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In real-life situations, decisions must be made even when limited or uncertain information is available. Therefore, the payoff of
an action is not clearly known when the decision is made. Recently, game theory has become a powerful tool for analyzing the
interactions between decisionmakers inmany domains. However, the traditional game theory approach assumes that a player belief
about the payoff of a strategy taken is accurate. To address this problem, we introduce a new kind of game, called an inference game,
and study how degrees of uncertainty of belief about payoffs impact the outcomes of real-world games. To approximate an optimal
decision, our proposed inference gamemodel can clarify how to better manage ambiguous information. In this study, we apply our
inference game model to the sensor communication paradigm and confirm that our approach achieves better performance than
other existing sensor communication schemes in widely diverse Internet of Things (IoT) environments.

1. Introduction

Therapid development of Internet ofThings (IoT) technology
makes it possible to connect various smart objects together
through the Internet and to provide more data interoper-
ability methods for application purposes. Recent research
shows an increase in the number of potential applications
of IoT in information-intensive industrial sectors. In various
scenarios, IoT can be realizedwith the help of sensor commu-
nication, which provides ubiquitous networking to connect
devices, so that they can communicate with each other to
make collaborative decisions with limited, or without any,
human intervention. Recently, the sensor communication
paradigm has been considered as a new type of communi-
cation, empowering full mechanical automation that has the
potential to change our life styles [1, 2].

However, enabling sensor communication in IoT is not
straightforward. One major issue is how multiple machine-
type devices should be connected in dynamic network sit-
uations. In addition, to achieve successful sensor commu-
nications, Quality-of-Service (QoS) provisioning is another
important requirement. For machine devices, some appli-
cations require deterministic and hard timing constraints,

and disasters occur when these are violated. For other appli-
cations, statistical and soft timing constraints are acceptable.
Thus, one of the most challenging tasks is how to effectively
multiplex massive accesses with enormously diverse QoS
characteristics [3]. Existing mechanisms do not adaptively
tackle this QoS issue when services in IoT are performed.
Until now, it is a complex and difficult work in a dynamically
changing IoT environment [4, 5].

For IoT multimedia services, decisions that influence
QoS are related to the packet rate control for application
traffic. Based on real-time feedback, eachmachine device can
adapt its behavior and make QoS decisions strategically to
maximize its payoffs [6, 7]. This strategic interaction among
machine devices can be formally modeled as a decision-
making mechanism. It is regarded as a process that results in
the selection of a course of action from several alternatives.
However, in real-world IoToperations, control decisions have
to be made with only limited information. To address this
issue, it is necessary to develop an effective control decision
mechanism that works in situations involving uncertainty,
which is caused by time pressure, lack of data, unknown
factors, randomness outcome of certain attributes, and so
forth [8–11].
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Game theory is a study of strategic decision making.
Specifically, it is the study of mathematical models of conflict
and cooperation between intelligent rational decision mak-
ers. As a powerful tool for modeling strategic interactions,
game theory is widely used in any fields such as biology,
economics, political science, management science, and com-
puter science and telecommunications [12–14]. However, the
fundamental assumption of classical game theory is that the
consequence or payoff of a strategy profile is determinate or
precise [15, 16]. However, this assumption seems implausible
and unreasonable under the real-world environment.

In view of realistic situations, game players may not be
able to exactly expect their precise payoffs of strategy profiles.
Due to limited information, players in real-life games have
to make decisions under uncertainty. In canonical opinion,
“uncertainty” is referred to as a kind of ambiguity that
describes situations where decision makers cannot deter-
mine a precise probability distribution over the possible
consequences of an action [10]. Therefore, in games under
uncertainty, the players could only assign a set of possible
payoffs, rather than a precise payoff, and have an imprecise
probability distribution over this set [8, 10]. To model this
situation with indeterminate payoffs, some researchers have
tried to apply some original ideas taken from decision theory
to gamemodels. However, this kind of work still assumes that
the consequences in a game are accurate; it cannot adequately
handle the problem concerning uncertain consequences and
attitudes of players [10].

Motivated by the above discussion, we propose a new
game model that can deal with uncertain situations. By
employing the rule of inferences, we can allow a player belief
concerning the possible payoffs and determine a preference
ordering over actions with respect to expected payoffs.There-
fore, the proposed game model can relax the rather strin-
gent assumption of traditional game models. Based on our
uncertainty-control game model, we develop a new packet
transmission rate control scheme for sensor communica-
tion. In interactive situations involving uncertainty, machine
devices in the proposed scheme can respond to current IoT
system conditions for adaptive management. Therefore, they
properly select the most adaptable strategy for packet trans-
missions while ensuring QoS for sensor communication.The
distinct feature of our proposed scheme is a more realistic
game-based approach with the limited information. There-
fore, we can achieve a well-balanced system performance
between contradictory performance requirements.

Recently, several sensor communication schemes have
been presented for complex QoS provisioning IoT systems.
TheDistributed Rate and Admission Control (DRAC) scheme
in [4] is proposed to concentrate on the QoS management in
sensor networks.TheDRAC scheme is integratedwith a game
theory analysis module to model the competition of radio
bandwidth among machine devices. The Class Based Priority
Scheduling (CBPS) scheme [5] is a scheduling algorithm for
the communication in IoT systems. The CBPS scheme can
classify and prioritize all sensor communication flows based
on their QoS requirements. All the earlier work in [4, 5] has
attracted a lot of attention and introduced unique challenges.
Compared to the DRAC and CBPS schemes, the proposed

scheme attains better performance for sensor communication
in IoT systems.

The rest of this paper is organized as follows. Section 2
gives a formal definition of the inference game model and
discusses how to set a proper preference ordering over
expected payoffs. In addition, Section 2 explains in detail the
main steps of proposed sensor communication algorithm.
In Section 3, we present our simulation model and discuss
experiments and results. Finally, Section 4 summarizes the
paper and points out some possibilities of the future work.

2. Proposed Sensor Communication Algorithm

In this section, we develop a new gamemodel with vagueness
payoffs, called an inference game. To get the outcome of
game involving uncertainty, an inference process is adopted
according to the degrees of beliefs about payoffs. Compared
to the traditional game model, we explain why our approach
yields the effective performance for the highly dynamic IoT
system nature.

2.1. Inference Game Model and Inference Process. To model
strategic interactive situations involving uncertainty, we
develop a new inference game, which is constructed based
on the assumption of a player belief regarding the uncertain
payoffs. Therefore, an imprecise probability distribution over
the set of the possible payoffs is assigned based on the player
belief. This means that the game players are not sure about
the payoffs of each strategy but assign a set of possible
payoffs to each strategy profile. To effectively expect the
possible payoffs, we apply some original ideas taken from the
Bayesian inference process. For the modeling of uncertainty,
our approach has become a key challenge in the real-world
decision problems. In this section, we define our inference
game model (G) as follows.

Definition 1. An inference game model constitutes a 5-tuple
G = (N, S, 𝜉,F

𝑠
, 𝛿
𝑠
), where

(i) N is a set of game players,

(ii) S = {𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑛
} is a nonempty finite set of all pure

strategies of players,

(iii) 𝜉 = {𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
} is the utility set of all consequent

payoffs of each strategy; it is defined as discrete
satisfaction levels of players where 𝑢

𝑖,1≤𝑖≤𝑚
∈ R; there

are 𝑚 level satisfactions,

(iv) F
𝑠

= {F
𝑠
(𝑢) | 𝑠 ∈ S, 𝑢 ∈ 𝜉} is a probability

assignment function, which maps the strategy choice
𝑠 over the strategy set S onto a consequence 𝑢 over
the strategy set 𝜉, where F

𝑠
: F
𝑠
(𝑢) → [0, 1] and

∑
𝑢∈𝜉F𝑠(𝑢) = 1,

(v) 𝛿
𝑠
is the uncertainty degree of consequence, which

could be caused by strategy choice 𝑠 (0 ≤ 𝛿
𝑠

≤ 1).

During the inference game process, a strategy 𝑠
𝑘,1≤𝑘≤𝑛

can
cause a consequence 𝑢

𝑖,1≤𝑖≤𝑚
that is specified by the mapping



International Journal of Distributed Sensor Networks 3

probability function F
𝑠𝑘
. According to the consequent pay-

offs, Expected Payoff Interval for the strategy 𝑠
𝑘
(EPI(𝑠

𝑘
)) is

defined as follows:

EPI (𝑠
𝑘
) = [𝑈min (𝑠

𝑘
) , 𝑈max (𝑠

𝑘
)] ,

s.t.,
{{

{{

{

𝑈min (𝑠
𝑘
) = min
𝑢𝑖∈𝜉

{F
𝑠𝑘

(𝑢
𝑖
) × 𝑢
𝑖
} ,

𝑈max (𝑠
𝑘
) = max
𝑢𝑖∈𝜉

{F
𝑠𝑘

(𝑢
𝑖
) × 𝑢
𝑖
} .

(1)

Under uncertain situations, Fs function is essential for the
decision making. In this paper, Fs represents the player
belief for outcomes of each strategy. To dynamically adapt the
current situation,Fs is updated as new observations become
available. Therefore, it is necessary to adopt a scientific
inference method in order to adaptively modifyFs.

Bayesian inference is a method of statistical inference to
provide a logical, quantitative decision. Based on the Bayes
theorem and Bayesian probability rules, Bayesian inference
summarizes all uncertainty by a “posterior” distribution and
gives a “posterior” belief, which may be used as the basis
for inferential decisions. Therefore, the concept of Bayesian
inference can be used to provide solutions to predict future
values based on historical data [13, 14, 17]. In this work, each
player predicts each strategy reliability by using Bayesian
inference andmakes a decision for the next round game strat-
egy. During the inference game round, the player has a chance
to reconsider the current strategy with incoming information
and reacts to maximize the expected payoff. According to
the Bayes theorem and updating rule, the Bayesian inference
formula can be expressed as follows [13, 14, 17]:

𝑃
𝑡

(𝐻 | 𝑒) =
𝑃
𝑡

(𝑒 | 𝐻) × 𝑃
𝑡

(𝐻)

𝑃
𝑡

(𝑒)
, (2)

where 𝑃
𝑡
(𝐻 | 𝑒) is the posterior distribution of hypothesis

𝐻 under the evidence 𝑒 and 𝑡 represents 𝑡th round of
game process. 𝑃

𝑡
(𝐻) and 𝑃

𝑡
(𝑒) are the prior probability of

hypothesis 𝐻 and evidence 𝑒, respectively. In the proposed
inference game, we define 𝑛 hypotheses for 𝑛 payoff levels
and𝑚 events for𝑚 strategies; they are represented as follows:

𝐻 =

{{{{

{{{{

{

𝐻
1

= 𝑢
1
payoff is obtained,

.

.

.

𝐻
𝑛

= 𝑢
𝑛
payoff is obtained,

𝑒 =

{{{{

{{{{

{

𝑒
1

= strategy s1 is selected,
.
.
.

𝑒
𝑚

= strategy 𝑠
𝑚
is selected.

(3)

At each strategy, there are 𝑛 mapping hypotheses about the
payoff distribution; these hypotheses mean the satisfaction
degrees about the selected specific strategy.

At first, a player does not know the payoff propensity of
each strategy but can learn it based on the Bayesianmodel. In
the proposed scheme, 𝑃

𝑡
(𝑒
𝑗,1≤𝑗≤𝑚

) represents the percentage

of strategy 𝑠
𝑗
(i.e., event 𝑒

𝑗
)’s selection; it is measured by

the number of 𝑠
𝑗
’s selections divided by the total number of

all strategy selections. 𝑃
𝑡
(𝐻
𝑙,1≤𝑙≤𝑛

) represents the occurrence
ratio of hypothesis 𝐻

𝑙
; it is measured by the occurrence

number of 𝐻
𝑙
divided by the total number of all hypotheses

occurrences (tn). 𝑃
𝑡
(𝑒
𝑗

| 𝐻
𝑙
) is the event conditional

probability, given the 𝐻
𝑙
selection; it can be computed as

follows:

𝑃
𝑡

(𝑒
𝑗

| 𝐻
𝑙
) =

𝑃
𝑡

(𝐻
𝑙
, 𝑒
𝑗
)

𝑃
𝑡

(𝐻
𝑙
)

, s.t.,𝑃
𝑡

(𝐻
𝑙
, 𝑒
𝑗
) =

ℎ 𝑒
𝑙𝑗

tn
, (4)

where ℎ 𝑒
𝑙𝑗
is the number of strategy 𝑒

𝑗
’s selections when

the 𝐻
𝑙
hypothesis occurs. Therefore, after each interaction,

the player dynamically updates its corresponding event
conditional probability 𝑃

𝑡
(𝑒
𝑗

| 𝐻
𝑙
). Finally, the posterior

probability 𝑃
𝑡
(𝐻
𝑙

| 𝑒
𝑗
), which is the occurring probability of

hypothesis 𝐻
𝑙
under the strategy 𝑒

𝑗
selection circumstance,

can be obtained as follows:

𝑃
𝑡

(𝐻
𝑙

| 𝑒
𝑗
) =

𝑃
𝑡

(𝑒
𝑗

| 𝐻
𝑙
) × 𝑃
𝑡

(𝐻
𝑙
)

𝑃
𝑡

(𝑒
𝑗
)

. (5)

Once getting the 𝑃
𝑡
(𝐻
𝑙

| 𝑒
𝑗
) probability, the player can

compute the probability assignment function for the (𝑡 + 1)th
round strategy selection (F𝑡+1

𝑠𝑗

(𝑢
𝑙
)). It is given by

F
𝑡+1

𝑠𝑗

(𝑢
𝑙
) = F

𝑡+1

𝑒𝑗

(𝐻
𝑙
) = 𝑃
𝑡

(𝐻
𝑙

| 𝑒
𝑗
) ,

s.t., s
𝑗

∈ S, 𝑢
𝑙

∈ 𝜉,

(6)

where 𝑒
𝑗
is the event that the strategy 𝑠

𝑗
is selected and 𝐻

𝑙

is the hypothesis that the 𝑢
𝑙
payoff is obtained (𝑠

𝑗
= 𝑒
𝑗
and

𝑢
𝑙

= 𝐻
𝑙
). According to (6), each player can update hisF

𝑠
(𝑢)

values in an iterative feedback manner.

2.2. Uncertainty Degree and Inference Equilibrium. To accu-
rately estimate the expected payoff, we define the uncertainty
degree of each strategy. Based on EPI(𝑠), we define the
uncertainty degree of a specific strategy 𝑠

𝑘
(𝛿(𝑠
𝑘
)) as follows:

𝛿 (𝑠
𝑘
) =

𝑈max (𝑠
𝑘
) − 𝑈min (𝑠

𝑘
)

max
𝑠∈S {𝑈max (𝑠) − 𝑈min (𝑠)}

s.t., 0 ≤ 𝛿 (𝑠
𝑘
) ≤ 1.

(7)

In order to make adaptive decisions, we need a preference
ordering for strategies. To estimate a strategy preference,
the expected payoff for the strategy 𝑠

𝑘
(𝐸 𝑃(𝑠

𝑘
)) is defined

according to the EPI(𝑠
𝑘
) and uncertainty degree (𝛿(𝑠

𝑘
)):

𝐸
𝑃(𝑠𝑘)

= 𝑈min (𝑠
𝑘
)

+ [(1 − 𝛿 (𝑠
𝑘
)) × (𝑈max (𝑠

𝑘
) − 𝑈min (𝑠

𝑘
))] .

(8)

At each strategy selection time, players select their strategy to
maximize𝐸 𝑃(𝑠

𝑘
) (i.e.,max

𝑠∈S{𝐸 𝑃(𝑠)}). According to𝐸 𝑃(⋅),
each player can compute the selection probability for the
strategy 𝑠

𝑘
at the (𝑡 + 1)th round (𝑃

𝑡+1
(𝑠
𝑘
)). It is given by

𝑃
𝑡+1

(𝑠
𝑘
) = 𝑃
𝑡+1

(𝑒
𝑘
) =

𝐸 𝑃 (𝑠
𝑘
)

∑
𝑠𝑗∈S 𝐸 𝑃 (𝑠

𝑗
)

. (9)
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𝑃
𝑡+1

(𝑠
𝑘
) represents the preference of strategy 𝑠

𝑘
at the (𝑡 +

1)th game round. Therefore, based on the observation of
the strategies’ past expected payoffs, players can update each
strategy preference. With this information, the player can
make a better decision for the next strategy selection.

As a solution concept of inference game, we introduce
the inference equilibrium (IE), which is more general than the
Nash equilibrium. To define the IE, we introduce the concept
of uncertainty regret (UR); it is a method of comparing alter-
natives due to Savage [18]. In our approach, we first obtain the
expected payoff for each strategy and then calculate the UR
for each alternative. If there are two strategies (i.e., 𝑠

𝑘
, 𝑠
𝑗

∈ S),
the UR of strategy 𝑠

𝑗
against the strategy 𝑠

𝑘
(Λ𝑠𝑘
𝑠𝑗

) is given by

Λ
𝑠𝑘

𝑠𝑗

= 𝐸 𝑃 (𝑠
𝑘
) − 𝑈min (𝑠

𝑗
) . (10)

If Λ
𝑠𝑘

𝑠𝑗

≤ Λ
𝑠𝑗

𝑠𝑘
, the strategy 𝑠

𝑗
is preferred to 𝑠

𝑘
by players [9].

If the maximum regret of all players is within a predefined
minimumbound (𝜀), this strategy profile and the correspond-
ing payoffs constitute the IE. Definition 2 mathematically
expresses the IE.

Definition 2. Inference equilibrium (IE) is a strategy profile
that can be obtained by repeating a symmetric game with
comparing in obtaining payoffs. The IE is a refinement of
the Nash equilibrium and it is associated with mixed strategy
equilibriums. When a strategy profile has been chosen by all
players and all the current strategies’ maximum URs are less
than 𝜀, this strategy profile and the corresponding payoffs
constitute the IE. That is formally formulated as

max
n∈N

{Λ (n) | Λ (n) = max {Λ
𝑠𝑘

𝑠𝑖

| 𝑠
𝑖
, 𝑠
𝑘

∈ S}} ≤ 𝜀, (11)

where Λ(n) is the maximum UR of the player n. Therefore,
the IE is a near-Nash equilibrium; the state is that the current
strategies regret of all players is within a predefinedminimum
bound (𝜀). In this study, the existence of IE strongly depends
on the value of 𝜀. According to the value size, our proposed
game model can reach the IE. If 𝜀 value is very high, most
strategy profiles reach the IE. If 𝜀 value is very low, that is, a
negative value, all possible strategy profiles cannot reach the
IE.

2.3. Utility Function for IoT Systems. In this paper, we develop
a new sensor communication rate control scheme for IoT
systems. In sensor communication, eachmachine device only
sends or receives a small amount of data, andmultiple devices
can be grouped as clusters for certain management purposes.
To manage such massive accesses, QoS requirements such as
delay and throughput are needed for different types of sensor
communication services [1–5].

In the proposed scheme, we follow the assumption in [4]
to implement the sensor services; a p-persistence CSMA/CA
system with 𝐿 classes of devices, class 1 (or L), corresponds to
the highest (or lowest) priority service.The system totally has
∑
𝐿

𝑖=1
𝑛
𝑖
devices, where 𝑛

𝑖
represents the number of the 𝑖th class

devices. The traffic activities of the 𝑖th class devices follow
the Poisson process with mean arrival rate 𝜆

𝑖
and departure

rate 𝜇
𝑖
. In principle, the setting of parameter 𝑝 in 𝑝-persistent

CSMA/CA is equivalent to tuning the size of backoff window
in CSMA/CA. If the channel is idle, the device will transmit
a packet with probability 𝑝

𝑖
when new time slot commences.

Otherwise, it will wait until the channel is idle [4]. By varying
the parameter 𝑝

𝑖
for the 𝑖th class devices, differential QoS

provisioning could be easily achieved. For simplicity, we
suppose an M/D/1 queuing model with no packet collisions.
Therefore, the average output packet rate of the queuing
system is equal to the input rate 𝜆

𝑖
. Let 𝑇

𝑖

𝑠
denote the

transmission time of a class 𝑖 device, and the time fraction
of that device occupying the channel is given by (𝜆

𝑖
× 𝑇
𝑖

𝑠
). Let


𝑖
represent the probability that the channel is idle for a device

of class 𝑖 in a given slot [4]:


𝑖

= 1 −

𝐿

∑

𝑗=1,𝑗 ̸=𝑖

(𝑛
𝑗

× 𝜆
𝑗

× 𝑇
𝑗

𝑠
) − ((𝑛

𝑖
− 1) × 𝜆

𝑖
× 𝑇
𝑖

𝑠
) . (12)

For the device of class 𝑖, the transmission probability in an
arbitrary slot is represented by (

𝑖
× 𝑝
𝑖
). Following the M/D/1

queuing model, the average service rate of the 𝑖th class device
(𝜇
𝑖
) and the queuing delay (𝑊𝑖

𝑄
) is given by

𝜇
𝑖

=

𝑖

× 𝑝
𝑖

𝑇𝑖
𝑠

,

𝑊
𝑖

𝑄
=

𝜌
𝑖

2 × 𝜇
𝑖

× (1 − 𝜌
𝑖
)

.

(13)

Consequently, the total delay of the 𝑖th class device (𝑑
𝑖
) is

given by

𝑑
𝑖

= 𝑊
𝑖

𝑄
+ 𝑊
𝑖

𝑆
=

2 − 𝜌
𝑖

2 × 𝜇
𝑖

× (1 − 𝜌
𝑖
)

s.t., 𝑊
𝑖

𝑆
=

1

𝜇
𝑖

, (14)

where the average service time 𝑊
𝑖

𝑆
is the inverse of the

average service rate [4]. Let 𝜌
𝑖

= 𝜆
𝑖
/𝜇
𝑖
denote the utilization

coefficient of the 𝑖th class of devices. Finally, 𝑑
𝑖
can be

obtained as follows:

𝑑
𝑖

=
2 − (𝜆

𝑖
/𝜇
𝑖
)

2 × 𝜇
𝑖

× (1 − 𝜆
𝑖
/𝜇
𝑖
)

=
(2 × 𝜇

𝑖
) − 𝜆
𝑖

2 × (𝜇2
𝑖

− 𝜆
𝑖

× 𝜇
𝑖
)

s.t., 𝜌
𝑖

=
𝜆
𝑖

𝜇
𝑖

≪ 1.

(15)

In this work, the rate control process is formulated as an
𝑛-player inference game.Thepacket transmission contending
devices in IoT are game players and each device has its own
class. As a game player, a class 𝑖 device selects a rate 𝜆

𝑖
in its

strategy spaceR
𝑖

∈ [𝜆
𝑖

min, 𝜆
𝑖

max] to send packets, and then it
will gain a payoff according to the selected strategy. In the
proposed game model, R

𝑖
≅ S and 𝜆

𝑖

min and 𝜆
𝑖

max are 𝑠
1

and 𝑠
𝑛
, respectively. Therefore, available strategies in R are

defined as discrete and multiple packet transmission rates.
The general system model of our proposed scheme is shown
in Figure 1.

Utility functions quantitatively describe the players’
degree of satisfaction with respect to their action in the game.
In the proposed model, the utility function is defined by

𝑢
𝑖

= 𝜆
𝑖

− (𝜔
𝑖

× 𝑑
𝑖
) , s.t., 𝜔

𝑖
> 0, (16)
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Figure 1: System model for sensor communications.

where a tunable parameter 𝜔
𝑖
indicates the relative impor-

tance weight (delay versus transmission rate) of the 𝑖th class
devices. To allow the differentialQoS provisioning, the higher
priority applications have a larger 𝜔 value and the lower
priority applications have a smaller 𝜔 value. By combining
(12)–(16), we obtain the explicit expression of the utility
function as follows:

𝑢
𝑖

= 𝜆
𝑖

− (𝜔
𝑖

×
2𝜇
𝑖

− 𝜆
𝑖

2 (𝜇2
𝑖

− 𝜆
𝑖
𝜇
𝑖
)

) = 𝜆
𝑖

− (𝜔
𝑖

×
2 × ((𝜉

𝑖
× 𝑝
𝑖
) /𝑇
𝑖

𝑠
) − 𝜆
𝑖

2 (((𝜉
𝑖

× 𝑝
𝑖
) /𝑇𝑖
𝑠
)
2

− 𝜆
𝑖

× ((𝜉
𝑖

× 𝑝
𝑖
) /𝑇𝑖
𝑠
))

) = 𝜆
𝑖

+ (
{𝑤
𝑖

× 𝑇
𝑖

𝑠
× ([𝑇

𝑖

𝑠
× 𝜆
𝑖
] − [2 × 𝑝

𝑖
× 𝜉
𝑖
])}

(2 × 𝑝
𝑖

× [𝑝
𝑖

× 𝜉
𝑖

+ 𝑇𝑖
𝑠

× 𝜆
𝑖
] × 𝜉
𝑖
)

) .

(17)

From (17), we know the utility function is actually a function
of transmission rate 𝜆

𝑖
for all services. Finally, the payoff of

the 𝑖th class devices depends on not only its own strategy but
also the other players’ strategies. Therefore, it is represented
by 𝑢
𝑖
(𝜆
𝑖
,𝜆
−𝑖

), where 𝜆
−𝑖
is the set of strategies of all devices

without the device 𝑖. In the inference game, all the devices aim
to maximize their payoffs (i.e., maximizing the transmission
rate while minimizing the access delay). Let 𝑢

∗

𝑖
(𝜆
𝑖
,𝜆
−𝑖

) be
the maximum payoff for the device 𝑖, and it is used as an
index to classify received payoffs into four categories: bad,
average, good, and excellent satisfaction levels. In our scheme,
there is a one-to-one relationship between each category and
hypothesis.Therefore, each hypothesis represents the “level of
satisfaction.” According to (17), each category can bemapped
into each hypothesis (𝐻) as follows:

𝐻 =

{{{{{{{

{{{{{{{

{

𝐻
1

= excellent payoff is gained, if 𝑢
𝐶

𝑖
(𝜆
𝑖
,𝜆
−𝑖

) > Ω
1

× 𝑢
∗

𝑖
(𝜆
𝑖
,𝜆
−𝑖

) ,

𝐻
2

= good payoff is gained, if Ω
1

× 𝑢
∗

𝑖
(𝜆
𝑖
,𝜆
−𝑖

) ≥ 𝑢
𝐶

𝑖
(𝜆
𝑖
,𝜆
−𝑖

) > Ω
2

× 𝑢
∗

𝑖
(𝜆
𝑖
,𝜆
−𝑖

) ,

𝐻
3

= average payoff is gained, if Ω
2

× 𝑢
∗

𝑖
(𝜆
𝑖
,𝜆
−𝑖

) ≥ 𝑢
𝐶

𝑖
(𝜆
𝑖
,𝜆
−𝑖

) > Ω
3

× 𝑢
∗

𝑖
(𝜆
𝑖
,𝜆
−𝑖

) ,

𝐻
4

= bad payoff is gained, if Ω
3

× 𝑢
∗

𝑖
(𝜆
𝑖
,𝜆
−𝑖

) ≥ 𝑢
𝐶

𝑖
(𝜆
𝑖
,𝜆
−𝑖

) ,

(18)

where 𝑢
𝐶

𝑖
(𝜆
𝑖
,𝜆
−𝑖

) is the currently obtained payoff andΩ
𝑖,1≤𝑖≤3

is a threshold parameter for the event classification.

2.4. The Main Steps of the Proposed Scheme for IoT Systems.
The main contribution of this study lies in defining a new
inference game model. In contrast with classical games, the

proposed inference game allows a player belief concerning
the possible payoffs of each strategy profile; it is represented
by an imprecise probability. On the basis of inference game
model, we develop a new packet rate control scheme for
sensor communications. To evolve into an inference equi-
librium, we can capture how devices adapt their strategies
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based on the iterative feedback process. At the end of
each game iteration, players evaluate their current payoff,
analyze strategic interactions, and modify the probability of
each hypothesis, probability assignment, and the uncertainty
degree. In an entirely distributed fashion, this interactive
feedback process continues until IoT system reaches the
inference equilibrium; this practical and suitable approach
can clarify how to better manage the packet rate control
decisions in real-world IoT operations. The main steps of the
proposed rate control algorithm are given next.

Step 1. At the initial iteration (𝑡 = 1), the probability
distributions of 𝑃(𝐻), 𝑃(𝑒), and 𝑃(𝑒 | 𝐻) are equally
distributed. One has (𝑃

𝑡=1
(𝐻
𝑙,1≤𝑙≤𝑛

) = 1/𝑛, 𝑃
𝑡=1

(𝑒
𝑗,1≤𝑗≤𝑚

) =

1/𝑚, and 𝑃
𝑡=1

(𝑒 | 𝐻) = 𝑃
𝑡=1

(𝑒
𝑗,1≤𝑗≤𝑚

)/𝑃
𝑡=1

(𝐻
𝑙,1≤𝑙≤𝑛

)). This
starting guess guarantees that each strategy enjoys the same
benefit at the beginning of the game.

Step 2. As a game player, each machine device selects its
packet rate strategy in 𝜉 according to (9); it represents the
trustworthiness distribution of each strategy preference.

Step 3. At each game round, devices obtain their payoffs
based on (12)–(17) in a distributedmanner. And then, devices
reestimate the selected strategy and modify the probabilities
of𝑃(𝐻),𝑃(𝑒),𝑃(𝑒 | 𝐻), andF

𝑠
(𝑢) and adjust EPI(⋅), 𝛿(⋅), and

𝐸 𝑃(⋅) values.

Step 4. By using (10) and (11), we can estimate the maximum
UR of all current strategies. If it is less than a predefined
minimum bound (𝜀), all players do not change their current
strategy; this strategy profile and the corresponding payoffs
constitute the inference equilibrium.

Step 5. Proceed to Step 2 for the next game iteration. This
iterative feedback procedure continues under IoT system
dynamics.

3. Performance Evaluation

In this section, the performance of proposed sensor commu-
nication algorithm is evaluated through a simulation model;
we model different random traffic services for machine
devices in each iteration. With a simulation study, we com-
pare the performance of our scheme with other existing
schemes [4, 5] and can confirm the performance superiority
of the proposed approach. To ensure the simulation model is
sufficiently generic to be valid in a real-world IoT system, the
assumptions implemented in our model are as follows:

(i) Machine devices access IoT system in a 𝑝-persistent
CSMA/CA manner.

(ii) There are 10 machine nodes and 4 different (I, II, III,
and IV) traffic classes in the system.

(iii) The class of each device is randomly decided.

(iv) Pure strategy set of players is S = {𝑠
1
, 𝑠
2
, 𝑠
3
, 𝑠
4
, 𝑠
5
} and

𝑠
1

= 30Kbps, 𝑠
2

= 40Kbps, 𝑠
3
= 50Kbps, 𝑠

4
=60Kbps,

and 𝑠
5
= 70Kbps.
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Figure 2: QoS violation ratio.

(v) The process for new connection services is Poisson
with rate Φ (connections/s), and the range of offered
traffic load was varied from 0 to 3.0.

(vi) The capacity of network bandwidth is 10Mbps, and
each message consists of Variable Bit Rate (VBR)
packets.

(vii) The predefinedminimumbound (𝜀) is defined as 0.1×

max{𝑈max(𝑠) − 𝑈min(𝑠)}.
(viii) Network performancemeasures obtained on the basis

of 50 simulation runs are plotted as a function of the
offered traffic load.

(ix) The size of messages is exponentially distributed with
different means for different message applications.

(x) The queuing model is the M/D/1 and buffer length of
each device is 50 packets.

There are other performance analysis methods: theoretical
or numerical analysis. However, these methods have limited
modeling possibility and cannot provide precise performance
evaluation. In contrast to these methods, our simulation
model can implement a complex realistic model for one real-
world IoT system. Details of simulation parameters are listed
in Table 1.

Performance measures obtained through simulation are
QoS violation ratio, normalized packet delay, payoffs, and
network throughput, and so forth. In this paper, we compare
the performance of the proposed scheme with existing
schemes, the DRAC scheme [4] and CBPS scheme [5].
These existing schemes are also developed as effective sensor
communication schemes that capture the notion of packet
rate control mechanisms.

Figure 2 shows the performance comparison in terms
of QoS violation ratio with different service connection
request rates. In this paper, the QoS violation ratio represents



International Journal of Distributed Sensor Networks 7

Table 1: System parameters used in the simulation experiments.

Traffic class Message application Bandwidth
requirement

CSMA
parameter

Connection duration and
minimum requirement

1 TDM voice messages 32Kbps 0.08 30 sec (0.5min)/32Kbps

2 Audio/video messages 48Kbps 0.07 120 sec (2min)/24Kbps
64Kbps 0.07 180 sec (3min)/32Kbps

3 File transfer messages 48Kbps 0.06 120 sec (2min)/16 Kbps
64Kbps 0.06 180 sec (3min)/24Kbps

4 Web browsing
messages

32Kbps 0.05 300 sec (5min)/16 Kbps
64Kbps 0.05 120 sec (2min)/24Kbps

Parameter Value Description
N 10 A number of game players (machine devices)
n 5 A number of strategies
m 4 A number of consequent payoff levels
L 4 A number of traffic service classes
𝑝
𝑖 0 ≤ 𝑝

𝑖
≤ 1 Packet transmission probability

𝜆
𝑖

min, 𝜆
𝑖

max 30Kbps, 70Kbps The minimum and maximum packet transmission rates
𝜔
1
, 𝜔
2
, 𝜔
3
, 𝜔
4 1, 0.8, 0.6, and 0.4 Relative importance weight for each class device

Ω
1
, Ω
2
, Ω
3 0.8, 0.5, and 0.2 Threshold parameters for the event classification
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Figure 3: Normalized packet delay.

the minimum bandwidth requirement violation probabilities
(i.e., the fraction of traffic that does not meet its minimum
bandwidth bound). The main observation is that the pro-
posed scheme is able to keep a relatively lower QoS violation
ratio than other DRAC and CBPS schemes. This property
may be useful to the IoT system operators if the relative
penalty was incurred from failure to meet the strict QoS
requirements.

Figure 3 demonstrates the performance of each scheme
in terms of the normalized end-to-end packet delay. This
performance criterion indicates the effectiveness on QoS
guarantees of the sensor communication.We can observe that
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Figure 4: Normalized payoffs per player.

the proposed scheme effectively maintains the lower packet
delay; it illustrates the adaptiveness of our control approach
under widely different and diversified traffic load situations.

In Figure 4, the comparison of the normalized payoff is
shown. In this work, it is defined as an average utility of
players, which is calculated that the payoffs are aggregated
per player and then normalized. Due to the inclusion of
the adaptive feedback interactive mechanism, the proposed
scheme can adapt the current system situation. From the
simulation results we obtained, it can be seen that the
proposed scheme, in general, can gain better payoffs than
other schemes.
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Figure 5: Normalized IoT system throughput.

Figure 5 shows the normalized IoT system throughput. In
IoT system operations, normalized throughput is the rate of
successful message delivery over sensor communication. All
the schemes have similar trends. As the traffic load increases,
system throughput increases linearly. Under various system
traffic load conditions, the proposed scheme exhibits superior
performance compared with the other existing schemes.

Among the results obtained in our simulation model, it
is particularly important to mention that our inference game
approach concerning how to manage limited information
significantly improves the QoS provisioning and IoT system
performance. The main goal of our proposed scheme is
to provide a better throughput for sensor communication
while ensuring the required QoS. To achieve an appropriate
network performance, the proposed scheme constantly mon-
itors the current IoT system conditions and can adaptively
adjust the packet transmission rate in an interactive feedback
manner.Therefore, it is shown that our inference gamemodel
plays an important role in sensor communication.

4. Summary and Conclusions

In this study, we investigate uncertainty-control game and
packet transmission rate control scheme for IoT systems.
With the uncertainty about payoffs, we develop a new
inference gamemodel and then reveal how ambiguity degrees
of belief about consequences impact the outcomes of a game.
On the basis of our inference game, we design a new sensor
communication scheme.The simulation results show that the
usage of the inference game model is indeed beneficial in
improving the IoT system performance. We believe that the
issue addressed in this study will be increasingly important
with the proliferation of IoT applications. In the future, it is
interesting to extend our inference game model to various
decision-making processes.
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