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This paper presents a novel matrix completion algorithm to enable energy efficient data gathering in wireless sensor networks. The
algorithm takes full advantage of both the low-rankness and the DCT compactness features in the sensory data to improve the
recovery accuracy.The time complexity of the algorithm is analyzed, which indicates it has a low computational cost. Moreover, the
recovery error is carefully analyzed and a theoretical upper bound is derived. The error bound is then validated by experimental
results. Extensive experiments are conducted on three datasets collected from two testbeds. Experimental results show that the
proposed algorithm outperforms state-of-the-art methods for low sampling rate and achieves a good recovery accuracy even if the
sampling rate is very low.

1. Introduction

Wireless sensor networks (WSNs) have been widely used in
a variety of applications such as precision agriculture [1],
personal health monitoring [2], and environment surveil-
lance [3], in which sensor nodes with limited battery energy
are deployed and periodically report their sensor readings
to the base station or sink node. Therefore, a key issue in
wireless sensor networks is how to efficiently gather these data
from sensors provided with only limited energy resources. In
the classical data gathering approach [4], each sensor node
simply forwards its sensor readings to the sink, resulting in a
large amount of traffic and energy consumption.

Recently, Compressive Sensing (CS) [5, 6] has emerged as
a new approach to tackle the efficient data gathering problem
inWSNs. Taking advantage of the sparsity in sensor readings,
CS based methods [7–9] require fewer data packets than the
classical approach. However, there are many practical prob-
lems when applying CS to data gathering in WSNs. Firstly,
CS based methods require a prior dictionary to sparsify the
sensor readings. Secondly, the measurement matrix in CS is
composed of independent and identically distributed random
Gaussian entries, which is dense with very few zero elements.
Therefore, sensor nodes need to sample all sensor readings

and perform a considerable number of measurement oper-
ations, resulting in a large amount of energy waste. Thirdly,
CS requires the number of measurements to exceed a certain
threshold (depending on the sparsity level of sensor readings)
to achieve exact recovery. However, the realistic sensor signal
is not always exactly sparse as it should be. Therefore, low
sampling rate may lead to insufficient measurements and
result in a bad recovery accuracy.

As an extension of CS, matrix completion [10] has shown
its potential for enabling efficient data gathering in WSNs.
Because the sensor readings are highly temporal-spatial cor-
related, the data matrix structured by the sensor readings will
approximate to a low-rank matrix. Therefore, the sink node
can gather only a few of the total sensor readings and adopt
the matrix completion algorithm to reconstruct the missing
data. However, unlike CS based methods, matrix completion
basedmethods do not require the prior dictionary to sparsify
the original signal. Furthermore, the sampling matrix (or
measurement matrix) in matrix completion is much sparser
than CS, which makes it more suitable for wireless sensor
networks.

Utilizing the low-rankness feature in sensory data, there
are many pioneering works [11–13] on applying matrix
completion toWSN,which adopt the alternating least squares
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technique to estimate the low-rank matrix. The recovery
accuracy is further improved by utilizing the spatiotemporal
structure in the WSN data. However, the improvement is
limited because the spatiotemporal structure directly implies
the low-rank feature, and in some sense, these two features are
equivalent. Moreover, the alternating least squares algorithm
does not scale to large rank.

Besides the low-rankness feature, we observe that the
sensor readings in WSNs also exhibit Discrete Cosine Trans-
form (DCT) compactness feature. In other words, the sensor
readings can be approximated by only a small number of
DCT coefficients. Therefore, by taking full advantage of the
DCT compactness feature of the WSNs data, in this paper,
we propose a DCT Regularized Matrix Completion (DRMC)
algorithm. We analyze the time complexity of DRMC, which
indicates that the proposed algorithm has a low computa-
tional cost.Moreover, we analyze the recovery error ofDRMC
and derive a theoretical upper bound.The error bound is then
validated by experimental results. Extensive experiments are
carried out on three datasets that are collected from two
realistic WSN testbeds. We compare the performance of
DRMC with state-of-the-art methods. Experimental results
show that DRMC outperforms state-of-the-art methods for
low sampling rate and achieves a good recovery accuracy even
if the sampling rate is very low.

The main contributions of this paper are summarized in
the following:

(i) We examine the sensor data collected from real-
world WSNs, which reveal two data features: (1) low-
rankness, (2) DCT compactness.

(ii) Inspired by these observations, we design a novel
DCT Regularized Matrix Completion (DRMC) algo-
rithm to estimate the missing sensory data. Experi-
mental results indicate thatDRMCoutperforms state-
of-the-art methods when the sampling rate is low.

(iii) We analyze the time complexity of the DRMC algo-
rithm, which indicates that DRMC has a low compu-
tational cost.

(iv) We analyze the recovery error of the DRMC algo-
rithm and derive a theoretical upper bound, which is
then validated by experimental results.

The rest of this paper is organized as follows. Section 2
reviews the state-of-the-art methods. Section 3 models the
problem. Section 4 examines the data features in WSNs.
Section 5 proposes the DRMC algorithm. Section 6 analyzes
the time complexity of the algorithm. Section 7 analyzes
the recovery error of the algorithm. Section 8 evaluates the
effectiveness of the proposed algorithm. Section 9 concludes
this paper.

2. Related Works

In this section, we make a brief review of previous works
related to the data gathering problem in wireless sensor
networks.

2.1. Compressive Sensing. Compressive Sensing (CS) theory
suggests that sparse signals can be accurately reconstructed
from only a small number of measurements [5, 6]. It is a
new paradigm for signal processing of networked data [7]
and there are many CS based methods for data gathering
in wireless sensor networks. Luo et al. proposed a data
gathering scheme that applies Compressive Sensing theory
to reduce communication cost [14]. Quer et al. presented a
framework for data gathering and signals recovery in actual
WSN deployments with the integration of CS [9]. Ebrahimi
and Assi recently proposed a decentralized method to apply
the Compressive Sensing to data gathering in wireless sensor
networks [15].

2.2. Matrix Completion. Recently, there are many applica-
tions that apply matrix completion technique to wireless sen-
sor networks. Utilizing the low-rankness and spatiotemporal
correlation, Zhang et al. proposed a method to recover the
lost data in internet traffic matrices [13]. Kong et al. designed
an algorithm using the low-rank structure, time stability,
space similarity, andmultiattribute correlation to estimate the
missing data in highly incomplete data matrix [12]. Cheng
et al. presented a Spatiotemporal Compressive Data Collec-
tion (STCDG) algorithm that utilizes the low-rankness and
short-term stability features to reduce data traffic in WSNs
[11].

In our earlier work [16], we have studied the data recovery
problem in wireless sensor networks when historical data
are available and proposed a DCT-Regularized Partial Matrix
Completion (DCT-RPMC) algorithm. However, the new
algorithm proposed in this paper does not depend on any
historical data, which greatly widens its applicability to more
general scenarios.

3. Problem Formulation

In this section, we formally formulate the data gathering and
recovery problem in wireless sensor networks and state the
goal of this paper.Themain notations that will be used in the
rest of this paper are listed in Summary of Notations.

Assume that the network is composed of 𝑛 sensor nodes.
During a certain sampling period, the 𝑖th sensor node
acquires𝑚 samples, which are modeled as an𝑚-dimensional
sensor vector 𝑥⃗

𝑖
,

𝑥⃗
𝑖
= [𝑥 (𝑖, 0) , 𝑥 (𝑖, Δ𝑇) , . . . , 𝑥 (𝑖, (𝑚− 1) Δ𝑇)]

𝑇
, (1)

where Δ
𝑇

is the sampling period. Therefore, the entire
samples in the network can be organized as an environment
matrix𝑋 ∈ R𝑚×𝑛,

𝑋 = [𝑥⃗1, 𝑥⃗2, . . . , 𝑥⃗𝑛] . (2)
In order to reduce energy consumption, only a fraction of

the entries of𝑋will be transmitted to the sink node. We then
define a matrix𝑀 ∈ R𝑚×𝑛 as the sampling matrix to indicate
which parts of𝑋 are transmitted to the sink:

𝑀(𝑖, 𝑗) =

{

{

{

1, if 𝑋(𝑖, 𝑗) is transmitted,

0, otherwise.
(3)
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Table 1: Experimental datasets.

Data name Matrix size Time interval
Intel Temperature 54 nodes × 96 intervals 10 minutes
Intel Humidity 54 nodes × 96 intervals 10 minutes
PARED Temperature 50 nodes × 96 intervals 10 minutes

And the sampling rate 𝜏 is defined in the following:

𝜏 =

∑
𝑖,𝑗
𝑀(𝑖, 𝑗)

𝑚𝑛

. (4)

Let 𝑌 ∈ R𝑚×𝑛 denote the data transmitted to the sink. 𝑌
is an incomplete version of 𝑋, with missing entries replaced
by zeros. Therefore, we have

𝑌 = 𝑀∘𝑋. (5)

The symbol ∘ denotes the element-wise matrix production
operator.

After obtaining 𝑌, the sink can reconstruct the original
environment matrix 𝑋 with the proposed algorithm in
Section 5. Our goal is to generate a reconstructed matrix 𝑋
that approximates to the original environment matrix 𝑋 as
closely as possible. We measure the recovery performance by
the Normalized Mean Absolute Error (NMAE):

NMAE =

∑
𝑖,𝑗:𝑀(𝑖,𝑗)=0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑋 (𝑖, 𝑗) − 𝑋 (𝑖, 𝑗)

󵄨
󵄨
󵄨
󵄨
󵄨

∑
𝑖,𝑗:𝑀(𝑖,𝑗)=0

󵄨
󵄨
󵄨
󵄨
𝑋 (𝑖, 𝑗)

󵄨
󵄨
󵄨
󵄨

. (6)

4. Exploring the Data Features

In this section, we examine the data features in real-world
wireless sensor networks.

4.1. Experimental Datasets. We use three datasets, which are
collected from two WSN testbeds, to serve as the ground
truth. The summary of the datasets is shown in Table 1.

The first category of datasets is collected by 54 Mica2Dot
nodes deployed in the Intel Berkeley Research Lab [17]
between February 28 and April 5, 2004. The Mica2Dot
node reports collected sensor data including humidity and
temperature once every 30 seconds. However, we find that the
raw dataset has considerablemissing data.Therefore, we have
rearranged the raw data (by changing the reporting interval
from 30 seconds to 10 minutes) to avoid the missing data.

The second category of dataset consists of temperature
readings, which are collected with a 10-minute interval by our
own testbed, namely, PARED. PARED consists of 50 sensor
nodes. More details about PARED can be found in [18].

4.2. Low-Rank Structure. We first examine the low-rank
structure in WSN datasets using the Singular Value Decom-
position (SVD). The environment matrix 𝑋 can be decom-
posed into three matrices by SVD:

𝑋 = 𝑈Σ𝑉
𝑇
, (7)
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Figure 1: Low-rankness feature.

where 𝑈 is an 𝑚 × 𝑚 orthonormal matrix, 𝑉 is an 𝑛 × 𝑛

orthonormal matrix, and Σ is an𝑚 × 𝑛 diagonal matrix with
singular values 𝜎1, 𝜎2 ⋅ ⋅ ⋅ 𝜎𝑝 sorted in a descending order (𝑝 =

min(𝑚, 𝑛)).
Because sensor readings in a WSN are spatiotemporal

correlated, the environmentmatrix𝑋would exhibit low-rank
feature. More exactly, 𝑋 should approximate to a low-rank
matrix of rank 𝑟. So, the first 𝑟 singular values will occupy
the most energy of 𝑋. We use the following as the metric to
examine the quality of the low-rank approximation:

𝑔 (𝑟) =

∑
𝑟

𝑖=1 𝜎𝑖

‖𝑋‖∗

=

∑
𝑟

𝑖=1 𝜎𝑖

∑
𝑝

𝑖=1 𝜎𝑖
, (8)

where ‖ ⋅ ‖
∗
is the nuclear norm and ‖𝑋‖

∗
= ∑
𝑝

𝑖=1 𝜎𝑖.
Figure 1 shows the low-rank approximation quality of the

three datasets. We found that the largest 10 singular values
occupy the 93%–99% of the total energy, which suggests that
the WSN datasets exhibit a good low-rank feature.

4.3. DCT Compactness. We also observed that the sensor
readings in WSN exhibit DCT compactness feature. In other
words, the first 𝑘 DCT coefficients of the sensor vector 𝑥⃗

𝑖

concentrate the most energy of 𝑥⃗
𝑖
.

We first define𝐷 as the𝑚×𝑚Discrete Cosine Transform
Matrix:

𝐷(𝑖, 𝑗) = √
2
𝑚

cos [ 𝜋
𝑚

(𝑖 −

1
2
)(𝑗 −

1
2
)] . (9)

Then, the 𝑚 × 𝑚 orthonormal matrix 𝐷 can be divided into
two submatrices:

𝐷 = [

𝐷1

𝐷2
] , (10)

where 𝐷1 consists of the first 𝑘 rows of 𝐷 and 𝐷2 consists of
the last𝑚 − 𝑘 rows of𝐷.

Therefore, if the first 𝑘 DCT coefficients occupy the
most energy of 𝑥⃗

𝑖
, we will have ‖𝐷1𝑥⃗𝑖‖2/‖𝑥⃗𝑖‖2 ≈ 1 and

‖𝐷2𝑥⃗𝑖‖2/‖𝑥⃗𝑖‖2 ≈ 0. Similarly, for thematrix form,wewill have
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Figure 2: DCT compactness feature.

‖𝐷1𝑋‖𝐹/‖𝑋‖𝐹 ≈ 1 and ‖𝐷2𝑋‖𝐹/‖𝑋‖𝐹 ≈ 0, where ‖∗ ‖
𝐹
is the

Frobenius norm with ‖𝑋‖
𝐹
= √∑

𝑖,𝑗
𝑋(𝑖, 𝑗)

2. So, we use the
following function to examine the DCT compactness feature:

ℎ (𝑘) =

󵄩
󵄩
󵄩
󵄩
𝐷1𝑋

󵄩
󵄩
󵄩
󵄩𝐹

‖𝑋‖𝐹

. (11)

From Figure 2, we can see that the first 10 DCT coeffi-
cients concentrate 99%of the total energy,which suggests that
theseWSNdatasets exhibit a goodDCT compactness feature.

5. Algorithm

In this section, we proposed a novel matrix completion
algorithm, namely, DCT Regularized Matrix Completion
(DRMC), to solve the data recovery problem in WSN data
gathering. DRMC takes full advantage of the low-rankness
and DCT compactness features to improve the recovery
accuracy.

5.1. Utilization of Low-Rankness. As mentioned before in
Section 3, the goal of the recovery problem is to estimate
𝑋 from only a fraction of known entries. According to [10],
we can recover𝑋 by solving the following rank optimization
problem if𝑋 is a low-rank matrix:

minimize rank (𝑋)

subject to 𝑀∘𝑋 = 𝑌.

(12)

However, the rankminimization problem (12) is NP-hard
and is not solvable in polynomial time. Since the nuclear
norm is the optimal convex approximation of the rank
function, a reasonable solution is to solve a convex relaxation
problemwith the rank function replaced by the nuclear norm:

minimize ‖𝑋‖∗

subject to 𝑀∘𝑋 = 𝑌.

(13)

However, in a more realistic occasion, the environment
matrix 𝑋 is not an exactly low-rank matrix. There may not

Input:
𝑌 ∈ R𝑚×𝑛: collected data matrix
𝑀 ∈ R𝑚×𝑛: sampling matrix
𝜆: nuclear norm regularization parameter
𝜇: DCT regularization parameter

Output:
𝑋 ∈ R𝑚×𝑛: reconstructed environment matrix

Main procedure:
(1) 𝐿 ← 1 + 2𝜇;
(2) 𝑋old ← 0;𝑋new ← 0;
(3) Select 𝜆1 > 𝜆2 > ⋅ ⋅ ⋅ > 𝜆

𝐾
= 𝜆

(4) for 𝜆 = 𝜆1, 𝜆2, . . . , 𝜆𝐾 do
(5) 𝑡old ← 1; 𝑡new ← 1;
(6) repeat
(7) 𝑍 ←󳨀 𝑋new +

𝑡old − 1
𝑡new

(𝑋new − 𝑋old);

(8) 𝑋old ← 𝑋new;
(9) 𝐺 ← 𝑍 − 𝐿

−1
(𝑀 ∘ 𝑍 − 𝑌 + 2𝜇𝐷𝑇2𝐷2𝑍);

(10) 𝑋new ← 𝑆
𝜆𝐿
−1 (𝐺);

(11) 𝑡old ← 𝑡new;

(12) 𝑡new ←󳨀

1 + √1 + 4𝑡2old
2

;
(13) until ‖𝑋new − 𝑋old‖𝐹/‖𝑋old‖𝐹 < 𝜖

(14) end for
(15)𝑋 ← 𝑋new;
(16) return 𝑋

Algorithm 1: DRMC algorithm.

exist low-rank matrices that exactly satisfy the constraints in
problem (13). So, we converted the constrained optimization
problem (13) into the following nuclear norm regularized
optimization problem:

minimize 1
2
‖𝑀 ∘𝑋−𝑌‖

2
𝐹
+𝜆 ‖𝑋‖∗

, (14)

where 𝜆 > 0 is the nuclear regularization parameter.

5.2. Utilization of DCT Compactness. Though we can esti-
mate 𝑋 by solving the optimization problem (14), it will
overfit to the known entries of 𝑋 when the sampling rate is
low, which will lead to large recovery error in the estimation
of the missing entries.

Therefore, to reduce the overfitting in (14), we exploit the
DCT compactness feature of the sensor data. As mentioned
in Section 4.3, ‖𝐷2𝑋‖𝐹/‖𝑋‖𝐹 ≈ 0. So, we added ‖𝐷2𝑋‖𝐹 as
the DCT regularization term to (14), and finally, we obtain
the following optimization problem:

minimize 1
2
‖𝑀 ∘𝑋−𝑌‖

2
𝐹
+𝜆 ‖𝑋‖∗

+𝜇
󵄩
󵄩
󵄩
󵄩
𝐷2𝑋

󵄩
󵄩
󵄩
󵄩

2
𝐹
, (15)

where 𝜇 is the DCT regularization parameter.

5.3. The DRMC Algorithm. We present the DRMC algorithm
by solving the optimization problem in (15). The pseudocode
is shown in Algorithm 1. Next, we will describe the design of
DRMC in details.
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The object function in (15) can be rewritten into the
following form:

𝐹 (𝑋) := 𝑓 (𝑋) +𝑃 (𝑋) , (16)
with

𝑓 (𝑋) =

1
2
‖𝑀 ∘𝑋−𝑌‖

2
𝐹
+𝜇

󵄩
󵄩
󵄩
󵄩
𝐷2𝑋

󵄩
󵄩
󵄩
󵄩

2
𝐹
, (17)

𝑃 (𝑋) = 𝜆 ‖𝑋‖∗
. (18)

Note that𝑃(𝑋) is a proper, convex, lower semicontinuous
(lsc) [19] function but it is nonsmooth, while𝑓(𝑋) is a convex
smooth function and is continuously differentiable, with

∇𝑓 (𝑋) = (𝑀 ∘𝑋−𝑌) + 2𝜇𝐷𝑇2𝐷2𝑋. (19)
Furthermore, ∇𝑓(𝑋) is Lipschitz continuous with a positive
constant 𝐿:
󵄩
󵄩
󵄩
󵄩
∇𝑓 (𝑋1) −∇𝑓 (𝑋2)

󵄩
󵄩
󵄩
󵄩𝐹

≤ 𝐿
󵄩
󵄩
󵄩
󵄩
𝑋1 −𝑋2

󵄩
󵄩
󵄩
󵄩𝐹
,

∀𝑋1, 𝑋2 ∈ dom𝑃,

(20)

where dom𝑃 = {𝑋 | 𝑃(𝑋) < ∞}. Proposition 2 indicates that
the Lipschitz constant of 𝑓(𝑋) is 𝐿 = 1 + 2𝜇.

Since 𝑃(𝑋) is nonsmooth, it is difficult to directly min-
imize the objective function 𝐹(𝑋). Instead, we choose to
iteratively minimize a sequence of quadratic approximations
of 𝐹(𝑋), which is an effective way to minimize the uncon-
strained nonsmooth convex function [20–22]. The quadratic
approximation of 𝐹(⋅) at point 𝑍 is defined as the following:

𝑄
𝐿 (
𝑋, 𝑍) := 𝑓 (𝑍) + ⟨∇𝑓 (𝑍) , 𝑋−𝑍⟩+

𝐿

2
‖𝑋−𝑍‖

2
𝐹

+𝑃 (𝑋) .

(21)

And the objective variable 𝑋new is repeatedly updated to the
minimizer of𝑄

𝐿
(𝑋, 𝑍), until ‖𝑋new−𝑋old‖𝐹/‖𝑋old‖𝐹 < 𝜖.The

convergence of such iterative process is well studied in [21].
We then introduce an auxiliary variable 𝐺 to minimize

𝑄
𝐿
(𝑋, 𝑍). As suggested by Proposition 5, we can minimize

𝑄
𝐿
(𝑋, 𝑍) using the singular value shrinkage operator defined

in (26). Thus, we have𝑋new = 𝑆
𝜆𝐿
−1(𝐺).

What is more, we consider a warm-start technique for the
nuclear regularization parameter 𝜆. Rather than remaining
unchanged, 𝜆 is monotonically decreasing in the iterative
process. The nuclear regularization parameter 𝜆 starts with
an initial value 𝜆1 and gradually declines to 𝜆, forming a
sequence of 𝜆1 > 𝜆2 > ⋅ ⋅ ⋅ > 𝜆

𝐾
, (𝜆
𝐾
= 𝜆).

Lemma 1. 𝐷2 is defined as in (10). Then, one has
󵄩
󵄩
󵄩
󵄩
󵄩
𝐷
𝑇

2𝐷2𝑋
󵄩
󵄩
󵄩
󵄩
󵄩𝐹

≤ ‖𝑋‖𝐹
, ∀𝑋 ∈ R

𝑚×𝑛
. (22)

Proof. Since𝐷 is orthonormal,𝐷2𝐷
𝑇

2 = 𝐼, ‖𝐷𝑋‖
𝐹
= ‖𝑋‖

𝐹
.

And note that ‖𝑋‖
𝐹
= √𝑇𝑟(𝑋

𝑇
𝑋), then we can obtain

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷
𝑇

2𝐷2𝑋
󵄩
󵄩
󵄩
󵄩
󵄩𝐹

= √𝑇𝑟 (𝑋
𝑇
𝐷
𝑇

2𝐷2𝐷
𝑇

2𝐷2𝑋)

= √𝑇𝑟 (𝑋
𝑇
𝐷
𝑇

2𝐷2𝑋) =
󵄩
󵄩
󵄩
󵄩
𝐷2𝑋

󵄩
󵄩
󵄩
󵄩𝐹

≤ ‖𝐷𝑋‖𝐹
= ‖𝑋‖𝐹

.

(23)

Proposition 2. Assume that 𝑓(𝑋) is defined as (17); then,
𝑓(𝑋) is Lipschitz continuous with

𝐿 = 1+ 2𝜇. (24)

Proof. Note that ‖𝑀∘𝑋‖
𝐹
≤ ‖𝑋‖

𝐹
, and by using the Lemma 1,

we obtain that
󵄩
󵄩
󵄩
󵄩
∇𝑓 (𝑋1) −∇𝑓 (𝑋2)

󵄩
󵄩
󵄩
󵄩𝐹

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑀 ∘ (𝑋1 −𝑋2) + 2𝜇𝐷

𝑇

2𝐷2 (𝑋1 −𝑋2)
󵄩
󵄩
󵄩
󵄩
󵄩𝐹

≤
󵄩
󵄩
󵄩
󵄩
𝑀 ∘ (𝑋1 −𝑋2)

󵄩
󵄩
󵄩
󵄩𝐹
+ 2𝜇 󵄩󵄩󵄩󵄩

󵄩
𝐷
𝑇

2𝐷2 (𝑋1 −𝑋2)
󵄩
󵄩
󵄩
󵄩
󵄩𝐹

≤
󵄩
󵄩
󵄩
󵄩
𝑋1 −𝑋2

󵄩
󵄩
󵄩
󵄩𝐹
+ 2𝜇 󵄩󵄩󵄩

󵄩
𝑋1 −𝑋2

󵄩
󵄩
󵄩
󵄩𝐹

= (1+ 2𝜇) 󵄩󵄩󵄩
󵄩
𝑋1 −𝑋2

󵄩
󵄩
󵄩
󵄩𝐹
.

(25)

Definition 3. Decompose the matrix 𝑋 ∈ R𝑚×𝑛 of rank 𝑟

by SVD: 𝑋 = 𝑈Σ𝑉
𝑇, where 𝑈 ∈ R𝑚×𝑟 and 𝑉 ∈ R𝑛×𝑟 are

orthonormal matrices and Σ = diag({𝜎
𝑖
}1≤𝑖≤𝑟). Define the

singular value shrinkage operator [23] 𝑆
𝜆
as follows:

𝑆
𝜆 (
𝑋) = 𝑈𝑆

𝜆 (
Σ)𝑉
𝑇
,

𝑆
𝜆 (
Σ) = diag ({(𝜎

𝑖
−𝜆)
+
}1≤𝑖≤𝑟) ,

(26)

where 𝑡
+
is the positive part of 𝑡, 𝑡

+
= max(0, 𝑡).

Lemma 4. Let 𝐺 ∈ R𝑚×𝑛. Then,

𝑆
𝜆 (
𝐺) ≡ argmin

𝑋∈R𝑚×𝑛
{

1
2
‖𝑋−𝐺‖

2
𝐹
+𝜆 ‖𝑋‖∗

} , (27)

where 𝑆
𝜆
(𝐺) is the singular value shrinkage operator of 𝐺.

Proof. The proof of Lemma 4 can be found in [23].

Proposition 5. Let 𝑍 ∈ R𝑚×𝑛 and 𝑃(𝑋) = 𝜆‖𝑋‖
∗
. Assume

that 𝑓(𝑋) is Lipschitz continuous and define 𝐺 ∈ R𝑚×𝑛 with

𝐺 = 𝑍−𝐿
−1
∇𝑓 (𝑍) . (28)

Then, one has

argmin
𝑋∈R𝑚×𝑛

𝑄
𝐿 (
𝑋, 𝑍) = 𝑆

𝜆𝐿
−1 (𝐺) . (29)

Proof. Consider

𝑄
𝐿 (
𝑋, 𝑍) = 𝑓 (𝑍) + ⟨∇𝑓 (𝑍) , 𝑋−𝑍⟩+

𝐿

2
‖𝑋−𝑍‖

2
𝐹

+𝑃 (𝑋)

= 𝑓 (𝑍) + ⟨∇𝑓 (𝑍) , 𝑋−𝑍⟩+

𝐿

2
‖𝑋−𝑍‖

2
𝐹

+𝜆 ‖𝑋‖∗
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=

𝐿

2
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑋−𝑍−

1
𝐿

∇𝑓 (𝑍)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐹

+𝜆 ‖𝑋‖∗

+𝑓 (𝑍) −

1
2𝐿

󵄩
󵄩
󵄩
󵄩
∇𝑓 (𝑍)

󵄩
󵄩
󵄩
󵄩

2
𝐹

= 𝐿{

1
2
‖𝑋−𝐺‖

2
𝐹
+

𝜆

𝐿

‖𝑋‖∗
}+𝑓 (𝑍)

−

1
2𝐿

󵄩
󵄩
󵄩
󵄩
∇𝑓 (𝑍)

󵄩
󵄩
󵄩
󵄩

2
𝐹
.

(30)

Thus, combined with Lemma 4, we can obtain that

argmin
𝑋∈R𝑚×𝑛

𝑄
𝐿 (
𝑋, 𝑍)

= argmin
𝑋∈R𝑚×𝑛

{𝐿(

1
2
‖𝑋−𝐺‖

2
𝐹
+

𝜆

𝐿

‖𝑋‖∗
)+𝑓 (𝑍)

−

1
2𝐿

󵄩
󵄩
󵄩
󵄩
∇𝑓 (𝑍)

󵄩
󵄩
󵄩
󵄩

2
𝐹
} = argmin
𝑋∈R𝑚×𝑛

{

1
2
‖𝑋−𝐺‖

2
𝐹

+

𝜆

𝐿

‖𝑋‖∗
} = 𝑆
𝜆𝐿
−1 (𝐺) .

(31)

6. Complexity Analysis

In this section, we discuss the time complexity of the
proposed algorithm.

After analyzing the steps in Algorithm 1, we find that
the most computationally intensive step is the singular value
shrinkage operation that performs SVD on 𝐺, which dom-
inates the computational complexity of this algorithm. The
time complexity of SVD for an 𝑚 × 𝑛matrix is 𝑂(𝑚𝑛2) [24].
And for any 𝜖 > 0, the iterative process in Algorithm 1 will
terminate in 𝑂(√𝐿/𝜖) iterations with an 𝜖-optimal solution
[21, 25]. Consequently, the time complexity of our algorithm
is 𝑂(𝐾√𝐿/𝜖𝑚𝑛2).

We can further decrease the time complexity of the
DRMC algorithm by applying Partial Reorthogonalization
Package (PROPACK) [26] in the singular value shrinkage
operation. PROPACK uses the Lanczos method [24] to
compute only a partial SVD of 𝐺. However, it cannot a priori
compute singular values that are greater than 𝜆/𝐿. Hence,
we need to predetermine the number of singular values to
be computed (denoted as 𝑠V

𝑖
) at the beginning of the 𝑖th

iteration, and PROPACK can then compute the 𝑠V
𝑖
largest

singular values and corresponding singular vectors.We adopt
the prediction rule proposed in [27]:

𝑠V
𝑖+1 =

{

{

{

𝑠V𝑝
𝑖
+ 1, if 𝑠V𝑝

𝑖
< 𝑠V
𝑖
.

min {𝑠V𝑝
𝑖
+ 10, 𝑚, 𝑛} , if 𝑠V𝑝

𝑖
= 𝑠V
𝑖
,

(32)

where 𝑠V
𝑖
is the predicted number of singular values, 𝑠V𝑝

𝑖
is

the actual number of singular values that are larger than 𝜆/𝐿,
and 𝑠V0 = 10.

The time complexity of the Lanczos method is 𝑂(𝑟𝑚𝑛)
for𝑚×𝑛matrix with rank of 𝑟 [24].Therefore, the time com-
plexity of DRMC algorithm is 𝑂(𝐾√𝐿/𝜖𝑟𝑚𝑛) if PROPACK
is used. For fixed number of iterations, the complexity of
DRMC can be simplified as 𝑂(𝑟𝑚𝑛), while the state-of-
the-art matrix completion based methods [11–13] require a
complexity of 𝑂(𝑟2𝑚𝑛). So, DRMC is more computationally
efficient.

7. Error Analysis

In this section, we analyze the recovery error of the DRMC
algorithm and present a theoretical upper bound.

Before starting the analysis, we first introduce some
assumptions and lemmas.

Assumption 6. The original data matrix 𝑋 can be approxi-
mated by the first 𝑘 DCT coefficients, with approximation
error 𝜉:

𝜉 =

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋−𝐷

𝑇

1𝐷1𝑋
󵄩
󵄩
󵄩
󵄩
󵄩𝐹

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷
𝑇

2𝐷2𝑋
󵄩
󵄩
󵄩
󵄩
󵄩𝐹
. (33)

Assumption 7. LetA : R𝑚×𝑛 → R𝑚×𝑛 be the linear operator
defined as

A (𝑋) = 2𝜇𝐿−1𝐷𝑇2𝐷2𝑋+𝐿
−1
𝑀∘𝑋 (34)

andI be the identity operator.
Then, there exists a constant 0 ≤ 𝜂 < 1, such that

sup
A(𝑋) ̸=0,‖𝑋‖

𝐹

=1
‖(I−A) (𝑋)‖𝐹

≤ 𝜂. (35)

Lemma 8. Suppose that 𝑆
𝜆
is the singular value shrinkage

operator; then,
󵄩
󵄩
󵄩
󵄩
𝑆
𝜆
(𝑋1) − 𝑆𝜆 (𝑋2)

󵄩
󵄩
󵄩
󵄩𝐹

≤
󵄩
󵄩
󵄩
󵄩
𝑋1 −𝑋2

󵄩
󵄩
󵄩
󵄩𝐹
,

∀𝑋1, 𝑋2 ∈ R
𝑚×𝑛

.

(36)

Proof. The detailed proof of Lemma 8 can be found in [28].

Lemma 9. Suppose that𝑋 ∈ R𝑚×𝑛 with rank of 𝑟; then,
󵄩
󵄩
󵄩
󵄩
𝑆
𝜆 (
𝑋) −𝑋

󵄩
󵄩
󵄩
󵄩𝐹

≤ 𝑟𝜆. (37)

Proof. Consider
󵄩
󵄩
󵄩
󵄩
𝑆
𝜆 (
𝑋) −𝑋

󵄩
󵄩
󵄩
󵄩𝐹

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑈 (𝑆
𝜆 (
Σ) − Σ)𝑉

𝑇󵄩󵄩
󵄩
󵄩
󵄩𝐹

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑈 (Σ− 𝑆

𝜆 (
Σ)) 𝑉
𝑇󵄩󵄩
󵄩
󵄩
󵄩𝐹

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑈 (diag ({𝜎

𝑖
− (𝜎
𝑖
− 𝜆)
+
}1≤𝑖≤𝑟))𝑉

𝑇󵄩󵄩
󵄩
󵄩
󵄩𝐹

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑈diag ({𝑑

𝑖
}1≤𝑖≤𝑟)𝑉

𝑇󵄩󵄩
󵄩
󵄩
󵄩𝐹

= √

𝑟

∑

𝑖=1
𝑑
𝑖

2
,

(38)

where

𝑑
𝑖
=

{

{

{

𝜆, if 𝜎
𝑖
≥ 𝜆;

𝜎
𝑖
, if 𝜎

𝑖
< 𝜆.

(39)
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Therefore, we have
󵄩
󵄩
󵄩
󵄩
𝑆
𝜆 (
𝑋) −𝑋

󵄩
󵄩
󵄩
󵄩𝐹

≤ 𝑟𝜆. (40)

The upper bound of the recovery error is then given in the
following theorem.

Theorem 10. Suppose that 𝑋 is the estimate of 𝑋 obtained by
the DRMC algorithm; then, one has

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋−𝑋

󵄩
󵄩
󵄩
󵄩
󵄩𝐹

≤

𝑟𝜆 + 2𝜉𝜇
(1 − 𝜂) (1 + 2𝜇)

. (41)

Proof. When the iterative process in Algorithm 1 has con-
verged,𝑋new will be equal to𝑋old. Hence,𝑋 will be the fixed
point of the following:

𝑋

= 𝑆
𝜆𝐿
−1 [(𝐼 − 2𝜇𝐿−1𝐷𝑇2𝐷2)𝑋−𝐿

−1
𝑀∘(𝑋−𝑋)] .

(42)

Therefore, we have
󵄩
󵄩
󵄩
󵄩
󵄩
𝑋−𝑋

󵄩
󵄩
󵄩
󵄩
󵄩𝐹

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
𝜆𝐿
−1 [(𝐼 − 2𝜇𝐿−1𝐷𝑇2𝐷2)𝑋−𝐿

−1
𝑀

∘(𝑋−𝑋)] −𝑋

󵄩
󵄩
󵄩
󵄩
󵄩𝐹

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
𝜆𝐿
−1 [(𝐼 − 2𝜇𝐿−1𝐷𝑇2𝐷2)𝑋

−𝐿
−1
𝑀∘(𝑋−𝑋)]

− 𝑆
𝜆𝐿
−1 [(𝐼 − 2𝜇𝐿−1𝐷𝑇2𝐷2)𝑋]

+ 𝑆
𝜆𝐿
−1 [(𝐼 − 2𝜇𝐿−1𝐷𝑇2𝐷2)𝑋] −𝑋

󵄩
󵄩
󵄩
󵄩
󵄩𝐹

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
𝜆𝐿
−1 [(𝐼 − 2𝜇𝐿−1𝐷𝑇2𝐷2)𝑋−𝐿

−1
𝑀

∘(𝑋−𝑋)] − 𝑆
𝜆𝐿
−1 [(𝐼 − 2𝜇𝐿−1𝐷𝑇2𝐷2)𝑋]

󵄩
󵄩
󵄩
󵄩
󵄩𝐹

+
󵄩
󵄩
󵄩
󵄩
𝑆
𝜆𝐿
−1 (𝑋) −𝑋

󵄩
󵄩
󵄩
󵄩𝐹
+ 2𝜇𝐿−1 󵄩󵄩󵄩󵄩

󵄩
𝐷
𝑇

2𝐷2𝑋
󵄩
󵄩
󵄩
󵄩
󵄩𝐹
.

(43)

Combining (43) and Lemma 8, we have
󵄩
󵄩
󵄩
󵄩
󵄩
𝑋−𝑋

󵄩
󵄩
󵄩
󵄩
󵄩𝐹

≤

󵄩
󵄩
󵄩
󵄩
󵄩
(𝐼 − 2𝜇𝐿−1𝐷𝑇2𝐷2) (𝑋−𝑋)−𝐿

−1
𝑀∘(𝑋−𝑋)

󵄩
󵄩
󵄩
󵄩
󵄩𝐹

+
󵄩
󵄩
󵄩
󵄩
𝑆
𝜆𝐿
−1 (𝑋) −𝑋

󵄩
󵄩
󵄩
󵄩𝐹
+ 2𝜇𝐿−1 󵄩󵄩󵄩󵄩

󵄩
𝐷
𝑇

2𝐷2𝑋
󵄩
󵄩
󵄩
󵄩
󵄩𝐹

=

󵄩
󵄩
󵄩
󵄩
󵄩
(I−A) (𝑋−𝑋)

󵄩
󵄩
󵄩
󵄩
󵄩𝐹
+
󵄩
󵄩
󵄩
󵄩
𝑆
𝜆𝐿
−1 (𝑋) −𝑋

󵄩
󵄩
󵄩
󵄩𝐹

+ 2𝜇𝐿−1 󵄩󵄩󵄩󵄩
󵄩
𝐷
𝑇

2𝐷2𝑋
󵄩
󵄩
󵄩
󵄩
󵄩𝐹
,

(44)

whereI is the identity operator andA is the operator defined
in (34).

Then, applying Assumption 6 and Lemma 9 to (44), we
have

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋−𝑋

󵄩
󵄩
󵄩
󵄩
󵄩𝐹

≤

󵄩
󵄩
󵄩
󵄩
󵄩
(I−A) (𝑋−𝑋)

󵄩
󵄩
󵄩
󵄩
󵄩𝐹
+𝜆𝐿
−1
𝑟 + 2𝜇𝐿−1𝜉. (45)

Table 2: Parameter settings for DRMC.

Parameter name 𝜆 𝜇 𝑘

Default value 0.001 1 10

Combining Assumption 7, (24), and (45), we finally obtain
the following error bound:

󵄩
󵄩
󵄩
󵄩
󵄩
𝑋−𝑋

󵄩
󵄩
󵄩
󵄩
󵄩𝐹

≤

𝑟𝜆 + 2𝜉𝜇
(1 − 𝜂) 𝐿

=

𝑟𝜆 + 2𝜉𝜇
(1 − 𝜂) (1 + 2𝜇)

. (46)

Let 𝐸 represent the upper bound of the recovery error.
Then, according toTheorem 10,𝐸 = (𝑟𝜆+2𝜉𝜇)/(1−𝜂)(1+2𝜇).
Note that 𝐸(𝜆) is an increasing function of 𝜆. So, we expect
the actual recovery error of the DRMC algorithm to increase
with 𝜆, which is confirmed later by simulation results in
Section 8.3.

8. Evaluation

We designed a data gathering scheme based on the proposed
DRMC algorithm.The data gathering procedure is similar to
[11]. Firstly, sink node broadcasts a sampling rate to all sensor
nodes. Secondly, each sensor node randomly and indepen-
dently decides whether to forward its readings to the sink
according to the sampling rate. Finally, the sink node collects
the incomplete data matrix and uses DRMC to retrieve the
missing data. After implementing this data gathering scheme
by Matlab, we carried out extensive experiments on three
real-world datasets (as shown in Table 1) to evaluate the
effectiveness of DRMC.

8.1. BaselineMethods. Weselect two state-of-the-artmethods
to compare with DRMC. The first method is Compressive
Sensing (CS). We choose the DCT matrix defined in (9) to
serve as the orthonormal basis in CS. The second method is
Spatiotemporal Compressive Data Collection (STCDG). The
parameters of STCDG are set to 𝜆 = 0.5, 𝑟 = 10. Note
that since our earlier work, namely, DCT-RPMC, depends on
historical data while the proposed algorithm does not, we do
not select DCT-RPMC as the baseline method.

8.2. Recovery Accuracy. Firstly, we compared the recovery
accuracy of the proposed algorithm with two baseline meth-
ods described above. The parameters of DRMC are listed in
Table 2.

Simulation experiments are carried out on three real-
world datasets. Each simulation is conducted for 100 inde-
pendent trials. The recovery errors are computed according
to (6) and are averaged over the 100 trials.

Comparison results are shown in Figures 3–5. For experi-
ments on Intel Temperature Trace, all methods achieve nearly
the same recovery accuracy when the sampling rate is high.
When the sampling rate is below a certain value (𝜏 <

0.1), recovery performance of baseline methods deteriorates
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Figure 3: Recovery accuracy on Intel Temperature Trace.
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Figure 4: Recovery accuracy on Intel Humidity Trace.

quickly, while DRMC still achieves a good recovery accuracy.
When the sampling rate is as low as 0.03, whichmeans 97% of
data loss, DRMC can reconstruct the lost data with recovery
error less than 10%, while recovery error of CS and STCDG
is close to 100%.

Comparison results on Intel Humidity Trace are very
similar to that on Intel Temperature Trace. Recovery error of
DRMC is about 9% when the sampling rate is 0.03, which is
noticeably better than that of baseline methods.

For experiments on PARED Temperature Trace, DRMC
still outperforms baselinemethods for low sampling rate.The
recovery error of DRMC is about 16%when the sampling rate
is 0.03, which is slightly worse than that on other two traces.
This is because the low-rankness and DCT compactness
features of PARED Temperature are not as good as that of
other two traces, as shown in Figures 1 and 2.

8.3. Parameter Settings. The DRMC algorithm depends on
several input parameters. Clearly, the choice of these param-
eters will affect the recovery performance of DRMC. In this
subsection, we discuss how to choose the parameters for
DRMC.
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Figure 5: Recovery accuracy on PARED Temperature Trace.
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Figure 6: Effect of parameter 𝜆.

The nuclear norm regularization parameter 𝜆 is an
important parameter to ensure the low-rank feature of the
reconstructed data matrix. In DRMC, we adopted a warm-
start strategy for 𝜆, in which 𝜆 is linearly reduced from 𝜆1
to 𝜆
𝐾
. In the implementation, 𝜆1 = 10𝜆 + 1, 𝜆

𝐾
= 𝜆, and

𝐾 = 20. We tested DRMC on a range of values of 𝜆 to
investigate how 𝜆 effects the performance of DRMC. Figure 6
shows the experimental results.The recovery errors ofDRMC
increase with 𝜆, just as what we predicted in Section 7 by the
theoretical error bound (41). Note that when 𝜆 < 0.1, the
recovery performance of DRMC is not sensitive to 𝜆. So, in
practice, we just set it to a small enough value, 𝜆 = 0.001.

Parameter 𝜇 is a regularization parameter that guaran-
tees the DCT compactness feature of the recovered signal.
Figure 7 shows the effects of 𝜇 on the recovery performance
of DRMC. The recovery errors decline with 𝜇 and are stable
when 𝜇 > 0.1. So, we choose to use 𝜇 = 1 for our experiments.

Recall that 𝑘 represents the number of concentrated DCT
coefficients. As discussed before in Section 4.3, the first
10 DCT coefficients concentrate 99% of the total energy.
As expected, Figure 8 shows that the recovery errors are
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Table 3: Simulation configuration for network lifespan.

Parameter name Value
Number of nodes 1000
Initial energy 1 J
Sampling period 10 seconds
Data size 16 bits
𝐸
𝑇𝑥

100 nJ/bit
𝐸
𝑅𝑥

120 nJ/bit
𝐸Amp 0.01 nJ/(bit⋅m2)
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Figure 7: Effect of parameter 𝜇.

dropping fast with 𝑘 and are stable when 𝑘 > 10. So, we
choose to use 𝑘 = 10 for our experiments. Note that the
recovery errors are slightly increasing with the growth of 𝑘
when 𝑘 > 10. We explain this by considering the extreme
case when 𝑘 = 𝑚. If 𝑘 = 𝑚, 𝐷1 is equal to 𝐷. As a result,
the DCT regularization term ‖𝐷2𝑋‖

2

𝐹
in (15) is automatically

equal to zero. Therefore, the DCT compactness property of
the sensory data is not utilized and the recovery errors will
increase, just as the case in Figure 7 when 𝜇 = 0.

8.4. Energy Consumption and Network Lifespan. DRMC-
based data gathering protocol ismore energy efficient because
it transmits less packets than the classic one (receiving and
forwarding). As a result, DRMC-based protocol can save
more energy and prolong the lifespan of wireless sensor net-
works. To verify this, simulation experiments are conducted
and the simulation configuration is shown in Table 3.

In the simulation, sensor nodes are randomly deployed
in a 500m × 500m area and the sink node is deployed in
the center. Each sensor node is equipped with 1 J energy.
To evaluate the energy consumption, we adopt the following
energy model [29]:

𝐸
𝑇 (
𝑘, 𝑑) =

{

{

{

(𝐸
𝑇𝑥
+ 𝑑

2
× 𝐸Amp) × 𝑘, if 𝑑 < 𝑑Thres,

(𝐸
𝑇𝑥
+ 𝑑

4
× 𝐸Amp) × 𝑘, if 𝑑 ≥ 𝑑Thres,

𝐸
𝑅 (
𝑘) = 𝑘𝐸

𝑅𝑥
.

(47)

0 5 10 15 20 25 30 35 40 45 50
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

N
M

A
E

Intel Temperature
PARED Temperature
Intel Humidity

k

Figure 8: Effect of parameter 𝑘.
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Figure 9: Relation of network lifespan to sampling rate.

𝐸
𝑇
(𝑘, 𝑑) represents the energy consumption of transmit-

ting 𝑘 bits data with distance 𝑑. 𝐸
𝑅
(𝑘) denotes the energy

consumption of receiving 𝑘 bits data. 𝐸
𝑇𝑥

is the energy
consumed by the transmitting circuit to process 1 bit data.
𝐸
𝑅𝑥

is the energy consumed by the receiving circuit to process
1 bit data. 𝐸Amp is the energy consumed by power amplifying
circuit.

Figure 9 demonstrates the network lifespan of DRMC-
based protocol and other baseline protocols under different
sampling rate. Note that the network lifespan is defined
as the time when the first energy exhausted node appears.
Apparently, the sampling rate does not play a role in the
classic data gathering, since it directly transmits all data
without compression. Therefore, the lifespan curve of the
classic protocol in Figure 9 is a straight line. For the CS
method, the smaller the sampling rate is, the less measure-
ments are taken. And as shown in Figure 9, the lifespan
of CS is decreasing with the sampling rate. However, when
the sampling rate is above a certain value, the lifespan of
CS is even worse than the classic one. The reason why CS
performs badly for large sampling rate is well analyzed in [30].
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Figure 9 shows that DRMC-based protocol achieves the best
lifespan. Similarly, the lifespan of DRMC is decreasing with
the sampling rate. When the sampling rate decreases to 1,
DRMC-based protocol is equivalent to the classic protocol
and the lifespan ofDRMC is equal to the classic one.Note that
the lifespan of STCDG is exactly the same as DRMC, because
both of the twomethods are based onmatrix completion.The
lifespan of DRMC is longer than CS because the sampling
matrix in DRMC is much sparser than that in CS.

9. Conclusion

In this paper, we studied the data gathering and recon-
struction problem in WSNs. We modeled the problem as
matrix completion problem and investigated the data features
in real WSN datasets. Then, by taking advantage of the
low-rankness and DCT compactness features in WSNs, we
proposed a DCT Regularized Matrix Completion (DRMC)
algorithm to reconstruct the missing data.The recovery error
of DRMC is carefully analyzed and a theoretical error upper
bound is presented. Experimental results show that DRMC
outperforms state-of-the-art methods for low sampling rate
and achieves a good recovery accuracy even if the sampling
rate is very low.

Summary of Notations

𝑛: Number of sensor nodes
𝑚: Number of samples in a sampling period
𝑘: Number of dominant DCT coefficients
𝜆: Nuclear norm regularization parameter
𝜆: Final nuclear norm regularization parameter
𝜇: DCT regularization parameter
𝜏: Sampling rate
𝜉: Approximation error of dominant DCT coefficients
𝑋: Environment matrix
𝑋: Estimated environment matrix
𝑀: Sampling matrix
𝑌: Data matrix collected by the sink
𝐷: DCT matrix
𝐷1: Dominant DCT matrix
𝐷2: Subdominant DCT matrix.
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[2] A. Milenković, C. Otto, and E. Jovanov, “Wireless sensor
networks for personal health monitoring: issues and an imple-
mentation,” Computer Communications, vol. 29, no. 13-14, pp.
2521–2533, 2006.

[3] L. Mo, Y. He, Y. Liu et al., “Canopy closure estimates with
greenorbs: sustainable sensing in the forest,” in Proceedings
of the 7th ACM Conference on Embedded Networked Sensor
Systems, pp. 99–112, ACM, November 2009.

[4] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“TinyDB: an acquisitional query processing system for sensor
networks,” ACM Transactions on Database Systems, vol. 30, no.
1, pp. 122–173, 2005.

[5] E. J. Candes andT. Tao, “Near-optimal signal recovery from ran-
dom projections: universal encoding strategies?” IEEE Transac-
tions on InformationTheory, vol. 52, no. 12, pp. 5406–5425, 2006.

[6] D. L. Donoho, “Compressed sensing,” IEEE Transactions on
Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[7] J. Haupt, W. U. Bajwa, M. Rabbat, and R. Nowak, “Compressed
sensing for networked data,” IEEE Signal Processing Magazine,
vol. 25, no. 2, pp. 92–101, 2008.

[8] C. Luo, F. Wu, J. Sun, and C. W. Chen, “Efficient measurement
generation and pervasive sparsity for compressive data gather-
ing,” IEEE Transactions on Wireless Communications, vol. 9, no.
12, pp. 3728–3738, 2010.

[9] G. Quer, R. Masiero, G. Pillonetto, M. Rossi, and M. Zorzi,
“Sensing, compression, and recovery for WSNs: sparse signal
modeling and monitoring framework,” IEEE Transactions on
Wireless Communications, vol. 11, no. 10, pp. 3447–3461, 2012.

[10] E. J. Candès and B. Recht, “Exact matrix completion via convex
optimization,” Foundations of Computational Mathematics, vol.
9, no. 6, pp. 717–772, 2009.

[11] J. Cheng, Q. Ye, H. Jiang, D. Wang, and C. Wang, “STCDG: an
efficient data gathering algorithm based on matrix completion
for wireless sensor networks,” IEEE Transactions on Wireless
Communications, vol. 12, no. 2, pp. 850–861, 2013.

[12] L. Kong, M. Xia, X.-Y. Liu et al., “Data loss and reconstruction
in wireless sensor networks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 25, no. 11, pp. 2818–2828, 2014.

[13] Y. Zhang, M. Roughan, W. Willinger, and L. Qiu, “Spatio-
temporal compressive sensing and internet traffic matrices,”
ACMSIGCOMMComputer Communication Review, vol. 39, no.
4, pp. 267–278, 2009.

[14] C. Luo, F. Wu, J. Sun, and C. W. Chen, “Compressive data gath-
ering for large-scale wireless sensor networks,” in Proceedings of
the 15th Annual International Conference on Mobile Computing
and Networking, pp. 145–156, ACM, September 2009.

[15] D. Ebrahimi andC. Assi, “A distributedmethod for compressive
data gathering in wireless sensor networks,” IEEE Communica-
tions Letters, vol. 18, no. 4, pp. 624–627, 2014.

[16] K. Yi, J. Wan, L. Yao, and T. Bao, “Partial matrix completion
algorithm for efficient data gathering in wireless sensor net-
works,” IEEE Communications Letters, vol. 19, no. 1, pp. 54–57,
2015.

[17] Intel Lab Data, http://db.lcs.mit.edu/labdata/labdata.html.
[18] K. Yi, R. Feng, N. Yu, and P. Chen, “PARED: a testbed

with parallel reprogramming and multi-channel debugging for
WSNs,” in Proceedings of the IEEE Wireless Communications
and Networking Conference (WCNC ’13), pp. 4630–4635, IEEE,
Shanghai, China, April 2013.

[19] S. Boyd andL.Vandenberghe,ConvexOptimization, Cambridge
University Press, Cambridge, UK, 2009.



International Journal of Distributed Sensor Networks 11

[20] A. Beck and M. Teboulle, “A fast iterative shrinkage-
thresholding algorithm for linear inverse problems,” SIAM
Journal on Imaging Sciences, vol. 2, no. 1, pp. 183–202, 2009.

[21] K.-C. Toh and S. Yun, “An accelerated proximal gradient
algorithm for nuclear norm regularized linear least squares
problems,” Pacific Journal of Optimization, vol. 6, no. 3, pp. 615–
640, 2010.

[22] S. Ji and J. Ye, “An accelerated gradient method for trace norm
minimization,” in Proceedings of the 26th Annual International
Conference on Machine Learning (ICML ’09), pp. 457–464,
ACM, June 2009.

[23] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value thresh-
olding algorithm for matrix completion,” SIAM Journal on
Optimization, vol. 20, no. 4, pp. 1956–1982, 2010.

[24] G. H. Golub and C. F. van Loan, Matrix Computations, vol. 3,
JHU Press, 2012.

[25] P. Tseng, “On accelerated proximal gradient methods for
convex-concave optimization,” submitted to The SIAM Journal
on Optimization.

[26] R. M. Larsen, “Propack-software for large and sparse SVD cal-
culations,” 2004, http://sun.stanford.edu/∼rmunk/PROPACK/.

[27] Z. Lin,M.Chen, andY.Ma, “The augmented lagrangemultiplier
method for exact recovery of corrupted low-rank matrices,”
http://arxiv.org/abs/1009.5055.

[28] S. Ma, D. Goldfarb, and L. Chen, “Fixed point and Bregman
iterative methods for matrix rank minimization,”Mathematical
Programming, vol. 128, no. 1-2, pp. 321–353, 2011.

[29] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrish-
nan, “An application-specific protocol architecture for wireless
microsensor networks,” IEEE Transactions onWireless Commu-
nications, vol. 1, no. 4, pp. 660–670, 2002.

[30] J. Luo, L. Xiang, and C. Rosenberg, “Does compressed sensing
improve the throughput of wireless sensor networks?” in
Proceedings of the IEEE International Conference on Communi-
cations (ICC ’10), pp. 1–6, IEEE, May 2010.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


