
Research Article
E-Cube+ Routing Protocol for Wireless Sensor Networks in the
Presence of Network Failures

Bo-Chao Cheng,1 Guo-Tan Liao,1 Yuan-Fu Chen,1 and Huan Chen2

1 Department of Communications Engineering, National Chung Cheng University, No. 168, Section 1, University Road,
Min-Hsiung Township, Chiayi 621, Taiwan

2Department of Computer Science and Engineering, National Chung Hsing University, No. 250, Kuo Kuang Road,
Taichung 402, Taiwan

Correspondence should be addressed to Guo-Tan Liao; loboyoh@gmail.com

Received 3 May 2014; Revised 2 October 2014; Accepted 28 October 2014

Academic Editor: Antonino Staiano

Copyright © 2015 Bo-Chao Cheng et al.This is an open access article distributed under theCreative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Providing reliable communication represents one of the major barriers to wireless sensor networks. In this paper, we propose a
fault-tolerant tableless routing protocol called E-cube+, inspired from e-cube routing protocol, to support intelligent rerouting.
A range of fault-tolerant routing properties of E-cube+ (such as loop-freeness, failure recovery guarantees, and bounded latency)
have been derived and analyzed. Experiment results also show that E-cube+ is able to route data properly without complicated and
energy-intensive routing table lookup processes even when node failures occur.

1. Introduction

Due to the constraints of available resources in WSN [1–4],
sensor nodes are subject to relatively high fault rates. When
certain sensor nodes fail, the communication function of the
WSN would be interrupted, resulting in a low transmission
efficiency of the entire network. In order to mitigate the
impact of the limited resource constraints imposed onWSN,
a better routing protocol that can tolerate node failures while
keeping the transmission efficiency of the entire WSN is
required. A fault-tolerant routing protocol can significantly
improve the reliability and stability of the network system.
However, some resource constraint characteristics (e.g., lim-
ited energy supply and small memory) make the design of
fault-tolerant routing protocols for the WSN a challenging
task.

For a healthy WSN without node failures, a routing algo-
rithm called e-cube [5] is widely used in manyWSN applica-
tions [6–8].The e-cube is a dimension-ordered deterministic
routing algorithm based on the hypercube model, which is
easy to implement in parallel computer architectures. The
conventional e-cube routing algorithm has many desired
properties (such as low latency and loop freeness), but it is

not able to work well under an injured hypercube, which has
faulty links/nodes.

There are many existing protocols that can be used for
WSNs that are fault-tolerant [9–14]. However, these protocols
are unable to overcome the resource constraints of WSNs,
because most protocols require a large memory space for the
routing and power-consuming table lookup operations. In
large-scale WSN, the impact of these requirements is more
significant. Thus, in this paper, we explore the design of a
memory-efficient and fault-tolerant routing protocol.

To dynamically adapt to network failures or congestions,
Gaughan and Yalamanchili [15] proposed backtracking pro-
tocols to find an alternative path in a depth-first manner. In
such cases, sensors must reestablish the routing information
and cannot achieve an immediate path swap, which may
increase the transmission cost (such as long latency and
packet loss). Chen and Shin [16] used an 𝑛-bit vector tag
to keep track of the abundant dimensions which are used
to calculate alternative paths bypassing faulty components.
The 𝑛-bit vector tag inevitably introduces communication
overhead and additional computation. In the safety vector
approach [17], each sensor node needs to maintain a vec-
tor indicating the awareness of the status of other nodes.

Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2015, Article ID 231514, 11 pages
http://dx.doi.org/10.1155/2015/231514

2 International Journal of Distributed Sensor Networks

This raises some communication and computation issues
simultaneously, which make WSN routing design even more
challenging. As such, these methods are not suitable for
WSNs due to limited resources (such as CPU power or
memory) and high latency problems.

In this paper, we propose a fault-tolerant routing protocol
named E-cube+, which covers the e-cube original spirit
and can be implemented in a hierarchical routing network.
E-cube+ is able to compute the alternative backup paths
without routing table lookup to recover the WSN from
network failures. The proposed scheme offers a quick reroute
functionality with low processing and memory overhead for
the WSN.The salient features of E-cube+ are listed as below.

(1) No Routing Table. In the E-cube+ algorithm, every node
finds the next hop to the destination using simple bit
operations. Except for the storage of its own label and related
proxy labels, it saves significant memory space and avoids
power- and time-consuming routing table lookup. Unlike e-
cube routing algorithm, E-cube+ routing protocol presented
in this study not only forwards the packets but also effectively
reroutes the packets by obtaining an alternative path to the
destination node.

(2) Failure Recovery Guarantees. E-cube+ is capable of finding
backup paths with (𝑚 − 1) guarantee link failures under
𝑚-dimensional complete hypercube (𝑚-DCH) structure. An
𝑀-dimensional complete hypercube is a graph which com-
prises 2𝑚 nodes, each with 𝑚 bidirectional links connecting
to 𝑚 neighbors. In comparison, the traditional static routing
methods simply store only one or two backup paths before-
hand in the routing table.Whenmultiple nodes are damaged,
the backup path may fail, resulting in missed packets and
wastage of the resources of entire wireless sensor network.

(3) Bounded Latency. In m-DCH, every pair of nodes has
a bounded length 𝑚 due to the inherent property of the
hypercube model. In addition, when a single node fails, the
worst case message transmission latency (MTL) in terms
of hop count is a fixed number of 𝑚 (hops). The bounded
latency for real-time packet transmission is a nice property,
since there will not be out-of-control variation during data
transmission.

2. Related Work

Fault tolerance is to ensure that the system still works as
expected even failures occur. In fault-tolerant computing,
some algorithms are able to produce a correct output or a qua-
sicorrect output when in presence of memory faults. Many
researches adopted the memory error detection/correction
code, such as cyclic redundancy check (CRC), hamming
code, and checksum, for soft errors in a memory system
by little overhead of code size as there exist memory errors
and mal-packet problems [18–22]. In data communication
area, timeout detection and recovery (TDR) is a popular
solution for resolving fault tolerance related issues. If the
acknowledgement is not received by the sender within the
timeout period, the data would be retransmitted [23].

Ad hoc on-demand distance vector routing (AODV)
[24] and dynamic source routing (DSR) [25] are two simple
and widely used routing protocols in WSN. Both protocols
are efficient routing protocols to establish the shortest path
with low power consumption. However, the nature of WSN
topology is dynamic due to many factors including limited
power supply of the sensor nodes, unstable wireless link
quality, and physical damage.The above primitive single-path
routing approaches are not well suitable forWSN because the
source node triggers the alternative path discovery operation
and may cause further unacceptable delay and overhead for
data transmissions when the primary path fails to forward
data towards the sink. Thus, multipath routing approach is
deemed an effective technique to meet the fault tolerance
demands. A set of multiple paths between the source nodes
and the sink are stored to provide constructed alternative
paths as the backup paths in case of the primary path failure.
By summarizing previous typical multipath-based schemes
such as [26–33], we introduce four phases of the multipath
routing procedures.

(i) Phase 1: locate a set of intermediate nodes to establish
paths from the source node to the sink node based
on different criteria (e.g., link-disjoint [26], node-
disjoint [27], or partially disjoint paths [28]).

(ii) Phase 2: choose the right number and efficient paths
from the set of path disjointedness discovered at
Phase 1. Those selected paths are ready to transmit
the data when the primary path fails. Of course, the
path selection technique has a big impact on the
fault tolerance capabilities [29]. For example, energy-
adaptive multiple paths routing algorithm (EMRA)
[30] considers energy consumption a part of the
cost functions to be used for selecting fault-tolerant
multiple paths.

(iii) Phase 3: activate the chosen paths from Phase 2
and start the data transmission across selected paths.
There are several options to choose from when to
deliver data (such “as one path at a time” [31],
“simultaneous use of K-paths” [32], and “all paths at
the same time” [33]). In “one path at a time approach”,
source node uses only one path to transmit data
and switches to another alternative path when failure
occurs. On the other hand, the source node uses K
distinctive paths or all paths for data transmission
concurrently [32, 33].The source node is able to utilize
all activated paths sendingmultiple copies of the same
packet over all paths in order to recover if some paths
fail.

(iv) Phase 4: reinitiate path discovery process to accom-
modate the dynamic topology changes when a
link/node fails.

In summary, multipath approaches can find a set of alter-
native paths via path recovery process. When the primary
path failure occurs, the intermediate node will reroute the
packet via the alternative path. The aforementioned methods
construct themultipath routes through broadcastingmessage
to the whole network in order to collect all information (such

International Journal of Distributed Sensor Networks 3

Table 1: Comparison with various approaches.

e-cube [5] E-cube+ EMRA [30]
Routing type Deterministic routing Deterministic routing Adaptive routing
Forwarding mechanism 2 selective virtual channels 2-selective-link hop routing Multiple paths

Traffic distribution Nodes with label of 1-bit
difference are reachable

Nodes with label of 1-bit
difference are reachable

Disseminate data along
chosen paths by lowest

delay, energy consumption,
or disjoint path

Loop-freeness Yes Yes Not addressed
Routing table Tableless Tableless Yes
Backtrack when it fails to
forward No Yes No

Failure recovery guarantees Single failures
(𝑚 − 1) guarantee link
failures under𝑚-DCH

structure
No

Bounded latency No Yes No
Reinitiate path discovery
overhead High Low High

as residual energy, hop counts, and the signal strength) from
the neighboring nodes and create the forwarding table for
data transmission.

WSN typically involves hundreds or even thousands of
sensors.Other distinctive features ofwireless sensor networks
are CPU capability and low-memory capacity. To our best
knowledge, multipath routing protocols do not address the
resource constraints of the sensor (such as CPU and storage).
However, they need to process all information collected from
the enormous number of sensor nodes, store all multipath
routing information, and look up the routing table for
every packet. As such, energy-aware multipath techniques
usually suffer from broadcasting message overhead and a
lack of scalability. To address this resource constraint issue of
the sensor, the proposed E-cube+ routing algorithm applies
simple bit operations in every node to determine the next hop
to the destination without the routing table lookup.

We summarize the differences among E-cube, multipath
routing based EMRA [30], and the proposed approach (E-
cube+) at Table 1.

3. Fault-Tolerant E-Cube+ Routing

We propose a fault-tolerant tableless routing protocol with
low energy cost and lowmemory requirement called E-cube+
routing protocol, which extends e-cube routing protocol
to handle the faulty conditions. For better describing the
proposed E-cube+ algorithm, here we define some notations
that will be used throughout this paper (as shown in Table 2).

3.1. Packet Header Format. As mentioned in the above
description, E-cube+ uses the bit arrays of the vertices in the
hypercubemodel as the labels for the nodes in theWSNs.The
E-cube+ protocol combined with the packet header will be
able to run the routing algorithm. The packet header format
(as Figure 1) in the E-cube+ protocol is defined as follows.

Table 2: Notations and descriptions in E-cube+ model.

Notation Description

𝐻(𝑁
𝑖
, 𝑁
𝑗
)

The Hamming Distance between labels of the
nodes,𝑁

𝑖
and𝑁

𝑗
. For example,𝐻(010, 101) = 3.

𝑁
𝑆

The source node.
𝑁
𝐷

The destination node.
𝑁
𝐶

The current node.
𝑁
𝑁

Next node of𝑁
𝐶
for routing.

⊥

𝑁
𝑖

𝐶

The presentation of inverting the 𝑖th bit of the
𝑁
𝐶
’s label.

𝑈(𝑚, 𝑘)

The hop count for message transmission for upper
bound estimation in the worst case when there
exist 𝑘 node failures in𝑚-DCH network topology.

𝐿(𝑙
𝑖
, 𝑙
𝑗
)

This Boolean function indicates whether there is a
routing loop from the node of the 𝑖th level (𝑙

𝑖
) to

the node of the 𝑗th level (𝑙
𝑗
) in all possible routing

paths. For instance, 𝐿(𝑙
1
, 𝑙
𝑚+1

) = 0 that means
loop-free routing from the source of 𝑙

1
to the

destination of 𝑙
𝑚+1

.

(i) Length. It is a byte to represent the length of each E-cube+
label and to imply the total length of E-cube+ packet header
(one byte + five times of the length of each E-cube+ label).

(ii) Genuine Source Label (GSLabel). When the number of
sensor nodes exceeds a complete hypercube, the extra nodes
can use other nodes as their proxy for transmission.This field
is for the source node, and the corresponding proxy node uses
the source label field. If no proxy is used, GSLabel equals 0.

(iii) Genuine Destination Label (GDLabel). Similar to the
GSLabel, this field is for the destination node. The corre-
sponding proxy node uses the destination label field. If no
proxy is used, GDLabel equals 0.

4 International Journal of Distributed Sensor Networks

MAC header (MHR) MAC payload MAC footer
(MFR)

Frame
control

Data
sequence
number

Address
information Data payload Frame check

sequence

2Variable4 to 201

Length GSLabel GDLabel SrcLabel DstLabel ImdLabel

(Octets): 2

(a) E-cube+ label

(b) IEEE 802.15.4 with E-cube+ label

1byte: m degree 5 fields: each field with m bits

E-cube+
label

Figure 1: Packet header format of E-cube+ in IEEE 802.15.4.

(iv) Source Label (SrcLabel). It is source node label or the
proxy label of the real source.

(v) Destination Label (DstLabel). It is destination node label
or the proxy label of the real destination.

(vi) Intermediate Label (ImdLabel). It is the current node label
before transmission to the next node.

3.2. Routing Algorithm. Based on a hypercube model, the
well-known e-cube or “left-to-right” (LR) routing algorithm
routes a packet from source to destination by traversing the
differing dimensions in a left-to-right order. However, e-
cube routing algorithm does not address network link failure
issues completely. To address this issue further, the proposed
E-cube+ routing algorithm applies simple bit operations in
every node to determine the next hop to the destination.
Each node may perform two main functions: getLeftN
and getRightN. The former function determines the next
hop (𝑁

𝑁
) on the principal working path to the destination

(𝑁
𝐷
), and the latter determines the next hop on the backup

path. The function getLeftN first performs an exclusive OR
(XOR) operation on the label representing the current node
(𝑁
𝐶
) and the label representing the destination node (𝑁

𝐷
).

Then, it determines from left to right the position 𝑖 of the first
nonzero bit as shown in (1), called LSB function. Finally, it
inverts the 𝑖th bit of the current node label and obtains the
label for the next node, as shown in (2) where𝑁

𝐶
also stands

for the label (binary presentation of node identification) of
the current node, 𝑁

𝐷
represents the label of the destination

node, and LSB is the left significant bit functionwhich returns
the position 𝑖 of the first nonzero bit from left to right.
Consider

𝑖 ≡ LSB (𝑁
𝐶
⊕ 𝑁
𝐷
) , (1)

𝑁
𝑁
=

⊥

𝑁
𝑖

𝐶
.

(2)

For instance, the binary presentation of 𝑁
𝐶
’s identifica-

tion is 01010, the binary presentation of 𝑁
𝐷
’s is 10110, and

then the default next hop 𝑁1-Hop
(11010)

is determined (at 𝑁
𝐶
) as

𝑖 ≡ LSB (01010 ⊕ 10110) = 1 and 𝑁
𝑁
=

⊥

𝑁
𝑖

𝐶
=

⊥

(01010)
𝑖=1

=

11010 (convert-bit-position order from left).
If E-cube+ detects communication problem from the

current node to destination node via node 𝑁
𝑁

(which is
selected using the getLeftN function), it will perform the
getRightN function to determine the first nonzero bit 𝑖 from
right to left using the RSB function, as shown in (3). The
next hop node label is derived by inverting the 𝑖th bit of
the current node label, as shown in (2). Please note the bit-

position direction for𝑁
𝑁
=

⊥

𝑁
𝑖

𝐶
is different according to LSB

or RSB function, but we only define a notation of 𝑁
𝑁
=

⊥

𝑁
𝑖

𝐶
.

Consider

𝑖 ≡ RSB (𝑁
𝐶
⊕ 𝑁
𝐷
) . (3)

The E-cube+ routing algorithm is illustrated in Algo-
rithm 1. In a wireless sensor network equipped with E-cube+,
during data transfer between nodes, every node in the process
performs the following routing steps.

(i) Line 03: receive the packet (Pkt).
(ii) Lines 04–11: if current node is the destination, there

are three cases. (1) If there is a proxy before the
destination (its label is Pkt.DstLabel), pass the packet
to the upper-layer protocol; (2) the current node is the
destination, and there is no other node as the proxy;
(3) if it is the proxy of other nodes, then broadcast the
packet to its proxy member.

(iii) Lines 13–16: call getLeftN and get the next hop of
the main routing path; then put its own label in the
Pkt.ImdLabel, and forward the packet to the next hop.

(iv) Lines 19–22: call getRightN and get the next hop
of the backup path; then put its own label in the
Pkt.ImdLabel, and forward the packet to it.

(v) Lines 25–29: start backward routing. If it is already at
the source node, discard the packet.

In summary, the working path is decided by the routing
functions based on E-cube+ routing algorithm (as shown
in Algorithm 1). Routing path is determined based on the
labels of the destination node and that of current node. Upon
receiving the packet, the current node obtains the next hop
of the principal working path via executing the Lines 13–16.
If E-cube+ detects a communication problem to the next hop
of the principal working path, it would execute the routing
logic (Lines 19–22) to find the next hop of the backup path. If
both next hops of the principal working path and the backup
path are not reachable, the current node would perform
the backtracking procedure to send the packet back to the
previous node (Lines 25–29).

3.3. Example. For clear explanation, we will use a 5-DCH
network topology as an example and demonstrate three cases
with different failure nodes to explain the transmission of a
packet from the source node𝑁

{01010}
to the destination node

𝑁
{10110}

. The process is shown in Table 3.

International Journal of Distributed Sensor Networks 5

(01) MyID = selfID();
(02) while (TRUE) {
(03) Pkt = receivePacket();
(04) if (MyID == Pkt.GDLabel) // Genuine receiver behind a proxy
(05) sendUpperLayer(Pkt);
(06) else if (MyID == Pkt.DstLabel) {
(07) if (Pkt.GDLabel == 0) // Genuine receiver does not have a proxy
(08) sendUpperLayer(Pkt);
(09) else // Current node is a proxy and broadcasts in its domain
(10) broadcastProxyMember(Pkt);
(11) }
(12) else { // Forward at intermediate nodes
(13) LeftN = getLeftN (MyID, Pkt.DstLabel); // Main path
(14) if ((LeftN != Pkt.ImdLabel) && Link(LeftN)){
(15) MarkPacketImd(MyID, Pkt);
(16) sendPacket(LeftN, Pkt);
(17) }
(18) else {
(19) RightN = getRightN (MyID, Pkt.DstLabel); // Backup path
(20) if (Link(RightN)) {
(21) MarkPacketImd(MyID, Pkt);
(22) sendPacket(RightN, Pkt);
(23) }

(24) else { // Forwarding path failed
(25) if (myID == Pkt.SrcLabel) // Drop as no available path
(26) dropPacket(Pkt);
(27) else { // Backward to previous node
(28) MarkPacketImd(MyID, Pkt);
(29) backwardPacket(PreviousNode, Pkt);
(30) }}}}

Algorithm 1: The E-cube+ routing algorithm.

Table 3: A tracing example of E-cube+.

Case Current
node getLeftN getRightN DstLabel

Case I: no
failure node

01010 1 1010 10110
11010 1 0 010 10110
10010 10 1 10 10110
10110

Case II: node
10010 fails

01010 1 1010 10110
11010 10010 11 1 10 10110
11110 1 0 110 10110
10110

Case III: node
10010 and node
11110 fail

01010 1 1010 10110

11010 1 0 010
11 0 10

(backtrack) 10110

01010 01 1 10 10110
01110 1 1110 0 0 110 10110
00110 1 0110 10110
10110

Case 1 (normal routing with no failure nodes). 𝑁
{01010}

exe-
cutes the algorithmLines 13∼16. From getLeftN, (LSB(01010⊕
10110) ≡ 1 and inverting the 1-bit from left of the current node

label 01010 to be 11010), the algorithmknows that the next hop
is 𝑁
{11010}

. It puts its own label into the Pkt.ImdLabel, and
then forwards the packet to the next hop. Next, 𝑁

{11010}
and

𝑁
{10010}

also execute Lines 13∼16 to pass the packet to𝑁
{10110}

.
Then, 𝑁

{10110}
executes Lines 06∼08 and identifies itself as

the real destination and sends the packet to the upper-layer
protocol.

Case 2 (backup routing with a single failure node). 𝑁
{01010}

executes Lines 13∼16, puts its own label into Pkt.ImdLabel,
and then forwards the packet to 𝑁

{11010}
. Next, 𝑁

{11010}
also

executes the getLeftN command but realizes that 𝑁
{11010}

has failed and, thus, goes to Lines 19∼22. From getRightN
(RSB(11010 ⊕ 10110) ≡ 3 and inverting the 3-bit from right of
the current node label 11010 to be 11110), it knows that the next
hop is 𝑁

{11110}
and forwards the packet to 𝑁

{11110}
. 𝑁
{11110}

executes Lines 13∼16 and passes the packet to𝑁
{10110}

.𝑁
{10110}

executes Lines 06∼08 and sends the packet to the upper-layer
protocol.

Case 3 (backward routing during multiple failures). 𝑁
{01010}

executes Lines 13∼16, puts its own label into Pkt.ImdLabel,
and then forwards the packet to 𝑁

{11010}
. Next, 𝑁

{11010}
is

informed that the next hop is the failed 𝑁
{10010}

or 𝑁
{11110}

(i.e., the main path and the backup path both fail) and,
thus, runs Lines 28∼29 for backward routing the packet

6 International Journal of Distributed Sensor Networks

to node 𝑁
{01010}

. When 𝑁
{01010}

calls getLeftN and realizes
that the packet has been back routed (since Pkt.ImdLabel
equals𝑁

{11010}
), it executes Lines 19∼22. Through getRightN,

it knows that the next hop is𝑁
{01110}

and forwards the packet
to 𝑁
{01110}

. Next, 𝑁
{01110}

executes getRightN to transmit
to 𝑁
{00110}

because its getLeftN is the failed 𝑁
{11110}

as
Link(LeftN) = Null. Then 𝑁

{00110}
executes getLeftN to get

𝑁
{10110}

and sends the packet to𝑁
{10110}

.

3.4. Property. In this section, we first perform the latency
bound analysis for the fault tolerance capability of E-cube+
and then show the loop-free routing property for data
transmission as in Theorems 1 and 2, respectively. Under 𝑚-
DCH topology, the proposed E-cube+ method can guarantee
successful transmission under𝑚−1 node failures. Moreover,
the upper bound of message transmission latency (MTL) in
terms of hop count is analyzed under the 𝑚-DCH model.
The worst case analysis is based on the Hamming Distance
of source node and destination node, which is equal to 𝑚.
Through the analysis of the worst case of𝑚− 1 node failures,
the upper bound ofMTL for successful message transmission
can be presented as inTheorem 1.

Theorem 1. When there exists 𝑘 node failures in 𝑚-DCH
network topology, the upper bound of MTL is 𝑈 (𝑚, 𝑘) = 𝑚 +
2
(𝑘+1)
− 2𝑘 − 2.

Proof. The formula can be proved bymathematical induction
as follows.

Step 1. We first prove that the statement is true for 𝑘 = 0.
The number of hop counts for message transmission is 𝑚
when there is no node failure; that is, 𝑈 (𝑚, 0) = 𝑚. Since
the Hamming Distance between source node and destination
node is 𝑚 (e.g., 𝐻(010, 101) = 3; 𝐻(𝑁

𝑆
, 𝑁
𝐷
) = 𝑚), the MTL

is equal to the value derived from the formula 𝑈(𝑚, 0) =
𝑚 + 2

(0+1)
− 2 ⋅ 0 − 2 = 𝑚.

Step 2. We prove that if the statement is true for 𝑘 = 𝑚 − 2,
then it is also true for 𝑘 = 𝑚 − 1. Given that, 𝑈(𝑚,𝑚 − 2) =
𝑚 + 2

(𝑚−2+1)
− 2 ⋅ (𝑚 − 2) − 2 = 2

(𝑚−1)
− 𝑚 + 2 is true. Let

𝑅
𝑖,𝑗
denote a sensor node along with the path from the source

node (𝑁
𝑆
) to the destination node (𝑁

𝐷
) where 𝑖 presents

level and 𝑗 indicates the sequence between the nodes at the
same level 𝑖 by the E-cube+ routing algorithm (as shown in
Figure 2). In the worst case scenario for 𝑚 − 2 node failures,
there are two phenomena: (1) 𝑁

𝐷
is 𝑚 levels away from 𝑁

𝑆
,

which implies that𝑁
𝑆
= 𝑅
1,1

and𝑁
𝐷
= 𝑅
𝑚+1,1

. (2)The failure
node sequences are 𝑅

𝑚,𝑗
and 1 ≤ 𝑗 ≤ 𝑚 − 2.

When 𝑘 = 𝑚 − 1, the sensor node 𝑅
𝑚,𝑚−1

fails, we can
derive

𝑈 (𝑚,𝑚 − 1) = 𝑈 (𝑚,𝑚 − 2) − 2

+ (𝑚 − 2) + 1 + 𝑈 (𝑚 − 1,𝑚 − 2)

= [𝑚 + 2
(𝑚−2+1)

− 2 (𝑚 − 2) − 2] + [𝑚 − 3]

+ [𝑚 − 1 + 2
(𝑚−2+1)

− 2 (𝑚 − 2) − 2]

H(ND
, Rm,

m
) =

1

H
(N
S
, R
2,
1
)
=
1

H
(N

S , R
2,2)

=
1

Failure nodes of routing in the worst case

Rm,m−2

R2,2

Rm,1

Rm,m

Rm,m−1

R2,1

NS

ND

m − 2 failures

H
(N

S , R
m
,m)
=
m
−
1

Rm−1,m−2

Figure 2: Example of the transmission route from the source to the
destination by E-cube+ under𝑚-DCH for the worst case analysis.

= [2
(𝑚−1)

− 𝑚 + 2] + [𝑚 − 3] + [2
(𝑚−1)

− 𝑚 + 1]

= 2 ⋅ 2
(𝑚−1)

− 𝑚 = 2
𝑚

− 𝑚.

(4)

The E-cube+ produced routing path looks like Pascal’s
triangle, called Yang Hui’s triangle in China, plus the final
destination node. A brief explanation of the above derivation
is listed as follows.

(i) 𝑈 (𝑚,𝑚 − 2) − 2: due to the failure of the last hop
𝑅
𝑚,𝑚−1

, E-cube+ saves 2 hop counts at its previous hop
(𝑅
𝑚−1,𝑚−2

) in the routing path.

(ii) +(𝑚 − 2): E-cube+ backwards the packet from
𝑅
𝑚−1,𝑚−2

to𝑁
𝑆
.

(iii) +1: E-cube+ forwards the packet to next hop 𝑅
2,2

for
the backup routing.

(iv) +𝑈 (𝑚−1,𝑚−2): the follow-up of the hop counts can
be regarded the same as𝑚− 1-DCH with𝑚− 2 node
failures in the worst case.

Finally, the MTL inferred above is equal to the result of
the formula according to𝑈(𝑚,𝑚−1) = 𝑚+2(𝑚−1+1)−2⋅ (𝑚−
1) − 2 = 2

𝑚
− 𝑚, so the inductive proof is complete.

Theorem 2. The routing procedure of E-cube+ algorithm is
loop-free, denoted as 𝐿(𝑙

𝑆
, 𝑙
𝐷
) = 0.

Proof. The loop-free property can also be proved by math-
ematical induction and recursive calculation. As mentioned
above, the E-cube+routing path produced is like Pascal’s
triangle, and we can define a Boolean function expressed as 𝐿
(𝑙
𝑆
, 𝑙
𝐷
) where 𝑙

𝑆
is the level of the source node (𝑁

𝑆
) and 𝑙

𝐷
is

the level of the destination node (𝑁
𝐷
) in the complete routing

topology by E-cube+. If 𝐿(𝑙
𝑆
, 𝑙
𝐷
) = 0, that means loop-free

routing as𝑁
𝑆
→ 𝑁
𝐷
; else (like 𝐿(𝑙

𝑆
, 𝑙
𝐷
) ≥ 1) it presents there

is a routing loop problem. Firstly, we illustrate an example,

International Journal of Distributed Sensor Networks 7

𝐿(𝑙
𝑆
, 𝑙
𝐷
) = 0 as𝐻(𝑁

𝑆
, 𝑁
𝐷
) = 𝑚, of path length𝑚 in𝑚-DCH

network topology of Figure 2, as follows.
Please note that𝑁

𝑆
(𝑅
1,1
) is at level 𝑙

1
, 𝑅
𝑖,𝑗
is at level 𝑙

𝑖
, and

𝑁
𝐷
(𝑅
𝑚+1,1
) is at level 𝑙

𝑚+1
in the overview routing hierarchy

by E-cube+.The routing procedure is similarly like depth-first
search (DFS) from left to right under the E-cube+ routing
hierarchy.

Initial. To consider the original routing 𝑁
𝑆
→ 𝑁

𝐷
started

at level 𝑙
1
, shown in Figure 2, 𝐿 (𝑙

1
, 𝑙
𝑚+1
) can be presented

where 𝐿 (𝑙
1
, 𝑙
𝑚+1
) = 𝐿 (𝑙

2
, 𝑙
𝑚+1
) + 𝐿 (𝑙

2
, 𝑙
𝑚+1
) due to E-cube+

algorithm with two different routing edges (getLeftN and
getRightN routing) in each node until reaching the previous
node of the destination 𝑁

𝐷
. So, we can define the following

points.

(1) 𝐿 (𝑙
1
, 𝑙
𝑚+1
) = 𝐿 (𝑙

2
, 𝑙
𝑚+1
) + 𝐿 (𝑙

2
, 𝑙
𝑚+1
) = 2𝐿 (𝑙

2
, 𝑙
𝑚+1
).

(2) 𝐿 (𝑙
𝑖
, 𝑙
𝑚+1
) = 2𝐿 (𝑙

𝑖+1
, 𝑙
𝑚+1
), 𝑖 = 2, . . . , 𝑚 − 1 based on

(1).
(3) 𝐿 (𝑙

𝑚
, 𝑙
𝑚+1
) = 0: the last hop from 𝑙

𝑚
to 𝑙
𝑚+1

has no
loop.

Inference. By applying divide and conquer recursively, we can
derive that

𝐿 (𝑙
1
, 𝑙
𝑚+1
)

= 2 ⋅ 𝐿 (𝑙
2
, 𝑙
𝑚+1
) = 2
2

⋅ 𝐿 (𝑙
3
, 𝑙
𝑚+1
) = 2
3

⋅ 𝐿 (𝑙
4
, 𝑙
𝑚+1
)

= 2
𝑚−2

⋅ 𝐿 (𝑙
𝑚−1
, 𝑙
𝑚+1
) = 2
𝑚−1

⋅ 𝐿 (𝑙
𝑚
, 𝑙
𝑚+1
)

= 2
𝑚−1

⋅ 0 = 0.

(5)

Hence, it not only shows there are 2(𝑚−1) alternative
paths by E-cube+ algorithm, but also illustrates that the E-
cube+ routing procedure is loop-free, inferred by recursive
induction. Only when all possible routing paths are failed, E-
cube+ routing procedure will return to the source (𝑁

𝑆
) and

determine to drop the packet.

3.5. Topology Control Concept Illustration. Themain empha-
sis of this paper is to develop a fault-tolerant tableless rout-
ing protocol to support intelligent rerouting. The proposed
scheme is designed to be able to run on any such hyper-
cube topology. However, the events regarding adding new
nodes/links and deleting existing nodes/links that become
permanently unavailable are related to topology construc-
tion and maintenance issues. In this paper, we assume the
topology is constructed by one of the hypercube construction
algorithms, such as the topology control scheme proposed
in BlueCube [34]. In the rest of this section, we introduce
briefly the topology control in BlueCube. Three phases are
designed to complete hypercube construction in BlueCube
including Phase I: ring construction phase (RCP), Phase II:
scatternet construction phase (SCP), and Phase III: BlueCube
construction phase (BCP).

(i) Phase I: RCP is used to construct the ring scatternet as
well as to maximize the dimensions of the hypercube.

(ii) Phase II: SCP aims to reduce the number of piconets
and bridges. It also aims to connect those devices
that are not connected to the scatternet ring with the
masters in the scatter ring.

(iii) Phase III: BCP restructures the scatternet ring to a
hypercube structure.

Figure 3 briefly illustrates the BlueCube construction
procedures. In BlueCube, some terms such as connection
key (CK) and degree of connection (DOC) are defined to
help distributed nodes to cooperate together in the process
of hypercube construction. DOC is the degree of a BlueCube
in a scatternet. Two scatternets can be linked together when
their DOCs are the same.

As shown in Figure 3(a), A and B form a scatternet, while
C and D form another. The nodes with CK number of 01∗
patterns (including 0, 01, 011, 0111,. . .) are called constructors
(e.g., nodes B and C in Figure 3(a)). Constructors are respon-
sible for discovering a new scatternet as well as for forming a
higher dimension hypercube.

Figure 3(b) shows that node B (the constructor of the
scatternet formed by A, B) finds the other scatternet (formed
by nodes C and D), and then node B sends a Join request to
node C (the constructor of the scatternet formed by C, D). As
a result, they can be combined to a bigger scatternet of four
nodes (as seen in Figure 3(b)). Note that node D becomes the
constructor of the new scatternet since CK = 01 is assigned
to node D. As a result, node D is responsible for discovering
and forming the bigger hypercube for this new scatternet.
Notice that the black node (e.g., nodes C and B in Figure 3(a))
represents the master node in the scatternet. Master may be
different from the constructor due to load sharing and role
reduction for the embedded system.

As shown in Figure 3(c), the scatternet grows gradually.
The combination procedure continues until all nodes join the
hypercube. In order to illustrate the scatternet combining in
detail, let us denote (A, B∗) as a scatternet formed by nodes
A and B.The node with an asterisk superscript stands for the
constructor of that scatternet. The hypercube-grow process
may present as below.

(i) DOC = 1 (A, B∗), (C∗, D), (G, H∗), (F∗, E), (O, P∗),
(N∗, M), (J, I∗), (K∗, L).

(ii) DOC = 2 (A, B, C, D∗), (G, H, F, E∗), (O, P, N, M∗),
(J, I, K∗, L∗).

(iii) DOC = 3 (A, B, C, D, G, H∗, F, E), (O, P, N, M, J, I∗,
K, L).

(iv) DOC = 4 (A∗, B, C, D, G, H, F, E, O, P, N, M, J, I, K,
L).

After all nodes join the big scatternet, the new constructor
nodeA (CK= 0111) connects node P (CK= 1111) to form a ring
and Phase I is completed. As seen in Figure 3(d), in the overall
topology, some other nodes (e.g., nodes X, Y) may exist that
are not linked with the ring scatternet and will run Phase
II (scatternet construction) after some timeout. The Phase
II scatternet construction includes role switching procedure
(RSP) and remaining device connection procedure (RDCP).
After all nodes join the ring scatternet or the master node

8 International Journal of Distributed Sensor Networks

D

C

A

B [= 0

= 1
]

DOC
CK[= 0

= 1
]

DOC
CK

[CK = 1

DOC = 1
] [CK = 1

DOC = 1
]

(a)

D

C

A

B

[= 00

= 2
] [= 10

= 2
]

[= 1

= 1
]

[= 11

= 2
][= 01

= 2
]

DOC

[= 0

= 1
]

DOC

DOC

CK [= 0

= 1
]

DOC
CK

DOC
CKCK

DOC
CK [= 1

= 1
]

DOC
CK

DOC
CKCK

(b)

A

B

D

C

H

G

E

F

P

O

M

N

I

J

L

K

[= 1000

= 4
] [= 1010

= 4
]

[= 1011

= 4
]

[= 1100

= 4
]

[= 1101

= 4
] [= 1111

= 4
]

[= 1110

= 4
]

[= 1001

= 4
]

[= 0100

= 4
] [= 0110

= 4
]

[= 0111

= 4
][= 0101

= 4
][= 0011

= 4
][= 0001

= 4
]CK

DOC

CK

DOC
CK

DOC

CK

DOC

CK

DOC

CK

DOC

CK

DOC

CK

DOC
CK

DOC

CK

DOC

[= 0010

= 4
]CK

DOC
CK

DOC

CK

DOC

CK

DOC

CK

DOC

[CK = 0000

DOC = 4
]

(c)

A

B

C
DEF

G

H

I

J

K
L

M N
O

P

Y
X

[= 1011

= 4
]

[= 1010

= 4
]

[= 1000

= 4
]

CK

DOC

[= 0011

= 4
]CK

DOC

[= 0010

= 4
]CK

DOC

CK

DOC

CK

DOC [= 1001

= 4
]CK

DOC [= 1101

= 4
]CK

DOC
[= 1100

= 4
]CK

DOC

[= 1110

= 4
]CK

DOC

[= 1111

= 4
]CK

DOC

[= 0111

= 4
]CK

DOC

[= 0110

= 4
]CK

DOC

[= 0100

= 4
]CK

DOC

[= 0101

= 4
]CK

DOC
[= 0000

= 4
]CK

DOC
[= 0001

= 4
]CK

DOC
[CK = 000

DOC = 3
]

[CK = 00

DOC = 2
]

(d)

Figure 3: BlueCube hypercube construction procedures (redrawn from [34]).

does not receive any response from the slave node within the
timeout period, RDCP of Phase II is completed and Phase III
begins. Hypercube is constructed to build a fault tolerance
overlay structure based on the Hamming Distance of the
CK values assigned to the nodes. Two nodes with Hamming
Distance of one will connect to each other (dotted lines as
shown in Figure 3(d)) to establish the BlueCube structure.

The events of adding new nodes to the BlueCube and
deleting nodes from BlueCube can be handled according
to the occurrence of the events. Since the BlueCube topol-
ogy usually needs to reconstruct topology periodically in
practice to optimize the mapping between physical devices
with logical labels (CK numbers) assigned to them, new
added nodes may participate in the new procedure of
hypercube construction at that time. On the other hand,
if the adding/deleting event occurs during the operation of
two consecutive topology reconstructions, we suggest the
addition and deletion events to be handled similarly as in
Phase II. As shown in Figure 3(d), nodes X and Y join the
scatternet of node F who is in the hypercube backbone. As
a result, BlueCube Phase II may serve as temporal topology
control service in the background. If the leaving node is a
master node in the scatternet ring, the leaving master node

selects one of its piconetmembers as the newmaster node and
passes all its information (including CK, DOC) to the new
master. As such, the new master can continue work having
the same role in the hypercube structure. If the leaving node
is not themaster node in the scatternet ring, itmay choose the
neighbor with the shortest Hamming Distance as an agent to
play its role until next topology reconstruction is triggered.
For further details about topology control in BlueCube, the
reader is referred to BlueCube [34].

4. Simulation and Results

In order to demonstrate the efficiency of the fault tolerance
during the node failure period presented in Section 3, we
perform the experiments of the label-basedmultipath routing
(LMR) [35], E-cube+ with two labeling schemes, and the
routing-table based EMRA (𝑀 = 3; 𝑃 = 2) [30] where the
sink nodemaintains𝑀 disjoint multiple paths but only keeps
themost𝑃 positive routing paths. Once the principal working
path is confirmed, the LMR will broadcast a label message
from the receiver (receiver is labeled as 0) to all the nodes in
the network. In this way, on receiving the message with label
0, the receiver uses the node information in the packet to find

International Journal of Distributed Sensor Networks 9

a disjoint path to back up the current working path.The LMR
can be applied to different data-centric routing protocols,
such as the SPIN and directed diffusion [36].

Firstly, we will introduce the simulation software and the
experimental parameters. The simulation was performed on
QualNet 5.0. The experiment settings and parameters are
listed as follows: (1) sensing field size in simulation: 4.5 ×
4.5 km2; (2) data packet size: 512 bytes; (3) data packet rate:
one packet per second; (4) transmission range: 4.5√2/15 km.
The topology of the nodes is essentially a mesh network.
As every connection in the network has the same cost, 256
nodes were incorporated into a 16 × 16 grid. Since the focus
is not on the labeling methods, existing methods (such as
BlueCube [34] and virtual hypercube label (VHL) [37]) on
node labeling were adopted in the simulation. In BlueCube,
the topology is ideal for 𝑚-DCH operations; that is, one
node can connect to any other node in the network. In
other words, its propagation range is 4.5√2 kilometers. VHL
method is to assign multiple labels to each node, so that the
hypercube labels can still be simulated when the number of
nodes is not sufficient for the hypercube model. Due to the
arrangement offered by VHL, 256 nodes require a 30-DCH
to facilitate the labeling experiment. As the performance
metric for evaluation of E-cube+, we defined the probability
of success (a.k.a. transmission success rate) as the number of
successfully delivered messages divided by the total number
of outgoing messages.

From Figure 4, it can be observed that irrespective of the
labeling method used in E-cube+ its transmission success
rate is much higher than that of the LMR and EMRA.
Specifically when the failure percentage of grid nodes reaches
20%, E-cube+ still achieves a success rate of more than 30%.
Although E-cube+ with BlueCube can achieve a high success
rate, its unrealistic assumption connects each node to eight
neighboring nodes.

In E-cube+ with VHL, since the network topology is
a grid, every node can connect to a maximum of four
neighboring nodes, which is the same as that in the LMR.
Due to routingmethod employed in E-cube+, every node has
a backup route, like in a tree structure. Therefore, instead of
just one backup path, multiple backup paths can be found.
But in the LMR, only the source node has a single backup
path.Thus, when any nodes in themain and backup paths fail,
the data is not transmitted to the destination. As for EMRA,
its probability of success is higher than LMR due to disjoint
multiple path property.

Following the experiment with the longest pair of nodes,
we tested the transmission success rate of node pairs with
different Euclidean distances in a network with 10% failed
nodes. In the 16 × 16 grid environment, the source node
places in (0,0), and the 7 different sink locations (𝐷

𝑖
) are as

following:𝐷
0
in (2,2),𝐷

1
in (4,4),𝐷

2
in (6,6),𝐷

3
in (8,8),𝐷

4

in (11,11),𝐷
5
in (13,13), and𝐷

6
in (15,15). In Figure 5, it can be

seen that, due to its ideal assumption, E-cube+ with BlueCube
is able tomaintain a success rate higher than 98% irrespective
of the distance. E-cube+ with VHL, EMRA and LMR show
little difference when the distance is short, as the number
of possible backup nodes is limited. When the distance

Node failure (%)

100

80

60

40

20

0

0 5 10 15 20

E-cube+ with BlueCube
E-cube+ with VHL

Static LMR
EMRA

Pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

 (%
)

Figure 4: Probability of successful transmission versus percentage
of node failures.

D0 D1 D3D2 D4 D5 D6

E-cube+ with BlueCube
E-cube+ with VHL

Static LMR
EMRA

10% node failure

100

80

60

40

20

0

Pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

 (%
)

Euclidean distance from source to destination (Di)

Figure 5: Probability of successful transmission for varying dis-
tances.

gradually increases, the number of nodes on the paths also
increases. On the other hand, the probability of node failure
also increases. However, as E-cube+ can acquire multiple
paths, its failure rate does not increase as rapidly as that of
the EMRA and LMR. Therefore, it can be seen that E-cube+
is always able to exhibit good fault-tolerance capability.

When using the E-cube+ method, no routing table is
required and simple calculations can provide routing deci-
sions. In order to demonstrate that E-cube+ does not sacrifice
transmission time for saving memory space, it can be seen
in Figure 6 that the 7 different distances (𝐷

0
to 𝐷
6
) were

10 International Journal of Distributed Sensor Networks

120

80

40

0

D0 D1 D3D2 D4 D5 D6

E-cube+ with BlueCube
E-cube+ with VHL

Static LMR
EMRA

10% node failure

Av
er

ag
e e

nd
-to

-e
nd

 d
el

ay
 (m

s)

Euclidean distance from source to destination (Di)

Figure 6: Average end-to-end delay for varying distances.

used in the experiment to obtain different packet delays.
From the figure, it can be seen that the routing of the static
LMR through table lookup is more time-consuming than E-
cube+ with VHL and E-cube+ with BlueCube. As the distance
increases, when compared with the table lookups, E-cube+
with VHL and E-cube+ with BlueCube have a lesser increase
in the delay, which demonstrates the simplicity of the E-cube+
routing method. Please note that EMRA and E-cube+ with
BlueCube have the best performance with the lowest delay
time. E-cube+ with BlueCube is under the assumption of
strong transmission range that can make the labeled network
bemapped to a 𝑘-cube topology (such as 8-cube of 256 nodes)
as well as adopting E-cube+ routing algorithm.

5. Conclusion

Due to the resource constraints and the existence of wireless
features, wireless sensor networks are susceptible to relatively
high fault rates. When certain nodes in a wireless sensor net-
work fail, wireless network transmission will be interrupted,
thus greatly lowering the reliability of the entire network.
In this paper, we proposed a fault-tolerant tableless routing
protocol termed E-cube+, to achieve a highly fault-tolerant
protocol for a wireless sensor network. With these desired
fault-tolerant salient features (including no routing table
lookup, failure recovery guarantees, and bounded latency),
E-cube+ is expected to become the fundamental support for
wireless sensor networks.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] J. Araujo, M. Mazo, A. Anta, P. Tabuada, and K. H. Johansson,
“System architectures, protocols and algorithms for aperiodic
wireless control systems,” IEEE Transactions on Industrial Infor-
matics, vol. 10, no. 1, pp. 175–184, 2014.

[2] N. Salman, M. Ghogho, and A. H. Kemp, “Optimized low com-
plexity sensor node positioning in wireless sensor networks,”
IEEE Sensors Journal, vol. 14, no. 1, pp. 39–46, 2014.

[3] H. Huang, G. Hu, and F. Yu, “Energy-aware geographic routing
in wireless sensor networks with anchor nodes,” International
Journal of Communication Systems, vol. 26, no. 1, pp. 100–113,
2013.

[4] B. C. Cheng, G. T. Liao, R. Y. Tseng, and P. H. Hsu, “Network
lifetime bounds for hierarchical wireless sensor networks in the
presence of energy constraints,”Computer Networks, vol. 56, no.
2, pp. 820–831, 2012.

[5] W. J. Dally and C. L. Seitz, “Deadlock-free message routing in
multiprocessor interconnection networks,” IEEE Transactions
on Computers, vol. 36, no. 5, pp. 547–553, 1987.

[6] J. T. Draper and J. Ghosh, “Multipath E-cube algorithms
(MECA) for adaptive wormhole routing and broadcasting in
k-ary n-cubes,” in Proceedings of the 6th International Parallel
Processing Symposium, pp. 407–410, Beverly Hills, Calif, USA,
March 1992.

[7] P.-J. Chuang, B.-Y. Li, and T.-H. Chao, “Hypercube-based data
gathering in wireless sensor networks,” Journal of Information
Science and Engineering, vol. 23, no. 4, pp. 1155–1170, 2007.

[8] H. Huo, W. Shen, Y. Xu, and H. Zhang, “Virtual hypercube
routing in wireless sensor networks for health care systems,”
in Proceedings of the 1st International Conference on Future
Information Networks (ICFIN ’09), pp. 178–183, October 2009.

[9] Y. Aumann and M. A. Bender, “Fault-tolerant data structures,”
inProceedings of the 37thAnnual Symposium on the Foundations
of Computer Science (FOCS '96), pp. 580–589, October 1996.

[10] T. Wang, H. Liu, M. Sun, Z. Liu, and M. Zhou, “Fault tolerance
on improved distributed spanning tree structure,” in Proceed-
ings of the IEEE International Conference onAdvancedComputer
Control (ICACC ’10), vol. 5, pp. 296–300, March 2010.

[11] G. Wu, C. Lin, F. Xia, L. Yao, H. Zhang, and B. Liu, “Dynamical
jumping real-time fault-tolerant routing protocol for wireless
sensor networks,” Sensors, vol. 10, no. 3, pp. 2416–2437, 2010.

[12] Z. Che-Aron, W. F. M. Al-Khateeb, and F. Anwar, “An enhance-
ment of fault-tolerant routing protocol for wireless sensor
network,” in Proceedings of the International Conference on
Computer and Communication Engineering (ICCCE ’10), Kuala
Lumpur, Malaysia, May 2010.

[13] A. U. R. Khan, S. A. Madani, K. Hayat, and S. U. Khan,
“Clustering-based power-controlled routing formobile wireless
sensor networks,” International Journal of Communication Sys-
tems, vol. 25, no. 4, pp. 529–542, 2012.

[14] B. Russell, M. L. Littman, and W. Trappe, “Integrating machine
learning in ad hoc routing: a wireless adaptive routing protocol,”
International Journal of Communication Systems, vol. 24, no. 7,
pp. 950–966, 2011.

[15] P. T. Gaughan and S. Yalamanchili, “Adaptive routing protocols
for hypercube interconnection networks,”Computer, vol. 26, no.
5, pp. 12–23, 1993.

[16] M. S. Chen and K. G. Shin, “Adaptive fault-tolerant routing in
hypercube multicomputers,” IEEE Transactions on Computers,
vol. 39, no. 12, pp. 1406–1416, 1990.

International Journal of Distributed Sensor Networks 11

[17] J.Wu, “Adaptive fault-tolerant routing in cube-basedmulticom-
puters using safety vectors,” IEEE Transactions on Parallel and
Distributed Systems, vol. 9, no. 4, pp. 321–334, 1998.

[18] M. Hoffmann, C. Borchert, C. Dietrich et al., “Effectiveness of
fault detection mechanisms in static and dynamic operating
system designs,” in Proceedings of the 17th IEEE International
Symposium on Object-Oriented Real-Time Distributed Comput-
ing (ISORC ’14), Reno, Nev, USA, June 2014.

[19] B. Arun Kumar, M. R. N. Tagore, and D. R. Giri Babu Kande,
“An efficient fault detection systemwith difference-set codes for
memory applications,” in Proceedings of the 29th International
Conference on Recent Trends in Science and Technology (RTET
’13), pp. 43–48, September 2013.

[20] M. Cinque, C. Di Martino, and A. Testa, “Analyzing and mod-
eling the failure behavior of wireless sensor networks software
under errors,” in Proceedings of the 8th IEEE International
Wireless Communications and Mobile Computing Conference
(IWCMC ’12), pp. 1136–1141, Limassol, Cyprus, August 2012.

[21] Q. Gu, C. Ferguson, and R. Noorani, “A study of self-
propagating mal-packets in sensor networks: attacks and
defenses,” Computers and Security, vol. 30, no. 1, pp. 13–27, 2011.

[22] R. Kumar, F. Sultan, K. Nagaraja, S. Chakradhar, and M.
Srivastava, “Handling memory corruption faults in sensor
networks,” NESL Technical Report TR-UCLA-NESL-200510-
04, 2005, http://nesl.ee.ucla.edu/document/show/194.

[23] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and
F. Silva, “Directed diffusion for wireless sensor networking,”
IEEE/ACM Transactions on Networking, vol. 11, no. 1, pp. 2–16,
2003.

[24] C. Perkins, E. Belding-Royer, and S. Das, Ad Hoc on-Demand
Distance Vector (AODV) Routing, vol. 3561, RFC, 2003.

[25] D. B. Johnson and D. A. Maltz, “Dynamic source routing in
Ad Hoc wireless networks,” in Mobile Computing, vol. 353 of
The Kluwer International Series in Engineering and Computer
Science, pp. 153–181, 1996.

[26] Y.Huang and L. Yu, “Load-balanced and link-disjointmultipath
routing for wireless sensor networks,” in Advances in Electrical
Engineering and Electrical Machines, vol. 134 of Lecture Notes in
Electrical Engineering, pp. 395–403, 2011.

[27] S.-R. Jung, J.-H. Lee, and B.-H. Roh, “An optimized node-
disjoint multi-path routing protocol for multimedia data trans-
mission over wireless sensor networks,” in Proceedings of the
International Symposium on Parallel and Distributed Processing
with Applications (ISPA ’08), pp. 958–963, Seoul, Republic of
Korea, December 2008.

[28] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin, “Highly-
resilient, energy-efficient multipath routing in wireless sensor
networks,” ACM SIGMOBILE Mobile Computing and Commu-
nications Review, vol. 5, no. 4, pp. 11–25, 2001.

[29] P. Key, L. Massoulié, and D. Towsley, “Path selection and
multipath congestion control,” in Proceedings of the 26th IEEE
International Conference on Computer Communications (IEEE
INFOCOM ’07), pp. 143–151, Anchorage, AK, USA, May 2007.

[30] J. Shi, K. Cai, C. He, G. Wei, and Z. Shan, “An energy-adaptive
multiple paths routing approach for wireless sensor networks,”
Journal of Mobile Multimedia, vol. 8, no. 1, pp. 34–48, 2012.

[31] M. K. Marina and S. R. Das, “On-demand multipath distance
vector routing in ad hoc networks,” in Proceedings of the
9th International Conference on Network Protocols, pp. 14–23,
Riverside, Calif, USA, November 2001.

[32] L. N. Joseph and G. V. Uma, “Reliability based routing in
wireless sensor networks,” International Journal of Computer
Science and Network Security, vol. 6, no. 12, pp. 331–338, 2006.

[33] S. Kim, R. Fonseca, and D. Culler, “Reliable transfer on
wireless sensor networks,” in Proceedings of the 1st Annual
IEEE Communications Society Conference on Sensor and AdHoc
Communications andNetworks (IEEE SECON ’04), pp. 449–459,
October 2004.

[34] C.-T. Chang, C.-Y. Chang, and J.-P. Sheu, “BlueCube: con-
structing a hypercube parallel computing and communication
environment over Bluetooth radio systems,” Journal of Parallel
and Distributed Computing, vol. 66, no. 10, pp. 1243–1258, 2006.

[35] X. Hou, D. Tipper, and J. Kabara, “Label-based multipath rout-
ing (LMR) in wireless sensor networks,” in Proceedings of the
6th International Symposium on Advanced Radio Technologies
(ISART ’04), 2004.

[36] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed
diffusion: A scalable and robust communication paradigm for
sensor networks,” in Proceedings of the 6th Annual International
Conference on Mobile Computing and Networking (MOBICOM
’00), pp. 56–67, Boston, Mass, USA, August 2000.

[37] A. Toce, A. Mowshowitz, P. Stone, P. Dantressangle, and G.
Bent, “HyperD: a hypercube topology for dynamic distributed
federated databases,” in Annual Conference of the International
Technology Alliance, Adelphi, Md, USA, September 2011.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

