = 600.
SIES adopts the homomorphic encryption to protect data

confidentiality and attaches the secret sharing in message to
provide data integrity. The number of data packets sent from
every sensor is the same as SDA-HP. Hence the number of
packets sent from all sensors is also𝑂(2𝑁), and the total bytes
are 3.8 × 10

4.
iPDA is built on data slicing techniques to achieve both

data confidentiality and integrity. The number of data slicing
(𝑙) is at least 2 to ensure the data security, accordingly the
number of packets sent from all sensors is 𝑂((2𝑙 + 1)𝑁), and
the total bytes are 9 × 10

4.
iCPDA adopts secure multiparty computation method

to protect data privacy and uses the sensor surveillance
method to achieve integrity. Figure 8 shows the data packet
interaction phase. Each member sensor needs to send three
packets, and every cluster leader should send four packets,
moreover, in order to check integrity, the cluster leaders also
need to send the aggregation result of sublevel leaders and
themselves to the neighbor monitors; hence, the number of
packets sent from leaders amounts to six. Accordingly, the
number of packets sent from all sensors is 𝑂(3(1 − 𝑝

𝑐
)𝑛 +

6𝑝
𝑐
𝑛) = 𝑂((3 + 3𝑝

𝑐
)𝑛), where 𝑝

𝑐
is the probability of the

sensors which choose themselves as leaders, and the total
bytes are about 7 × 10

4.

5.5. Data Accuracy. In WSNs, message may be delayed and
even dropped due to the processing time and collisions over
wireless channels, so the aggregation accuracy is one of
important performancemetrics. Here, we define the accuracy
metric as the ratio of the actual aggregation result collected by
BS to the sum of the data sent by the all individual sensors.

Figure 9 shows the accuracy for SDA-HP, SIES, iPDA (𝑙 =

2) and iCPDA (𝑝
𝑐

= 0.3). From the simulations, we can
make three conclusions. Firstly, the accuracy of every scheme
increases as the epoch duration increases. The reason is that
the data packets sent within the large epoch duration will be
easy to go through without collision. Secondly, the accuracy
diagram for SDA-HP and SIES is almost the same, and their
accuracy can reach 80% when epoch duration is about 20
seconds, which outperforms that of iPDA and iCPDA.This is
due to the fact that is without the communication, overhead
introduced by sending data slicing, so there will be less data
collisions. Finally, the accuracy of iCPDA is slightly better
than that of iPDA, because the packets sent by the iCPDA
scheme are less than those of the iPDA scheme; therefore, the
iCPDA scheme will have smaller data loss probability than
the iPDA scheme.
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Figure 7: Communication overhead comparison.

6. Conclusion

Protecting data privacy and integrity during data aggregation
at the same time is challenging in hierarchical WSNs. We
originally present SDA-HP, a novel and efficient secure data
aggregation scheme based on the homomorphic encryp-
tion and a revised version of the homomorphic MAC.
Both techniques are lightweight, and they require very few
energy consumptions.Theproposed scheme can achieve high
data transmission efficiency and accurate data aggregation.

Hello

Join (with seed)

Public seeds Cluster memberCluster leader
Aggregation

Concatenated encrypted
customized values

Customized value

Assembled value

Figure 8: The message interaction in cluster of iCPDA.

These features make SDA-HP very suitable to be applied
for resource-constrained WSNs. Subsequently, we prove the
security performance and give an example to illustrate how
SDA-HP can be adopted to handle data aggregation, while
protecting data privacy and integrity. Finally, simulations are
used to compare our scheme with several known schemes
in terms of the computation overhead, communication over-
head, and accuracy. The numerical results show that SDA-
HP is superior to other approaches in terms of security,
complexity, and accuracy.

At present, SDA-HP is applied to the secure aggregation
scheme for SUM queries only. Further research will be to
design a secure data aggregation scheme which can cover a
wide range of exact aggregate queries.
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