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Device-free passive localization (DFPL) has been an emerging application with fast increasing development. Channel State
Information- (CSI-) based DFPL is recently paid more attention to for fine-granularity and stability of CSI. However, lots of dead
spots exist in the area of interest. And the accuracy of localization is not still completely satisfactory, especially for outside of the first
Fresnel zone. In our paper, we put forward a new metric to estimate the sensitivity of a receiver to changes in the detecting area. In
our experiment, we observe that the performance ofDFPL can be raisedwhen the receiver is placed at the locationwith high receiver
sensitivity.Hence, we develop a newhigh-performance indoor device-free passive localization (HiDFPL), which employs a Bayesian
a posteriori approach and possesses high receiver sensitivity. The experiment results demonstrate the outstanding performance of
the proposed scheme.

1. Introduction

Location-aware service offers great convenience to people’s
life. Notably, device-free passive localization (DFPL) without
the need for carrying any electronic device plays an important
role in many application areas, such as security and surveil-
lance and assisted living and elder care. Recently, a larger
number of advanced DFPL applications are researched and
developed [1–5]. In this paper, based on lots of experimental
observation, we put forward a novel fine-grained device-free
passive localization with high sensitivity and accuracy.

DFPL originally employed easy-access radio signal
strength indicator (RSSI) as signal features [6]. Most of DFPL
systems achieve human locations using data fusion tech-
nology based on the effect of human shadowing. However,
in the indoor environment with serious multipaths effect,
RSSI is variable and insensitive for moving human that is far
from the line link [5]. Hence, the accuracy of DFPL relies
on lots of limited conditions, such as intensive equipment
deployment and site-survey fingerprinting. Aiming to realize

high-accuracy DFPL, some researchers explored utilizing of
wireless physical layer information. Channel State Informa-
tion (CSI) is a common and fine-grained signal feature, which
can characterise the multipath propagation and be helpful to
high-accuracy DFPL.

Recently, with the WLAN and OFDM technology devel-
opment, DFPL based on CSI is paid more attention to [7].
MonoPHY [3] and Pilot [4] systems firstly achieve CSI-
based DFPL with a few pieces of equipment (even only
a transmitter-receiver pair). However, it is observed that
numerous dead spots exist in the area of interest. At the
same time, the accuracy of DFPL is not yet completely
satisfactory, especially for outsides of first Fresnel zone.
The common solution to reduce dead spots and guarantee
good performance is to increase transmitter-receiver pairs so
that the area of interest is filled with more wireless signal.
However, that will causemore cost including time, power, and
money. Now, how to use the least transmitter-receiver pairs to
achieve a high-accuracy device-free passive localization with
as less as possible dead spots is a problem.
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Therefore, we constructed a large number of experiments
with a transmitter-receiver pair. To our surprise, it is observed
that the receiver possesses diverse sensitivity to environment
changes when the receiver is placed at different locations.
Through our analysis and discussion, we agree that the
received signals from different locations contain different
richness ofmultipath radio signal arriving at the receiver with
clusters. Moreover, when the receiver locates different loca-
tions, the phase shift of signal due to reflection and scattering
causes constructive and destructive multipath interference.
Hence, when the receiver is placed at the location with high
receiver sensitivity, it is feasible to achieve a high-accuracy
DFPL with the least dead spots.

In the communication community, Rician 𝐾 factor is
defined as the power ration between the LOS andNLOSpaths
to indict the richness of multipath propagation [8]. But an
estimator for Rician 𝐾 factor relies on accurate phase, which
is difficultly extracted on commercial WiFi devices [9, 10].
Hence, how to estimate the richness ofmultipath propagation
on commercial wireless cards is a challenge. We noticed
that CSI possesses finer-grained frequency resolution and
higher time resolution to distinguish multipath components.
So, we explored leveraging of CSI from commercial wireless
cards to estimate the richness of multipath components [11].
Through plenty of experiments, we observed that when the
receiver sensitivity is high, the kurtosis of standard deviation
of all subcarriers’ amplitudes is small but its mean is large.
Combined with the theory and experiments, we propose a
novel 𝐾

𝑠
factor to estimate receiver sensitivity.

In this paper, a high-performance indoor device-free
passive localization (HiDFPL) is proposed.TheHiDFPL takes
advantage of CSI to evaluate a receiver sensitivity and search
for a high-sensitive receiver location for reducing the number
of dead spots. Experimental evaluation in typical indoor
scenarios shows that HiDFPL can achieve an accuracy of
0.79m. This corresponds to at least 20% enhancement in
distance error over the state-of-the-art DFPL systems.

The main contributions of HiDFPL system are summa-
rized as follows.

(1) We propose a high-performance indoor device-free
passive localization system. It can cover a larger area
of interest and observably improve the accuracy of
localization.

(2) To the best of our knowledge, this is a novel work
to estimate the sensitivity of indoor receivers based
on commercial wireless cards, which is helpful to
improve the performance of DFPL system.

(3) Extensive evaluation of HiDFPL with commercial
802.11n NICs is constructed in two typical indoor sce-
narios. These measurements show that the HiDFPL
can greatly reduce the number of dead spots in the
area of interest and achieve at least 20% enhancement
in median error over the state-of-the-art DFPL sys-
tems using the same WLAN installation.

In the rest of the paper, we first provide a preliminary in
Section 2 and detail the receiver sensitivity in Section 3.Then
our scheme is descripted in Section 4. Section 5 presents

the performance evaluation; Section 6 discusses the related
work. Finally, Section 7 concludes our work.

2. Preliminary

2.1. Channel State Information. Orthogonal frequency divi-
sion multiplexing (OFDM) [12] is a promising technology
mitigating the effects of frequency selectivity and ISL. In
802.11n standard that employs the OFDM technology, chan-
nel is divided into multiple subcarriers. It can be modeled as
follows:

𝑌 = 𝐻 ∗ 𝑋 + 𝑛, (1)
where 𝑋 is a transmitted symbol, 𝑌 is a received symbol,
𝑛 is noise, 𝐻 is Channel State Information (CSI) that is
reported as a complex channel transfer matrix representing
the channel gain for all subcarriers [13].

CSI refers to known channel properties of a communi-
cation link from the transmitter(s) to the receiver(s). CSI is
shown as a set of measurements depicting the amplitude and
phase of every subcarrier in the channel of OFDM system.
CSI is mathematically represented as ℎ = |ℎ|𝑒

𝑗(∠ℎ), which
can be extended to matrix values depending on the number
of antenna elements. Some commercial wireless cards, such
as Intel 5300 NICs, can export a group of discrete channel
frequency responses (CFRs) on 30 subcarriers to driver in the
format of CSI.

2.2. Indoor Radio PropagationModel. Different fromoutdoor
space, signals of the indoor contain the larger number of
multipath signals. In typical indoor scenarios, a transmitted
signal propagates to the receiver through reflection, scat-
tering, and attenuation. Each multipath signal introduces
different time delay, amplitude attenuation, and phase shift
[14]. Hence, the channel impulse response of received signal
can be expressed as

ℎ (𝑡) =

𝑁

∑

𝑖=1
𝛼
𝑖
(𝑡) 𝑒
−𝑗𝜙𝑖(𝑡)𝛿 (𝜏 − 𝜏

𝑖
(𝑡)) , (2)

where 𝑁 is number of multipath signals and 𝛼
𝑖
(𝑡), 𝜙
𝑖
(𝑡) =

2𝜋𝑓𝜏
𝑡
(𝑡), and 𝜏

𝑖
(𝑡), respectively, represent the amplitude,

phase, and time delay of the 𝑖th multipath component. The
channel impulse response in (2) can be obtained by applying
a fast Fourier transform, the CFR. If there is a Line-of-Sight
(LOS) path, (2) is given by

ℎ (𝑡) = 𝛼LOS𝑒
−𝑗𝜙LOS +

𝑁−1
∑

𝑖=1
𝛼
𝑟,𝑖

(𝑡) 𝑒
−𝑗𝜙𝑟,𝑖(𝑡), (3)

where 𝛼
𝑟
(𝑡), 𝜙
𝑟
(𝑡) are the amplitude and phase of multipath

signals.
The value of 𝛼 is related to reflection coefficients. Elec-

tromagnetic material causes more serious signal attenuation,
while, for the same material, signals of different frequencies
suffer from different power loss.The signal of high frequency
is too severely attenuated to be detected by the receiver. The
phase shift Δ𝜙

𝑟
= |𝜙
𝑟

− 𝜙0| = 2𝜋𝑓Δ𝑑/𝑐 is related to locations
of an obstacle.When the obstacle is close to the LOS path, the
phase shift is smaller.
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3. Receiver Sensitivity

In multipath-rich indoor environments, wireless signals can
transmit to the receiver via reflection, diffraction, and scat-
tering [15]. Human appearance or motions tend to alter
signal propagation in a more sophisticated manner, leading
to different sensing levels at the receiver. In this paper, a
receiver sensitivity is put forward as an evaluation for an
ability of receiver to sense changes of signal propagation in an
indoor region. Generally, the sensing region is characterized
by an ellipse along the transmitter-receiver (TX-RX) link [16],
known as Fresnel zone.The receiver has the highest sensitivity
to changes in the first Fresnel zone. With the zone being
larger, the receiver sensitivity is more and more feebler.

Compared with the RSSI, the CSI is fine-grained and
owns high sensitivity to changes of the surrounding. Pilot and
MonoPHY systems have significant performance in device-
free passive localization. However, some works still need to
be solved for device-free passive localization.

(1) Some dead spots exist in an area of interest.
(2) For the indoor environment, the accuracy of localiza-

tion can be further improved.

As previously discussed, receivers at different locations
can exhibit different sensitivity levels to the same human
appearance or motions. For different receiver locations,
multipath components can superpose either constructively
or destructively [17], and the ratio of the Non-Line-of-Sight
(NLOS) paths in the total received signals also varies. With
larger number of multipath signals, human body is potential
to disturb many reflected rays paths, resulting in more severe
fluctuations of the received signals. In contrast, with a strong
LOS ray, human can only disturb significantly the receiver
signal in close proximity to the direct path. Hence, human
on a NLOS location tends to induce inapparent changes of
the received signals. Therefore, the receiver sensitivity level
is closely related to the proportion of the NLOS rays in the
received signals.

Theoretically, the received envelope 𝑟 follows Rician
distribution; then it can be depicted by Rician 𝐾 factor as
follows [18]:

𝑝 (𝑟)

=
2 (𝐾 + 1) 𝑟

Ω
𝑒
(−𝐾−(𝐾+1)𝑟2/Ω)

𝐼0 (2𝑟√
𝐾 (𝐾 + 1)

Ω
) ,

(4)

where 𝐼0(⋅) is the zero-order modified Bessel function of the
first kind and Ω denotes the total received power. Though
the Rician 𝐾 can be calculated by the phase information
on special electronic instruments, it is difficult for common
commercial WiFi equipment, due to lack of time and phase
synchronization [19]. Fortunately, we observed that the sta-
tistical features of CSI amplitudes can be employed to indict
the richness of multipath propagation [15]. The reasons are
twofold.

(1) The attenuation of reflection and scattering signals
relates to the frequency. Generally, the signal of high

frequency suffersmore serious fading than that of low
frequency.

(2) When NLOS signals are rich, amplitudes of receiver
signals can be obviously effected by the reflection and
scattering along the paths.

In ideal conditions, amplitudes on subcarriers of OFDM
signals are almost the same. Therefore, we can presume that,
in case of only a stronger LOS path, amplitudes on subcarriers
remain similar if normalized to the same frequency after
propagating through the same path. In contrast, in case
of rich NLOS signals, signals of high frequencies are too
severely attenuated. The amplitudes of signals subcarriers
deviate from each other even when normalized to the same
frequency [19]. Hence, we collect CSI and normalize the CSI
amplitude of each subcarrier to the central carrier frequency
𝑓
𝑐
as follows:

𝐻norm (𝑓
𝑘
) =

𝑓
𝑘

𝑓
𝑐

⋅ 𝐻 (𝑓
𝑘
) , (5)

where 𝐻(𝑓
𝑘
) and 𝐻norm(𝑓

𝑘
) are the original and normalized

(with respect to 𝑓
𝑐
) amplitudes of the 𝑘th subcarrier. 𝑓

𝑘
is

the frequency of the 𝑘th subcarrier. To further eliminate the
impact of measurement scales and obtain a dimensionless
quantity, we calculate the coefficient of variation of the
normalized CSI amplitudes as follows:

cv =
std (𝐻norm)

mean (𝐻norm)
, (6)

where std(𝐻norm) and meannorm are the standard deviation
and mean of the normalized CSI amplitudes 𝐻norm, respec-
tively. Figure 1 shows the distributions of the coefficient of
variation. As is shown, the cv values under low sensitivity are
smaller and possess a narrower distribution. To quantify the
difference of cv distributions, we employ a new metric 𝐾

𝑠
as

follows:

𝐾
𝑠

=
𝜅

𝜇
, (7)

where 𝜅 and 𝜇 denote the kurtosis and mean of the cv values,
respectively.

To validate the effectiveness of (7), we conduct the follow-
ing measurements. As shown in Figure 2, we fix the location
of the transmitter and place the receiver at different locations.
For each receiver location, we let a person walk within 𝐴 and
𝐵 and collect 6000 data packets. We also collect the same
amount of packets when there is no person in the monitored
area. In order to qualitatively estimate receiver sensitivity,
we employ the detection approach of Pilot system. Then we
rank the sensitivity of these receiver locations into three levels
and mark the sensitivity levels. As is shown in Figure 2, at
different receiver locations, since the richness of multipath
propagation differs, the sensitivity level to human motions
also varies. We then calculate the 𝐾

𝑠
values for each receiver

location using data collected when there is no person in the
monitored area. We also calculate the Rician 𝐾 factors using
the same measurements. Table 1 lists the 𝐾

𝑠
values, Rician 𝐾
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Figure 1: Distributions of the cv values under different sensitivity.
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factors [18], and the corresponding sensitivity levels for each
tested receiver location. As is shown, the 𝐾

𝑠
values roughly

increase monotonously with the decrease of sensitivity levels
at each receiver location. In contrast, no notable trend can
be seen between the Rician 𝐾 factors and the sensitivity
levels. We thus employ the 𝐾

𝑠
value as an indicator for the

multipath propagation conditions, which further quantify the
sensitivity level of the receiver location.

4. The System Design

In the section, we expound the design of our system. Firstly,
we present an overview of system architecture. Then we lay
out detailed description of each component in the system.

4.1. Overview. HiDFPL is built on theWLAN infrastructures.
In our design, HiDFPL system contains three hardware
elements: transmitters, receivers, and server. Access points
or wireless routers are generally used as the transmitters.
Computers with commercial wireless cards are used as the
receivers. The receivers send ICMP messages and collect the
CSI periodically. The CSI is sent to the server. The server
performs detection and localization by carrying out twomain
phases as shown in Figure 3.

4.1.1. Offline Phase. In the offline phase, passive radio fin-
gerprints database is constructed. Different human locations
can cause diverse effects on the propagating signals. Hence,
in the phase, workers collect the fingerprints of all locations.
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Table 1: 𝐾
𝑠
value and Rician 𝐾 factor versus sensitivity.

RX location 𝐾
𝑠

𝐾 factor Sensitivity
L1 3.89 641.44 High
L2 3.96 31.80 High
L3 4.37 317.36 High
L4 5.01 250.16 Medium
L5 7.27 222.33 Medium
L6 9.26 283.15 Medium
L7 27.41 421.21 Low
L8 13.15 506.84 Low
L9 18.29 285.70 Low

When a person stands at one location, the receivers collect
CSI from all transmitters. Then they send the CSI to the
server, where CSI is processed and model parameters are
calculated. The server stores all model parameters related
to the location into the database. In order to detect the
appearance of a person, the fingerprints of normal status
(nobody) also need to be collected.

4.1.2. Online Phase. In the online phase, the server can detect
the appearance of a person and locate his locations in real-
time. The receivers send ICMP messages to the transmitters
and collect the CSI from response packages. Then the CSI
is sent to the server, where CSI is processed. Finally, the
server estimates the status and locations of a person through
Bayesian maximum a posteriori (MAP) approach.

4.2. System Model. HiDFPL employs a posteriori approach
that is well-known probabilistic algorithm for performing
fingerprint-based [20] position estimation. It is assumed that
the area of interest is a two-dimensional space with the size
𝑋. In the area, 𝑁 locations are collected as fingerprinting
points, while, in order to detect the appearance of a person,
it needs to collect the signal features when no one exists.
Hence, 𝑁+1 fingerprints are needed to be collected. 𝑎 groups
of transmitter-receiver pairs are deployed in the area. Every
transmitter possesses 𝑚 antennas while each receiver has 𝑛

antennas. So this leads to a total of 𝑎 ∗ 𝑚 ∗ 𝑛 virtual signal
strength links. The receivers can extract the amplitude on
each subcarrier from a virtual link as the signal feature.

In the offline phase, a worker stands at the location 𝑥 ∈ 𝑋.
The receivers collect all CSI from virtual links. It assumes that
𝑙 packages are collected.The probability distribution function
(PDF) of amplitude on each subcarrier approximately fits
a Gaussian distribution mixture nicely [3, 21], as shown in
Figure 4. Hence, the PDF of 𝑖th virtual link can be considered
as

𝑓 (𝑥) =
1
2𝜎2 𝑒
(𝑥−𝜇)

2
/𝜎

2
, (8)

where 𝜇 and 𝜎 represent the mean and variance of amplitude.
For the 𝑖th subcarrier, its fingerprint can be represented by a
vector 𝑟

𝑖

= (𝜇, 𝜎). It assumes that the number of subcarriers is
𝑓. Hence, the fingerprint of each location can be represented
by a set 𝑅 = 𝑟

𝑓

𝑎,𝑛,𝑚
.

In the online phase, the receivers collect the CSI in real-
time. It is assumed that a receiver extracts an amplitude
vector 𝑉 = (ℎ

1
1,1, ℎ

1
1,2, . . . , ℎ

𝑓

𝑛,𝑚
), where ℎ is the amplitude
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Figure 4: The PDF of amplitude subcarrier.

of the subcarrier. Therefore, the problem becomes, given
a vector 𝑉, we want to estimate the most probable entity
status and location based on the fingerprints database. In the
following section, we lay out detailedmathematicalmodels of
detection and localization components.

4.3. Detection. Detection component refers to detection of
the appearance of an entity in the area of interest. The
Probability Density Function (PDF) of amplitude subcarrier
approximately fits a Gaussian distribution due to the influ-
ence of noise. The noise is random and hard to predict.
Hence, we employ a posteriori decision approach to detect
appearance of an entity.

In the online phase, a receiver collects CSI and extracts
amplitudes of all subcarriers. Given a CSI amplitude vector
𝑉, the system matches the fingerprint 𝑆 of normal status
when there is no one. Using a posteriori approach, this can
be represented as

𝑃 (𝑆 | 𝑉) =
𝑃 (𝑉 | 𝑆) 𝑃 (𝑆)

𝑃 (𝑉)
> 𝛼. (9)

Assume normal and abnormal statuses are equally likely and
𝑃(𝑉) is independent of status. Hence, (9) becomes

𝑃 (𝑉 | 𝑆) = ∏

𝑓

∫ 𝑓 (𝑥) > 𝛽, (10)

where 𝑓(𝑥) is the Gaussian density function of normal status
and the threshold 𝛽 can be calculated through training data
in the offline phase.

To enhance robustness, we apply (10) on a sequence of
packets during a time window 𝑤, where the detecting result
with the highest vote is returned as the most probable status.

4.3.1. Localization. After an intrusion event occurs, the sys-
tem starts to locate the intruder. Given aCSI amplitude vector
𝑉, the system searches the location 𝐿 in the fingerprints that
maximizes the probability 𝑃(𝐿 | 𝑉). That is,

𝐿 = argmax
𝐿

𝑃 (𝐿 | 𝑉) . (11)

Using Bayesian maximum a posteriori approach, this can be
represented as

𝐿 = argmax
𝐿

𝑃 (𝑉 | 𝐿) 𝑃 (𝐿)

𝑃 (𝑉)
. (12)

Assume all locations are equally likely and 𝑃(𝑉) is indepen-
dent of locations. Hence, (12) becomes

𝐿 = argmax
𝐿

𝑃 (𝑉 | 𝐿) (13)

and the probability 𝑃(𝑉 | 𝐿) can be calculated from the
fingerprint database as

𝑃 (𝑉 | 𝐿) = argmax
𝐿

∏

𝑎

∏

𝑛

∏

𝑚

∏

𝑓

∫ 𝑓 (𝑥) , (14)

where 𝑓(𝑥) is the Gaussian density function of a location. For
𝑃(𝐻
𝑠

𝑖,𝑗
| 𝑙) ∈ [0, 1], 𝑃(𝐻 | 𝑙) can be very little with 𝑠, 𝑖, 𝑗

increasing. To simplify the calculation and consider that the
Napierian logarithm function is a convex function keeping
the monotone increasing, we apply the Napierian logarithm
function to (14) that goes for (10):

ln𝑃 (𝑉 | 𝐿) = ∑

𝑎

∑

𝑛

∑

𝑚

∑

𝑓

ln𝑃 (𝑉
𝑓

| 𝐿)
𝑎,𝑛,𝑚

. (15)

To increase the robustness of localization estimator, we apply
(15) on a sequence of packets during a time widow 𝑤. A
voting process is employed to estimate the final location of
the human with the majority of votes.

In summary, given the CSI measurement, the Gaussian
density-based maximum a priori probability algorithm out-
puts the location 𝐿 with maximal priori probability. Note
that we only locate a single intruder in indoor scenario.
Due to intricate indoor multiple effect, the fingerprints of
multiple-targets localization are not a linear relationship with
those of single-target localization.The localization ofmultiple
persons is more complicated [4]. Hence, the multiple-targets
localization is beyond the scope of this paper.

5. Performance Evaluation

In this section, we present detailed evaluations on HiDFPL.
We firstly interpret the experiment methodology, followed
by detained performance evaluation results in typical
indoor environments including multipath-dense scenarios
and NLOS propagation.

5.1. Experiment Methodology. We conducted experiments in
two typical indoor scenarios. Each testing room is occupied
with desks, chairs, and other furniture, creating different
extent of multipath propagation. We detail each testing
scenario as follows.

Scenario 1. First, we constructed our experiments in a
12.4m × 7.2m classroom furnished with rows of desks and
chairs. The TX and the RX are placed 10m away and 1.5m in
height.We chose 59 locations for training and 28 locations for
testing according to the floor plan in Figure 5.



International Journal of Distributed Sensor Networks 7

Figure 5: Experiment testbed: classroom.

Figure 6: Experiment testbed: home.

Scenario 2. Second, we tested our system in a typical home,
which was over approximately 20m2. The room was sur-
rounded by various facilities such as desk, chair, bed, bureau,
and computer. We placed one pair of TX and RX apart about
4m, about 0.7m above the floor. We chose 15 locations for
training and 6 locations for testing, as shown in Figure 6.

In our experiments, we considered one pair of TX-
RX locations as a link. We employ a single-antenna Tenda
W3000R wireless router as the TX operating in IEEE 802.11n
AP mode at 2.4GHz. A LENOVO Thinkpad X200 laptop
equipped with Intel 5300 NIC and 2 antennas running
Ubuntu 10.04LTS server OS works as the RX pinging packets
to the TX. The iwlwifi firmware is modified as [8] to start
traffic flow and export CSI of each packet. Table 2 shows the
default values for different parameters.

During our experiments, we set the transmission rate as
20 packets/second [14]. The experiment using two volun-
teers was divided into two phases: offline phase and online
phase. During the offline phase, the fingerprint database was
constructed in one normal case (no one on the link) and
a large number of cases of a person standing at training
locations (five-pointed star). For each fingerprint training
case, we collectedCSI for twominutes at different times of day
and recorded the CSI amplitudes mean and covariance of 30
subcarriers from different antennas as a location fingerprint.
Due to the difference of different human sizes, the Gaussian

Table 2: Default parameters of HiDFPL system.

Parameter Default value Meaning
𝑛 2 Number of RX antennas
𝑚 1 Number of TX antennas
𝑤 2 Time window size
𝑓 30 Number of subcarriers

probability density of every subcarrier amplitude is distorted
by different workers. In order to eliminate the diversity
of fingerprints of different workers, we employ a linear
transferring scheme [22] to transfer the measurement of
every subcarrier amplitude across different workers from
one location to a feature space, where the distributions of
amplitude at one location are as close as possible. During the
online phase, we measured CSI a score of times for about 6
seconds [14] at each testing location (red five-pointed star)
on the link.

5.2. PerformanceComparison andAnalysis. In the section, we
firstly evaluate the component performance of the proposed
HiDFPL system. Then we analyze the effect of different
parameters on the system performance. As shown in Table 2,
three types of parameters play an important role in our
system. Detailed analysis is represented as follows.

5.2.1. Detection Performance. Anomaly detection aims to
detect the appearance of human in area of interest. The
receiver with high sensitivity is assumed to be able to detect
human accurately in a larger range. In our experiment, we
firstly adjusted receiver sensitivity and then collected the
data when the volunteers stand at different testing locations
that are far from the direct path of TX-RX pair. We employ
two conventional metrics to evaluate the anomaly detection
performance. (1) False Positive (FP) is the probability of cases
when receiver lies about an anomaly event when no one
appears within detecting range. (2) False Negative (FN) is
the probability of cases when the receiver failed to detect an
anomaly event.The experiment results are shown in Figure 7.
We can observe that the detection performance of the receiver
with high sensitivity improves about 80% enhancement in FP
and about 70% enhancement in FN over that of the receiver
with low sensitivity. The receiver with high sensitivity is able
to accurately distinguish a normal and anomaly event due
to an obvious threshold. Hence, the results prove that high
receiver sensitivity is much helpful to improve the detection
performance.

5.2.2. Localization Performance. When the receiver is placed
at the location where it owns high sensitivity, the effect of
human appearance on wireless signal is more obvious. The
localization accuracy of HiDFPL is theoretically higher than
that with low sensitivity. In order to prove the assuming,
we constructed lots of experiments using only a single TX-
RX pair when the receiver owns high or low sensitivity.
Figure 8 shows experiment results expressed by cumulative
distribution function (CDF) of the distance error. We can
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Figure 7: Anomaly detection performance.
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Figure 8: CDF of localization error with different sensitivity.

observe from the figure that the medium distance error of
the high-sensitive estimator is 0.79 meters but the medium
distance error of the low-sensitive estimator is 1.24 meters.
The results also show that HiDFPL has the best accuracy with
an enhancement of at least 21% in median distance error over
the newest state-of-the-art techniques using only a single TX-
RX pair. At the same time, as shown in Figure 9, we can
observe that the number of dead spots can reduce with the
receiver sensitivity increasing. In a single large room, the dead
spots can achieve less than 3% of all training points when the
receiver owns high sensitivity. Though some dead spots can
be located, the movement of human on those points can be
detected. We agree that the HiDFPL has achieved the aim of
using a transmitter-receiver pair to achieve a high-accuracy
device-free passive localization with as less as possible dead
spots.

0 Low Medium High
0

5

10

15

20

25

30

35

40

Receiver sensitivity

D
ea

d 
sp

ot
s (

%
)

Figure 9: Number of dead spots with different sensitivity.

5.2.3. The Effect of Antennas Number. With the develop-
ment of WLANs, including IEEE 802.11a/g/n, almost all
IEEE 802.11n nodes employ Multiple-Input Multiple-Output
(MIMO) technology. MIMO technology not only improves
the system throughput and signal transmitting distance, but
also possesses plenty of channel information that is used to
enhance the performance of localization. In our experiments,
we leverage two receiver antennas and evaluate the effect of
antennas number on the performance of localization. The
evaluation result is shown in Figure 10. In the figure, the result
shows that the localization accuracy is discrepant on different
antennas and the performance of localization is enhanced by
fusing multiple antennas.

5.2.4.The Effect of TimeWindow Size. Due to the interference
of noise, the measurements tinily vary over time, which
can cause bad effect on the performance of localization.
In the paper, we filter the measurements during a time
window to improve the robustness of localization output.
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Figure 11: Effect of the time window size.

The experiment results are exhibited in Figure 11. From the
figure, we can obviously observe that the performance of
localization increases as the time window size enlarges.
However, the estimator with a large time window partly
reduces the system real-time performance. Therefore, there
is a tradeoff between the time window size and the real-time
localization.

5.2.5. The Effect of Subcarrier Number. Compared with RSSI,
CSI of all subcarriers is a fine-grained feature.The number of
subcarriers can cause some effect on the performance of sys-
tem, including receiver sensitivity estimation and localization
accuracy.

As mentioned in Section 3, different subcarriers suffer
from varying degrees of fading. It could be helpful to estimate
the receiver sensitivity accurately if more subcarriers are
employed. We constructed lots of experiments to evaluate
the effect of number of subcarriers on the receiver sensitivity.
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Figure 12: Effect of subcarrier number on sensitivity estimation.

Figure 12 shows that the sensitivity estimation accuracy is
raised as the number of subcarrier increases. When we
employ 30 subcarriers, the accuracy of receiver sensitivity
estimation can achieve about 90%.

Similarly, the number of subcarriers can cause effect on
the location distinction accuracy. In our experiments, we,
respectively, selected different subcarriers to evaluate the
localization accuracy. These subcarriers are evenly spaced
as much as possible. The experimental result is shown in
Figure 13. From the figure, we can observe that the locations
distinction accuracy is improved with the subcarrier number
increasing. The performance of system when we used thirty
subcarriers is enhanced at least 15% in location distinction
accuracy over that when we only used five subcarriers.

6. Related Work

Device-free passive localization (DFPL) refers to detection of
the appearance of or further determining of the location of
an entity with predeployed monitors, while the entity carries
no device. The concept of device-free passive localization
was firstly put forward in the literature [23]. In early time,
DFPL systems exploited handy feature, such as RSSI, to
realize detection, localization, and tracking. Recently, some
researchers are exploring the achievement of CSI-based fine-
grained DFPL systems.

6.1. RSSI-Based DFPL. Due to the handy access, Received
Signal Strength Indicator (RSSI) is early employed in the
DFPL. RSSI from MAC layer is coarse-grained and unstable.
Hence, most of the RSSI-based DFPL leverage multiple TX-
RX pairs to achieve high-accuracy localization. The RSSI-
based DFPL takes advantage of two technologies: Radio
Tomographic Imaging (RTI) and Fingerprinting Match.
Firstly, Wilson and Patwari [24] made use of Radio Tomo-
graphic Imaging (RTI) technology to image passive objects
based on Telosb wireless nodes. Recently, Kaltiokallio et al.
[5] found that the spatial impact area varies considerably
for each link. Hence, they put forward an online Radio
Tomographic Imaging (RTI) system that employs a fade level-
based spatialmodel based on channel diversity to localize and
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Figure 13: Effect of subcarrier number on localization accuracy.

track a person accurately.Then, in the samemanner, Xu et al.
[1] employed a fingerprinting-based approach based on RSSI
extracted from wireless sensors to locate locations of device-
free entities. With the development of WiFi and populariza-
tion of WLAN technology, Seifeldin et al. [2] developed a
Nuzzer system that had high accuracy for large-scale typical
environments and required no special hardware and LOS to
operate. It works with a low number of streams but needs
substantial calibration efforts. Though many researchers pay
more attention to the RSSI-based DFPL, the systems are still
unsatisfactory due to much cost of deployment and unstable
localization performance.

6.2. CSI-Based DFPL. CSI is a fine-grained feature from
physical layer, which recently is used to develop indoor
DFPL systems. FIMD [25] firstly utilized CSI for device-
free passive detection and localization via data fusion with
multiple links. Abdel-Nasser et al. [3] developed MonoPHY
system as an accurate device-free passiveWLAN localization
system, which was designed to locate a person in the broad
covering area of a monostream. Xiao et al. [4] put forward
Pilot leveraging temporal stability and frequency otherness of
CSI and integrating an anomaly detection block to facilitate
the device-free feature. Zhou et al. [14] proposed an omnidi-
rectional passive human detection system through utilizing
PHY layer features to virtually tune the shape of monitoring
coverage.The system can detect the direction of intruder only
relying on a single TX-RX pair. Yang et al. [26] surveyed
the difference between CSI and RSSI from various aspects
and showed some pioneer works based on CSI that had
demonstrated submeter or even centimeter level accuracy.
Qian et al. [27] proposed PADS system, a novel device-free
passive detection of moving humans with dynamic speed.
Both amplitude and phase information of CSI are extracted to
be sensitivemetrics for target detection. From the experiment
results of recent CSI-based DFPL, it can be observed that CSI
is helpful to overcome indoormultiple effect and improve the
accuracy and stability of DFPL.

7. Conclusion

In this paper, a high-performance indoor device-free passive
localization system was proposed, which can achieve a fine-
grained localization on a single TX-RX link via fingerprint-
ing. Considering the frequency correlation of signal fading
and the otherness of CSI subcarriers, we put forward a
receiver sensitive metric based on statistics of CSI features.
We propose that the receiver with high sensitivity possessed
high accuracy of device-free passive localization.The experi-
ment results show that the HiDFPL can achieve an accuracy
of 0.79m, which corresponds to about 20% enhancement in
median distance error over the state-of-the-art MonoPHY
and about 36% enhancement in median distance error over
the DFPL with low receiver sensitivity. In the next stage, we
plan to explore leveraging of CSI phase information to shape
more accurate sensitive metric and to employ high receiver
sensitivity to realize more fine-grained device-free passive
detection and localization.
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