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Challenges in wireless sensor networks (WSNs) localization are diverse. Addressing the challenges in cross entropy (CE) localization
utilizing cross entropy optimization technique in turn minimizes the localization error with a reasonable processing cost and
provides a balance between the algorithmic runtime and error. The drawback of such minimization commonly known as flip
phenomenon introduces errors in the derived locations. Beyond CE, the whole class of localization techniques utilizing the
same cost function suffers from the same phenomenon. This paper introduces constrained cross entropy (CCE), which enhances
the localization accuracy by penalizing the identified sensor nodes affected by the aforementioned flip phenomenon in the
neighborhood through neighbor sets. Simulation results comparing CCE with both simulated annealing- (SA-) based and original
CE localization techniques demonstrate CCE’s superiority in a consistent and reliable manner under various circumstances thereby

justifing the proposed localization technique.

1. Introduction

The scope of wireless sensor network (WSN) applications is
diverse. Regardless of the type of application, the sensed value
is meaningful only if the location information is present.
Protocols and applications such as routing and media access
control often use location information especially in WSN
perspective. Thus, localization is one of the most important
issues for WSN deployments.

1.1. Background and Motivation. Having Global Positioning
System (GPS) in every sensor node is not a practical solution
for localization due to high device cost, power consumption,
bulkiness, and poor accuracy (in specific locations such as
indoors). Despite various research efforts for more than a
decade, the localization problem remains an open research
issue due to its challenges posed by large errors and high
transmission and processing costs undesirable in WSN per-
spective.

Generally, for any localization algorithm, there must be a
subset of nodes as anchors, whose exact locations are known
a priori (through GPS or other means). Those algorithms take
input of the distance and/or angle measurements between
nonanchor and anchor nodes along with the anchors’ loca-
tions and derive the desired location information of the
nonanchor nodes. Depending on applications, localization
algorithms calculate the relative or absolute positions of the
nodes.

Primarily, there are four techniques to measure the dis-
tance between an anchor and a nonanchor node: receiving
signal strength indicator (RSSI) [1], time of arrival (ToA)
[2, 3], time difference of arrival (TDoA) [4, 5], and angle
of arrival (AoA) [6]. RSSI utilizes propagation loss from
transmit-receive signal strengths using theoretical or empiri-
cal propagation model and translates transmit-receive signal
strengths into distance estimates. ToA/TDoA tracks propa-
gation time of the signal (from transmitter to receiver) and
translates the time measure directly into distance using signal



propagation speed. Conversely, AoA technique measures the
angle at which the signals arrived based on the delay of arrival
at each receiver element which is then converted to AoA.
Unfortunately, each of these measurement techniques has its
own limitations. RSSI is cheap and available in common chip
sets (built-in) but suffers from unreliability and randomness
of the wireless medium especially due to the multipath
propagation. TDoA provides good accuracy only if there
exists a line-of-sight condition. Unfortunately random prac-
tical deployments do not guaranty such favorable condition.
AoA can provide a reasonably accurate measurement with
a high hardware cost as AoA hardware is practically an
array of receivers. A higher accuracy requirement in angle
measurement necessitates a higher number of receivers in the
receiver array resulting in a higher hardware cost.

Generally, a localization algorithm employs one or mul-
tiple measuring technique(s) to get the measured distances
between an anchor and its neighboring nonanchor nodes
and then utilizes trilateration to infer the locations of those
nonanchors. A number of localization algorithms [3, 7-27]
have been proposed by different research groups. Most of
those algorithms work well under their favorable circum-
stances. But still, none of them could always provide robust
localization results under all possible circumstances in a con-
sistent manner. Localization errors can be introduced under
various challenging circumstances. Some examples include
unfavorable node configurations such as poor positioning
of anchor nodes, node geometry susceptible to flip and
flex ambiguities [28], and real-world imperfections such as
inherent distance measurement errors (of various measuring
techniques as described above), limited transmission ranges
of wireless sensor nodes, noises in signals, and obstacles in
transmission paths. Once an error is introduced in estimating
the location of a particular node X, this error becomes
propagated to the estimations of the locations of other nodes
which uses X in its triangulation. Again, such cascading
errors occur in a random unpredictable fashion depending
on the arbitrary sequence taken to process the nodes.

1.2. Our Contributions. Our objective is to overcome the
challenges mentioned above and come up with wireless
sensor node localization methods that perform robustly
under various circumstances in a reliable manner. To achieve
this objective, we propose constrained cross entropy (CCE)
localization technique based on our previously developed
cross entropy (CE) localization algorithm reported in [29].
The fundamental building block of the algorithm consists
of the cross entropy optimization technique that minimizes
the location estimation error based on the summation of
the difference between estimated and measured distances
among the neighborhood. The algorithm enjoys reasonably
low processing cost compared to one of state-of-the-art
algorithms, namely, simulated annealing (SA) [7, 19], while
preserving almost similar error rate.

A common drawback of the multilateration techniques,
including CE, that attempt to minimize the estimation error
is commonly known as flip ambiguity [30-32]. In case
some nodes in the neighborhood of the concerned node
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are located in such a way that they are approximately on
the same line, then the estimated position may be in the
flipped location with respect to the particular line. Our
attempt to address the problem is devised by incorporating
a constrained optimization technique where flipped nodes
are penalized with a monotonically increasing weight. This
technique is known as a penalty function method. Among
the few candidates of the penalty function methods, we
take the logarithmic barrier function method as our tool.
With a higher processing cost, CCE exhibits a distinctive
accuracy improvement compared to both SA and CE. In
fact, processing power has a little impact as the algorithms
are implemented in a centralized fashion where the target
network is static rather than dynamic.

In summary, CCE, a localization application, provides
a high level of accuracy for a static centralized network
where the impact of processing power does not provide
an important role. We have tested our proposed algorithm
CCE, through simulation under a variety of circumstances,
different percentages and configurations of anchors, different
transmission ranges, and various noise factors, and have
observed that the proposed CCE algorithm works well to
meet the design objective in a consistent and predictable
manner.

The rest of the paper is organized as follows. Section 2
presents a number of localization techniques available in the
literature. The CCE localization technique is presented in
Section 3. This section is concerned with the collection of
measurements at the location server, the cost function for
CCE, and the cross entropy optimization tool incorporated
into the algorithm. Sections 4 and 5 present the simulation
results and conclusions, respectively.

2. Related Works

A large number localization techniques have been developed
by the research community [33, 34]. A class of localization
techniques that are simple and lightweight generally suffers
from high error in calculating location information. One of
the simplest localization algorithms that estimates the cen-
troid of the location of the anchor neighbors is introduced in
[8]. Straightforward improvement of the algorithm adopts the
weights for all neighbors and estimates weighted average for
node location calculations [9, 10]. Incorporation of adaptive
weights further improves the error performance in the system
(11].

Another coarse-grain localization algorithm named DV-
hop [12] roughly finds hop distances incorporating distance
vector routing technique. A straightforward translation to
actual distances on the nonanchor nodes in meter is then
achieved by simple multiplication of the average hop lengths
and their hop distance counts. RSSI-based DV-hop (RDV)
improves the simple DV-hop performance by replacing the
hop count to the RSSI based distance measurements [13].

Reference [14] first constructs a table of average RSSI
versus discrete transmit power levels. The table is processed
centrally to compensate the nonlinearity and thereby estimate
the distances between nodes. Using sequential quadratic
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programming method the final results are achieved by mini-
mizing the cost function.

In multidimensional scaling- (MDS-) based localization
[15], the shortest distances of pairs are determined first (by
Dijkstra’s [35] or Floyd’s [36] algorithm). The distances are
then assigned as the elements of distance matrix of MDS. The
classical MDS from the distance matrix provides a relative
map of the nodes. An absolute map is derived incorporating
the positions of the anchor nodes into the aforementioned
relative map.

Nodes several hops away from the beacon enabled
anchors deriving their locations by collaborative multilatera-
tion technique [37]. Nodes first approximate the region where
it is located based on the beacon coordinates and then utilize
Kalman filtering to update the positions. Nodes not directly
connected to the beacons start with neighbors as a reference
points where the nodes take estimated neighbor locations
rather than real anchor locations. Using iterative calculations
location information becomes refined throughout the net-
work. It requires updating of location through transmissions.
Though distributed, the transmission in each round is energy
hungry and undesirable for WSN.

Reference [16] assumes nodes as point masses and the
masses are connected through springs. Algorithm uses force
directed relaxation method to converge to a minimum energy
configuration. This heuristic graph embedding method uses
a polar coordinate approach to the localization algorithm.
Unfortunately the algorithm is vulnerable to be stuck into
local minima.

Reference [17] initiates localization technique by outward
broadcasting of hello messages (with duplicate suppression)
from some specific nodes called seeds (nodes containing
global location information). Upon receiving the broadcasts,
nodes find minimum hop counts from the seeds. Upon
finding such three different hop counts and seed location
information nodes calculate their positions by finding the
minimum of total squared error between calculated and
estimated distances. The algorithm suffers from three distinct
limitations: it requires high node density to keep the local-
ization error reasonable; it incurs error if the hello message
goes through a detour due to the obstacles; and it consumes
undesirable amount of energy as using broadcasts.

Reference [18] uses minimum mean square error
(MMSE) [38] algorithm to solve the location estimation of
sensor node by minimizing the difference between measured
and estimated distances. The algorithm requires a high
density of node, alternately a high transmit range to make
the estimation from a reasonably large neighborhood cluster
(39, 40].

Simultaneous perturbation stochastic approximation
(SPSA) based technique [20] minimizes the estimation
error through a constrained optimization technique. SPSA
attempts to correct geometric artifacts in localization by
utilizing a penalty function; however it does not address the
problem of flip ambiguity.

Simulated annealing- (SA-) based localization [7, 19]
solves the minimization problem with simulated annealing
technique. SA provides a reasonable error performance but
suffers from poor algorithmic runtime efficiency. However,

the algorithm is evaluated with at least three anchors in the
neighborhood for all nonanchor nodes, which is deemed an
impractical deployment for the randomly deployed sensor
networks. In [29] we present CE based localization technique
providing similar error efficiency with an improvement of
algorithmic runtime. Unfortunately the algorithmic runtime
in such centralized architecture with a static network under-
mines the importance of such algorithm.

The algorithms SA and CE suffer from a phenomenon
called flip ambiguity [30-32] which is addressed by our
modified cost construction in CCE. In our experiments, we
employ SA and CE as benchmarks to evaluate and justify the
relative performances of our proposed CCE algorithm.

3. Constrained Cross Entropy (CCE)
Algorithm for Localization

Let N be the total number of nodes deployed in the network,
and A is the number of anchors among them. The localization
problem is therefore involved in finding the [x, y] coordinates
of (N — A) number of nonanchor nodes. The fundamental
idea of CCE localization algorithm is using the well-known
cross entropy optimization algorithm to minimize the cost
function of corresponding algorithm. Refer to [29] where the
CE localization estimates the location based on the measured
distances of the nodes from its neighborhood. CCE retains
the basic principles of CE with a modified cost function
to perform a constrained optimization by incorporating a
penalty approach. The underlying idea of CCE design is
to address one weakness of CE commonly known as flip
of node locations [30-32]. Figurel shows the functional
block diagram, that is, the detailed algorithmic steps in the
proposed CCE localization algorithm.

3.1. Obtaining Distance Measurements. First, we mustacquire
the distance measurements of the individual nodes corre-
sponding to its neighbors for all nodes N. Second we must
obtain A number of location information, that is, [x, y]
coordinates of the anchors. These two sets of information are
the primary inputs of the localization algorithms including
CCE. Protocol initialization involves collection of the afore-
mentioned inputs at the centralized “location server” engaged
by the following four steps.

(i) Create neighbor lists by localized hello messages
without rebroadcasting.

(ii) Measure neighbor distances by transmit-receive sig-
nal strengths/times from the aforementioned hellos
(we can use any of RSSI, ToA, and ToDA methods or
any combination of them for that purpose).

(iii) Update location server with all distance information.

(iv) Update location server with all anchor coordinates.

The localization server receives the data and uses con-
strained cross entropy-based localization algorithm (CCE)
and derives the unknown locations for the nonanchor nodes.
Generally designing protocols and algorithms in WSNs
adopts distributed approach. But implementing localization
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F1GURE 1: Functional block diagram of CCE algorithm.

algorithm optimization technique for CCE in a distributed
fashion is not a suitable option. Optimization techniques
update states in iterations and in each update algorithm
needs the information of the states of its neighbors. In case
of a distributed implementation the updates need explicit
information exchange using active messaging and thereby
would be costly in terms of energy consumption. Centralized
implementation approach only requires sending the data to
the central point once which is rather comparatively more
efficient compared to the distributed approach.

Before going into the cross entropy optimization algo-
rithm in detail, let us define the cost function relation to CCE.

3.2. Cost Function. As stated earlier, unreliable nature of
wireless medium introduces errors in capturing distance
measurements. Localization techniques commonly estimate
the locations of the nodes by minimizing the estimation
errors [7, 18, 29]. We take such cost as the fundamental
building block of the localization technique. Let [X;, y;] and
(X i ?j] be the estimated coordinates of the nodes i and j. The

estimated distance c?ij between them can be simply calculated

as c?ij = \/(551- —X;)+ (5 - ;). Let d;; be the measured

distance between nodes i and j. Now, the cost function
becomes

vi= Y (d-dy), 1)

jen;

where #; is the set of all neighboring nodes of node i. The
goal of the optimization technique in CE/SA is to minimize
the aforementioned cost while deriving the desired [x, y]
coordinates for the nonanchor nodes. With the measured
distances and the aforementioned cost function, the afore-
mentioned algorithms solve the localization problem in an
iterative learning manner.

The said cost function attempts to minimize the sum
of the distance errors unfortunately susceptible to some
relative neighbor arrangements. More specifically if a subset
of neighbors forms a straight line the derived node location
may flip to the opposite side of the straight line commonly
known as flip ambiguity [30-32]. The phenomenon is com-
mon to all localization techniques which adopt this specific
cost function. In extreme cases the whole neighborhood
can be in the flipped location. Such undesirable flips create
large errors in localization. Non-coarse-grain localization
techniques must take necessary measures addressing the
flip ambiguity. Identifying and handling flip ambiguity to
a degree is possible by evaluating the incorrect neigh-
bors.

In case an estimated location of a specific node reviles a
missing neighbor from the neighborhood list (derived from
hello messaging) a penalty is added to the original cost.
Similarly identifying an additional node in the neighbor-
hood comparison which is originally absent should also be
penalized. The incorporation of these penalties makes the
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optimization problem a constrained optimization problem.
We define the cost function with constraints for CCE:

yi= Y (dy-dy) st

jen;
d,<R Vpen, @
diy, >R Vqen,

where #;, 71;, and R denote the set of neighbor nodes, the
set of nonneighbor nodes of node i, and the radio range,
respectively. Note that R is taken as uniform throughout
the network to keep the problem demonstration simple. A
variable R representing an individual radio range for each
node can be adopted in a straightforward fashion.

The penalty function method changes the cost function of
a constrained optimization problem in such a way that with
the new cost function the optimization problem becomes
a general form of optimization without any constraints.
Augmented Lagrange method, penalty function method, and
quadratic programming are the common forms of penalty
functions. Sequential and exact penalty transformations are
the two different types of penalty methods. Among them
exterior-point penalty method and barrier function method
are the forms of sequential methods. The barrier functions
can be inverse or logarithmic. To preserve the feasibility at
all times we implement the logarithmic version of barrier
function method in our localization technique. Consequently
the modified cost function can be expressed as follows:

Vi = Z (J,-j - dij)z

jen;

+ 1 % _Zln<_(‘z’j_R)2> (3)
Jen;

+ 7 % —Z In (— (JU —R)2>
jen;

Note that the derived cost function needs to be optimized
with a suitable optimization technique (cross entropy opti-
mization in our case). We now can treat the problem as a sim-
ple optimization problem and no longer as a constrained opti-
mization. Here, ;. is the monotonically increasing penalty
function based on rounds.

3.3. Optimization Algorithm. The proposed CCE localiza-
tion problem derived from CE attempts to find the best
coordinates of the unknown locations of nonanchor sensor
nodes utilizing the cross entropy-based minimization of the
aforementioned constrained cost. CE optimization technique
is a method that attempts to integrate well-known techniques
(1) combinatorial optimization, (2) Monte-Carlo simulation,
and (3) machine learning and tries to exploit the advantages
of them, all in a go [41] and thereby becomes our algorithm
of selection in solving the localization problem for WSNs.
CE optimization algorithm generates samples based on
the means and variances. Algorithm then selects the best

samples as next state while it learns about the next generation
samples’ means and variances based on the best set of samples
in the population.

In its first step, cross entropy optimization technique
generates random states for all nodes. The algorithm then
generates a set of populations for each state based on the
mean and variance of that particular state. The algorithm
then finds the cost for all the population based on the
corresponding cost function. New generation of population
is only selected in case the minimum cost of the population
set is less than the cost function of the current state. In
such case the state is updated; otherwise a new set of
population is generated. In each state update the algorithm
learns about better sample generation characteristics, where
the characteristics are defined as means and variances and
define the next generation samples. In an instance of an
updated state, the mean and variance of that state are also
updated based on the best population set. The algorithm
updates the states iteratively until the cost or error is within
the acceptable limit.

3.3.1. Initialization. On behalf of each unknown node #;
the optimization algorithm generates the coordinates [x;, ;]
randomly and commonly known as state of the node. Here ;
is a set of all nonanchor nodes denoted by », : ny_,. Besides
the algorithm initializes means y; and variances o; for all x;
and ;. Largely the initial means are set of random numbers
and initial variances are set of ones, respectively, with a length
of (N — A) also used for our implementations. Alternately
Rand, : Randy_, and Ones; : Onesy_, are used as y; and
0;, respectively. The cost of all initialized states of the nodes is
determined and subsequently known as initial best ;.

3.3.2. Iterations. The algorithm enters into an iterative mode
after the initialization process. Iterations update the states
until the desired refinement is achieved. The refinement is
generally defined by several control parameters. The most
important control parameter in this optimization is known
as variance minimum. Another important control parameter
is the learning rate. Generally two different learning rates
are used for the means and variances denoted as y; and o;,
respectively.

The iterative method starts with generating a population
of S number of samples for all x; and y; based on the means
and variances of corresponding x; and y;. The samples are
than evaluated and rated by the cost of a particular sample.
If the cost of the best sample is less than best y; then the best
y; is replaced by the cost of the best sample. The state [x;, y;] is
subsequently updated with the best sample for the particular
node.

Updated sample number M is a tuning parameter of the
algorithm and has impact on both the performance and the
accuracy of the optimization technique. Algorithm selects
best M samples by xubest; = mean(xbest, : xbest,;) and
xobest; = stddev(xbest, : xbest,,) corresponds to the means
and variances of the samples, respectively. The mean of the
best samples is used to update the corresponding mean of x;
by xp; = o % xp; + (1 — ) * xpbest; for the next generation of



samples. Similarly xo; = f3 * xabest; + (1 — ) * x0; is used to
update the variance of x;. yy; and yo; are updated in a similar
fashion.

Algorithm trains the means and variances that in turn
are used in generating the next generation population of
samples. The superior samples in successive generations help
algorithm estimate the better states, that is, the location
coordinates in successive iterations. Contrarily, if the cost of
the best sample is less than the best y; then the population set
is discarded. And another set of samples is generated. After
enough successive iterations the final state of i becomes the
estimated location of the particular sensor node. A functional
detail of the CCE localization technique is presented in
Algorithm 1. The same information is depicted in flow chart
format in Figure 2.

4. Simulation Results

We use Matlab to simulate the constrained cross entropy-
based localization algorithm. We simulate 100 nodes in the
100 m x 100 m sensor field where the nodes are assumed to
have radios with uniform transmission range. Modeling the
measurement error is governed by the equation as follows:

£
dZ?:dfj*<1+g*n>, (4)

100

where the true and measured distances are denoted as dfj and
dg.“, respectively. Gaussian disturbed random variables g hold
mean 0.0 and variance 1.0. nf is the noise factor that regulates
the magnitude of error.

Note that the random node deployments and algorithmic
random number generations have impact on both time and
error performance of the proposed localization technique.
We employ 10 measurements for each evaluation and average
them to fairly handle the aforementioned randomness issue
deriving final results.

Our CCE optimization technique has a number of control
parameters. Tuning the parameters is vital acquiring reason-
ably worthy results. For example, CCE control parameter
variance minimum j needs to be small enough to estimate
acceptable location information. On the other hand too small
a value for the variance minimum makes the simulation slow
without much estimation improvement. With a number of
trials we set y = 107", Learning rates e and f3 are set to
0.7 and 0.9, respectively. Finally sample number S and best
sample number M are taken as 100 and 50, respectively.

Unless otherwise stated the radio range R and the noise
factor are taken as 20 m and 10%, respectively. For all random
deployments 4 anchors are placed at the 4 corners of the field.

We present error in our error performance evaluation as
average error in the field defined in [7, 19]

error = 1 % Z (xz xz) + (yl yl) . (5)
-A i=A+1 R2

Here the absolute and estimated locations of the ith node
are denoted as [x;, ¥;] and [X;, J;], respectively. And the total
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Constrained Cross entropy-based localization algorithm
N: Total nodes
A: Anchor nodes
y: Means
o0: Variances
a: Learning rate for means
B: Learning rate for variances
y: Variance minimum
Node level measurements for all node i
Create neighbor lists
Measure neighbor distances
Update location server with
all distance information
all anchor coordinates
Algorithm at central computer
for all unknown node i
Randomly initialize [x;, y;] coordinates
Randomly initialize 4 and o for x; and y;
Find cost for [x;, y;] and assign to initial BestCost; by
y; = Z(dij - dij)2
JEn;
- (—Z In (-, —R)2)>
Jjen;
+r ok <—Z In (~(d;; - R)2)>
jen;
end
while (max(o) < y)
for all i
Generate S samples for x; and y;
Find costs for corresponding samples
if (min cost of the samples < BestCost;)
Update state [x;, ;] with the best sample
Update BestCost;
Update y and o
Select M number of best population
(xbest,, ybest,), ..., (xbest,;, ybest,)
Take pbest and obest of the selected bests
xpbest; = mean(xbest, : xbest ;)
yubest; = mean(ybest, : ybest )
xobest; = stddev(xbest, : xbest ;)
yobest; = stddev(ybest, : ybest )
Update p and o with « and f3 respectively
xp; = o * xp; + (1 — o) * xpbest;
yu; = o x yu; + (1 — «) * yubest,
x0; = f3 * xobest; + (1 — ) * x0;
yo; = 3 * yobest; + (1 - fB) * yo;
end
end
end

ArGoriTHM 1: Constrained cross entropy localization (CCE) algo-
rithm.

number of nodes and anchors in the network is denoted by
N and A, respectively.

We simulate CCE in both grid and random deployments
and compare with SA where nonanchors are always in
random locations.
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FIGURE 3: Layout of grid deployments (anchors: 9, 16, and 25).

4.1. Grid Deployments. In grid deployments we have equally
distributed grids of 9, 16, and 25 anchors depicted in Figure 3.

Figure 4 presents the RMS error with transmitter set to
different transmit ranges from 13-20 m. The three subfigures
show different results for 9, 16, and 25 anchors, respectively.
In each case the proposed CCE outperforms the error perfor-
mance of SA for the corresponding setting. Evidently SA has
much poorer performances in case when the transmit range
is set to a lower value. Setting a lower transmit range means
a less number of neighbor nodes contributing to deriving

node locations. Even with a less number of neighbors CCE
has chance to better estimate the location by employing the
constrain optimization. The opportunity of evaluating and
correcting for the flip is the contributing factor of such better
performance.

Figure 5 presents the performance of the localization
technique in grid deployment in terms of different nf. A clear
superiority of CCE over SA is demonstrated. In case of 16
and 25 anchors the error is negligible. Even with 9-anchor
deployment the algorithm performs quite decently compared
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FIGURE 4: RMS error versus transmit range in different grid deployments (nf = 10%). In all the cases CCE outperforms SA. For lower
transmission ranges CCE performs a lot better compared to SA. This is due to the fact that in lower transmission ranges nodes have less number
of neighbors to assist in deriving locations. On the other hand CCE has opportunity to correct the location with additional information

resulting from constrained optimization.

with SA. The most important observation is the slope of the
curve that represents the impact of the increasing noise in
the distance measurement. Slopes of CCE are much smaller
compared to the others. It demonstrates that the protocol is
less susceptible to the noise, that is, CCE nullifies the adverse
effect of the noise to a greater extent. This is due to the fact
that large measurement errors incurred due to the high nfare
tackled by the constrain form of optimization in CCE.

CE is originally designed to make the basic optimization
problem of localization lightweight and it is shown in [29]
that the design provides a balance between the error perfor-
mance and algorithmic complexity. However this literature
focuses solely on the algorithmic error performance rather
than the other criteria algorithmic runtime.

We compare the CCE with CE and justify the additional
processing complexity of the constrained optimization in
CCE. Though error in CE is similar to SA in case of high
anchor node deployments the error performance in CE in
case of less percentage of anchors is poorer compared to
SA. As a result the gain on the error performance over CE
by CCE is significant. Figure 6 presents the performance
comparison of CE and CCE for the grid deployments in
various measurement errors. The figure demonstrates clear
improvement over CE by CCE.

4.2. Random Deployments. In case of random deployments
four anchors are placed in the four corners of the sensor field
and the rest of the anchors are in random locations.
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FIGURE 6: RMS error versus measurement error comparison between CE and CCE (in grid anchor deployments). Large amount of error from

CE is eliminated with modified cost in CCE.

Figure 8 shows the convergence of a node location of CCE
in rounds with 50% of anchor deployment. The pattern
is quite random and may vary depending on: (1) relative
locations of the neighborhood, (2) neighbor location reli-
ability and (3) pseudorandom number generator of the
CCE algorithm. Therefore the trace merely represents the
algorithm; rather it can be taken as a single instance of a
convergence.

Figure 7 shows the performance of all the algorithms in
successive rounds where the transmit range and anchors are
set to 20 m and 20%, respectively. Generally the algorithms
converge exponentially. Here, CE converges the fastest with

the worst error performance. SA has a little improvement on
error over CE with the worst convergence rate. With little
more rounds than CE, CCE converges better than SA in terms
of both error and rounds.

Figure 9 presents the performance of the random anchor
deployments with 5 to 50 percent of anchors with 5% incre-
ment where the transmit range varies from 13 to 20 m. Similar
to grid, random deployments show that CCE outperforms SA
in all the cases.

Figure 10 depicts the comparison of CE and CCE in
difference transmit ranges (13-20m) with 5:5:50 anchor
deployments. As expected the CCE outperforms CE in all
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FIGURE 7: Algorithmic performance in rounds (random deployment (Tx range: 20 m, anchor: 20%)).
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FIGURE 8: Example node locations in rounds in algorithm CCE (random deployment (anchor: 50%)).

cases. The performance representing the figure conforms
with the performance in Figure 6.

To capture how individual run performs rather than
averaging by RMS we present each sample of the algorithmic
run. We sort the samples from the best performance to the
worst for both CCE and SA present in Figure 11. With only
a few exceptions CCE shows better performance compared
to SA. While averaging CCE always provides better error
performance.

The simulation attempts to find various aspects of deploy-
ments grid or random; different percentage of anchors; dif-
ferent settings in transmission ranges; and different wireless
channel conditions with varying noise factors. In all the
aspects the proposed CCE performs better compared to CE
and SA demonstrating a superior algorithmic design tackling
error in localization.

We intend to refer to three diverse aspects of error han-
dling in this context. (i) Choosing of the algorithm is vital in
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FIGURE 9: RMS error versus number of anchors (random anchor deployments).

handling the measurement error. SDP localization technique
[42] is one of the well-known algorithms based on convex
relaxations. SDP has potential to actually be implemented due
to its efficiency (fast execution). Unfortunately, with stringent
error performance requirements the SDP may not be a
suitable candidate as performance of SDP is even worse than
SA. This is due to the fact that SDP as core algorithm does not
handle the error in input elegantly. SA is somewhat superior
compared to SDP as it can handle the measurement error
incompletely and still suffers from the ambiguity problem.
The core CE method fundamentally can handle measurement

error and has similar error performance compared to SA.
(i) The CCE method further refines the error by handling
ambiguity and provides superior location information. (iii)
Simple CE handles error with specific variance quite well. The
problem domain of the RSSI can have specific variance, that
is, the variance in the field in a specific time is fairly constant
without multipath. In fact CE can handle a varied variance
with a different implementation named multilevel CE [43]. By
implementing multilevel CE in CCE the algorithm handles
both line-of-sight and multipath error in conjunction with
the aforementioned flip ambiguity.
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FIGURE 10: RMS error versus transmit range (random anchor deployments).

5. Conclusion

The constrained cross entropy localization technique has
been devised in the context of WSNs. Fundamentally the
technique attempts to estimate locations of nonanchor sensor
nodes based on anchor locations and neighborhood distance
measurements in a centralized fashion. The erroneous mea-
surements introduced by unreliable wireless communications
are tackled by minimizing the error between the estimated
and measured distances by utilizing cross entropy-based
optimization technique with constraints. CCE attempts to
improve the localization error by engaging in flip ambiguity
phenomenon in common estimation error minimization
techniques employed in several localization techniques (SA,

CE, and others). Flip ambiguity phenomenon is tackled by
incorporating penalty function methods where penalty is
delivered on the identified flip nodes. CCE results demon-
strate its superiority on SA and CE in localization error
performance. A major problem in localization techniques
with small number of anchors and small number of neighbors
is error propagation. Addressing such issue based on both CE
and CCE is our future research direction.
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most cases, CCE’s RMS error is lower than SA’s.
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