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We address the problem of DOA estimation in positioning of nodes in wireless sensor networks. The Stochastic Maximum
Likelihood (SML) algorithm is adopted in this paper. The SML algorithm is well-known for its high resolution of DOA estimation.
However, its computational complexity is very high because multidimensional nonlinear optimization problem is usually involved.
To reduce the computational complexity of SMLestimation,we do the followingwork. (1)Wepoint out the problems of conventional
SML criterion and explain why and how these problems happen. (2) A local AM searchmethod is proposed which could be used to
find the local solution near/around the initial value. (3) We propose an algorithm which uses the local AM search method together
with the estimation of DML orMUSIC as initial value to find the solution of SML. Simulation results are shown to demonstrate the
effectiveness and efficiency of the proposed algorithms. In particular, the algorithmwhich uses the local AMmethod and estimation
of MUSIC as initial value has much higher resolution and comparable computational complexity to MUSIC.

1. Introduction

Wireless sensor networks (WSNs) are commonly employed
for many applications including environmental protection,
structural monitoring, and passive localization and tracking.
Positioning is a basic problem for most wireless sensor net-
work applications [1–3].

There are mainly two categories of WSNs node local-
ization methods, that is, range-based localization scheme
and range-free localization scheme. The accuracy of the
former is obviously higher than that of the latter. Range-
based localization methods include many techniques such
as received signal strength indicator (RSSI), time of arrival
(TOA), time difference of arrival (TDOA), and direction of
arrival (DOA) [4–6]. This paper mainly focuses on the DOA
estimation algorithm in WSNs.

To ensure the timeliness and accuracy of the system,
the DOA estimation algorithmmust have low computational
complexity and high DOA resolution. Multiple Signal Classi-
fication (MUSIC) [7, 8] and Estimation of Signal Parameters

via Rotational Invariance Techniques (ESPRIT) [9] are two
widely employed algorithms for DOA estimation in many
communication systems [6, 10, 11] because the resolution
of them is acceptable in some cases and the computational
complexity is low enough such that timeliness of the system
can be guaranteed. However, these two algorithms cannot
deal with coherent signals directly which happens, for exam-
ple, in multipath propagation in real environment. In this
case, preprocessing techniques such as spatial smoothing [12]
and matrix reconstruction [13] methods are needed. These
techniques have to reduce the rank of data covariance matrix
as a precondition which means that the accuracy or the array
aperture would be lost [14]. Furthermore, the resolution of
MUSIC and ESPRIT decreases greatly when Signal-to-Noise
Ratio (SNR) gets lower for both coherent and noncoherent
signals cases.

In this paper, we adopt the Stochastic Maximum Like-
lihood (SML) algorithm for DOA estimation. The SML
algorithm is much more superior to MUSIC and ESPRIT. It
can deal with small number of snapshots. It can also handle
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coherent signals without any preprocessing technique and the
resolution is much higher than that of MUSIC and ESPRIT.
However, the estimation of SML is a multidimensional non-
linear optimization problem. Therefore, its computational
complexity is usually very high. That is the reason why
the SML algorithm has not been adopted in practical sys-
tems.

For multidimensional nonlinear optimization problem,
many estimation algorithms have been proposed such as
Alternating Projection (AP) [15], Expectation Maximization
(EM) [16], Space Alternating Generalized EM (SAGE) [17],
genetic algorithm [18], ant colony algorithm [19], and Particle
Swarm Optimization (PSO) [20, 21]. They are all iterative
techniques.The computational complexity of SMLwith these
algorithms is still much higher than the estimation ofMUSIC
or ESPRIT. The main drawback of these algorithms is that
they could be trapped into a local maximum.

In this paper, we focus on how to reduce the computa-
tional complexity of SML estimation of DOA.

For SML criterion, there are two versions. the first one
is proposed by Bohme [22]. Many literatures [23, 24] have
pointed out that, in the formulation of this criterion, an
important constraint that the estimated signal covariance
matrix must be nonnegative definite was omitted. As a result,
the global solution of this SML criterion is not unique in
some cases. We call this version conventional SML. With
consideration of this constraint, [23] has derived a new SML
criterion. This criterion shows excellent resolution of DOA
estimation and its global solution is always unique. We call it
Exact SML.The Exact SML criterion involves large amount of
eigendecomposition. Its computational complexity is much
higher than that of conventional SML and it is hard to exploit
new efficient algorithms for the estimation.

Based on the conventional SML criterion, firstly we
impose the omitted constraint to get the solution space.
Then, it is clear to distinguish whether the global solution
is optimal or not. We find that the optimal or suboptimal
solution of conventional SML does exist, but in some cases
the optimal solution is not the global one. From large amount
of simulation and deep analysis of the intrinsic relationship
between DML and SML, we find that the reason is that the
distinct part between DML and conventional SML criteria
leads to the problem. Based upon the analysis above, firstly
we propose a local Alternating Minimization (AM) search
method which can find the local solution near/around the
initial value. Since the solution of DML is always unique and
it is near/around the true DOA (also the solution of Exact
SML), the solution of DML becomes the best initial value to
get the optimal or suboptimal solution of conventional SML
criterion. Simulation results show the validity of the proposed
algorithm. The computational complexity of the proposed
algorithm is also reduced greatly.

To reduce computational complexity further, we use the
solution of MUSIC as initialization and then use the local
AM method to find the optimal or suboptimal solution of
conventional SML. From simulation results, we can find that
this algorithm shows much higher resolution than MUSIC
and its computational complexity is comparable to MUSIC.
Thus, this proposed algorithm is of great practical value.

The rest of this paper is organized as follows. In Section 2,
we introduce the problem of DOA and the formulation of
DML and conventional SML. In Section 3, we show the
problems of conventional SML and propose two algorithms
to get the optimal or suboptimal solution of conventional
SML criterion. Simulation results are shown in Section 4 and
conclusion is drawn in Section 5.

2. System Model and Problem Formulations

Without loss of generality, consider that there are 𝑝 sensors
and 𝑞 narrow-band sources far from the array, centered
around a known frequency, impinging on the sensor array
from distinct directions 𝜃

1
, 𝜃
2
, . . . , 𝜃

𝑞
, with respect to a

reference point, respectively.
Note that the received signals may be coherent because

of multipath propagation. In the case where there are signals
coherent, the independent signal number is less than 𝑞. The
task of DOA estimation is to detect all 𝑞 directions. Also note
that here we assume that the signals are narrow-band. For
wideband signals, the CSM algorithms [25] can be used as
a preprocessing to change into the narrow-band.

Furthermore, we assume that the number of sensors
should be greater than the number of received signals; that
is, 𝑝 > 𝑞 and all the sensors are omnidirectional and not
coupled.

2.1. Problem Formulation of DOA. Using complex envelope
representation, the 𝑝-dimensional vector received by the
array can be expressed as

x (𝑡) =

𝑞

∑

𝑘=1

a (𝜃
𝑘
) 𝑠
𝑘
(𝑡) + n (𝑡) , (1)

where 𝑠
𝑘
(𝑡) is the 𝑘th signal received at a certain reference

point. n(𝑡) is a 𝑝-dimensional noise vector. a(𝜃) is the
“steering vector” of the array towards direction 𝜃, which is
presented as

a (𝜃) = [𝑎
1
(𝜃) 𝑒
−𝑗𝜔0𝜏1(𝜃), . . . , 𝑎

𝑝
(𝜃) 𝑒
−𝑗𝜔0𝜏𝑝(𝜃)]

𝑇

, (2)

where 𝑎
𝑖
(𝜃) is the amplitude response of the 𝑖th sensor to

a wave-front impinging from the direction 𝜃. 𝜏
𝑖
(𝜃) is the

propagation delay between the 𝑖th sensor and the reference
point. The superscript 𝑇 denotes the transpose of a matrix.

In the matrix notation, (1) can be rewritten as

x (𝑡) = A (Θ) s (𝑡) + n (𝑡) , (3)

A (Θ) = [a (𝜃
1
) a (𝜃

2
) ⋅ ⋅ ⋅ a (𝜃

𝑞
)] , (4)

s (𝑡) = [𝑠1 (𝑡) 𝑠
2
(𝑡) ⋅ ⋅ ⋅ 𝑠

𝑞
(𝑡)]
𝑇

, (5)

Θ = {𝜃1 𝜃
2

⋅ ⋅ ⋅ 𝜃
𝑞} . (6)

Suppose that the received vectors x(𝑡) are sampled at 𝑁
time instants (snapshots) 𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑁
and define the matrix

of the sampled data as

X = [x (𝑡
1
) x (𝑡

2
) ⋅ ⋅ ⋅ x (𝑡

𝑁
)] . (7)
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The problem of DOA estimation is to be stated as follows.
Given the sampled dataX, obtain a set of estimated directions

Θ̂ = {𝜃
1

𝜃
2

⋅ ⋅ ⋅ 𝜃
𝑞
} (8)

of 𝜃
1
, 𝜃
2
, . . . , 𝜃

𝑞
.

For DOA estimation, we have the following common
assumptions.
(A1) The array configuration is known and any 𝑝 steering

vectors for different 𝑞 directions are linearly indepen-
dent; that is, the matrix A(Θ) has full rank.

(A2) n(𝑡
𝑖
) are statistically independent samples from a

complexGaussian randomvector with zeromean and
the covariancematrix 𝜎2I

𝑝
, where I

𝑝
is a𝑝×𝑝 identity

matrix and 𝜎
2 is an unknown real number.

(A3) s(𝑡
𝑖
) satisfy the condition

rank [S] = rank [s (𝑡1) s (𝑡
2
) ⋅ ⋅ ⋅ s (𝑡

𝑁
)] = 𝑟 (≤ 𝑞) . (9)

S is the signal covariance matrix. In the case of 𝑟 < 𝑞,
the signals are coherent or fully correlated. s(𝑡

𝑖
) are

independent of n(𝑡
𝑗
) for any 𝑖 and 𝑗.

(A4) 𝑞 < 𝑝, 𝑝, 𝑞, and 𝑟 are known.The snapshots𝑁 should
be greater than 𝑟.

(A5) 𝑝, 𝑞, and 𝑟 satisfy the condition that a unique solution
of DOA exists in the noise-free case. When the
direction 𝜃 is expressed by a single real parameter,
the sufficient condition of the uniqueness is given by
𝑞 < 2𝑟𝑝/(2𝑟 + 1) and the necessary condition is given
by 𝑞 ≤ 2𝑟𝑝/(2𝑟 + 1) [26].

2.2. Maximum Likelihood Estimation. There are two ML
algorithms. One is Deterministic ML, and the other is
Stochastic ML. Difference between them lies in their models
of signals. The solution of DML is always unique when a
unique solution exists, while the solution of the conventional
SML is not unique in some cases. Our first task is to reveal the
reasonwhy andhow the problemshappen in the conventional
SML.As a contrast, we introduce these two algorithms briefly.

2.2.1. Deterministic ML (DML). The DML estimator is
derived by imposing the following assumption on the signals
in addition to (A1)–(A5):
(A6D) s(𝑡

𝑖
) are unknown deterministic parameters.

The DML criterion according to [15] is given by

Θ̂DML = argmin
Θ

𝐿DML (Θ) ,

𝐿DML (Θ) = tr {P⊥
𝐴
R̂} ,

(10)

where

P
𝐴
= A (Θ) (A𝐻 (Θ)A (Θ))

−1

A𝐻 (Θ) ,

P⊥
𝐴
= I − P

𝐴
,

R̂ =
1

𝑁
XX𝐻.

(11)

P
𝐴
is the projection operator onto the space spanned by

the columns of the matrix A(Θ). 𝐻 denotes the Hermitian
conjugate. R̂ is the sample covariance matrix of the sampled
data.

2.2.2. Stochastic ML (SML). The SML criterion of DOA is
formulated under the following assumption:

(A6S) s(𝑡
𝑖
) are statistically independent samples from a

complexGaussian randomvector with zeromean and
a certain covariance matrix S with rank{S} = 𝑟.

According to the assumptions (A2), (A3), and (A6S), x(𝑡)
is modeled as a 𝑝-dimensional complex Gaussian random
vector with zero mean and the covariance matrix R:

R = 𝐸 {x (𝑡
𝑖
) x (𝑡
𝑗
)
𝐻

(𝑡)} = A (Θ) SA𝐻 (Θ) + 𝜎
2I
𝑝
, (12)

where S is the signal covariance matrix and it must be
nonnegative definite.

The joint density function of the sampled data X is given
by

𝑓SML (X) =

𝑀

∏

𝑖=1

1

det [𝜋R]
× exp {x (𝑡

𝑖
)
𝐻R−1x (𝑡

𝑖
)} . (13)

Taking the log function of (13) and ignoring the constant
term, the log-likelihood function of the model R in (12) with
respect to the unknown parameters Θ, S, and 𝜎

2 is

𝐿 (Θ, S, 𝜎2)

= −𝑀(ln det {R} +
1

𝑁

𝑁

∑

𝑖=1

x (𝑡
𝑖
)
𝐻R−1x (𝑡

𝑖
)) .

(14)

The second term of (14) can be written into a trace form of
matrix; then, (14) becomes

𝐿 (Θ, S, 𝜎2) = −𝑀(ln det {R} + tr {R−1R̂}) , (15)

where the sample covariance matrix R̂ is given as above.
The SML estimation of DOA is to be stated as the

problem to findΘ which maximizes (15) under the following
conditions:

(C1) Θ = {𝜃1 𝜃
2

⋅ ⋅ ⋅ 𝜃
𝑞} ∈ U. U is a set of all possible Θ

determined by the array configuration.
(C2) S is nonnegative definite.
(C3) 𝜎2 is a nonnegative real number.

According to [22, 24, 27], when condition (C2) is omitted,
the estimation of 𝜎̂2 and Ŝ is shown as follows:

𝜎̂
2
=

1

𝑝 − 𝑞
tr {P⊥
𝐴
R̂} ,

Ŝ = A⋆ (R̂ − 𝜎̂
2I) (A⋆)𝐻 ,

(16)

where

A⋆ = (A𝐻 (Θ)A (Θ))
−1

A𝐻 (Θ) . (17)



4 International Journal of Distributed Sensor Networks

Then, the conventional SML criterion [22] is shown as

Θ̂Conv. = argmin
Θ

{𝜎̂
2(𝑝−𝑞) det {A⋆R̂A}} . (18)

As [23, 24] have pointed out, the above conventional
SML criterion is formulated by considering that S is a set
of Hermitian matrices, and not a set of Hermitian positive
(semi)definite matrices as it should be. In other words,
condition (C2) is omitted. As a result, the global solution of
(18) is not unique [23] in some cases.

To overcome this defect, [23] has derived a new SML
criterion with consideration of condition (C2). This criterion
shows excellent resolution of DOA estimation and its global
solution is always unique. It is called Exact SML. The Exact
SML criterion involves large amount of eigendecomposition.
Its computational complexity is much higher than that of
conventional SML and it is hard to exploit new efficient
algorithms for the estimation. Therefore, in this paper, we
try to find out how these problems of the conventional SML
happen and whether there are efficient methods to get the
optimal or suboptimal solutions of SML.

3. Properties of Conventional SML and
Efficient Algorithms

In this section, firstly we define a new model of observation
data, and we express the DML and SML criterions in unified
forms. After that we explain why the global solution of con-
ventional SML is not unique in some cases. Then, we analyze
the properties of all the local solutions of conventional SML.
Finally we propose two effective and efficient algorithms to
find the optimal or suboptimal solution of SML.

3.1. Unified Forms of DML and SML. Model (1) or (3) can be
rewritten as follows:

x (𝑡) = V
𝑆
(Θ) x
𝑆
(𝑡) + V

𝑁
(Θ) x
𝑁
(𝑡) , (19)

where V
𝑆
(Θ) is a 𝑝 × 𝑞 matrix of which columns form an

orthonormal system of the signal subspace, which is spanned
by {a(𝜃

1
), a(𝜃
2
), . . . , a(𝜃

𝑞
)}; V
𝑁
(Θ) is a 𝑝 × (𝑝 − 𝑞) matrix

of which columns form an orthonormal system of the noise
subspace, which is the orthogonal complement of the signal
subspace. x

𝑆
(𝑡) is the signal component of x(t) in the signal

subspace, and x
𝑁
(𝑡) is the noise component of x(t) in the

noise subspace.
Using a square root matrix of a nonnegative definite

matrix (for a nonnegative definite matrix B, the square root
matrixB1/2 is defined as amatrixC, which satisfiesB = CC𝐻.
The following notations are used: (B1/2)𝐻 = B𝐻/2, (B1/2)−1 =
B−1/2, and ((B1/2)𝐻)−1 = ((B1/2)−1)𝐻 = B−𝐻/2, and we have
(B−1)1/2 = B−𝐻/2), V

𝑆
(Θ) is presented as

V
𝑆
(Θ) = A (Θ) (A𝐻 (Θ)A (Θ))

−𝐻/2

. (20)

From the above definition, we have

V𝐻
𝑆
(Θ)V

𝑆
(Θ) = I,

V𝐻
𝑁
(Θ)V

𝑁
(Θ) = I,

V
𝑆
(Θ)V𝐻

𝑆
(Θ) = P

𝐴
,

V
𝑁
(Θ)V𝐻

𝑁
(Θ) = I − P

𝐴
= P⊥
𝐴
.

(21)

From (19) and the definition of V
𝑆
and V

𝑁
, we have

R
𝑆𝑆

= V𝐻
𝑆
(Θ)RV

𝑆
(Θ) ,

R
𝑁𝑁

= V𝐻
𝑁
(Θ)RV

𝑁
(Θ) ,

(22)

where R
𝑆𝑆

and R
𝑁𝑁

are the covariance matrixes for the
components of x(𝑡) in the signal subspace and noise subspace,
respectively.

Define the unitary matrix

G (Θ) = [V𝑆 (Θ) V
𝑁
(Θ)] . (23)

Then, the covariance matrix R can be represented as

R = V
𝑆
(Θ)PV𝐻

𝑆
(Θ) + 𝜎

2I
𝑝

= G (Θ) [
R
𝑆𝑆

0

0 𝜎
2I
𝑝−𝑞

]G𝐻 (Θ) ,

(24)

where P = (A𝐻(Θ)A(Θ))
𝐻/2S(A𝐻(Θ)A(Θ))

1/2 andR
𝑆𝑆

= P+

𝜎
2I
𝑞
is a 𝑞×𝑞Hermitian matrix. Since Smust be nonnegative

definite,Pmust be nonnegative definite.Then, condition (C2)
becomes

R
𝑆𝑆

− 𝜎
2I
𝑞
≥ 0. (25)

The DML criterion can be rewritten as

Θ̂DML = argmin
Θ

tr {P⊥
𝐴
R̂} (26)

= argmin
Θ

tr {V
𝑁
(Θ)V𝐻

𝑁
(Θ) R̂} (27)

= argmin
Θ

tr {V𝐻
𝑁
(Θ) R̂V

𝑁
(Θ)} (28)

= argmin
Θ

tr {R̂
𝑁𝑁

} . (29)

Similarly, the SML criterion is rewritten as

Θ̂Conv. = argmin
Θ

(det R̂
𝑆𝑆
) (

1

𝑝 − 𝑞
(tr {R̂

𝑁𝑁
})
𝑝−𝑞

) . (30)

3.2. Problems of Conventional SML. Since in the formulation
of conventional SML condition (C2) is omitted, in this
subsection, firstly we have an important definition of solution
space. Define

SR̂ = {Θ | Θ ∈ U, (R̂
𝑆𝑆

(Θ) − 𝜎̂
2
(Θ) I) ≥ 0} . (31)

We call this area the SML solution space.
Obviously, the global solution of (30) which locates in

the solution space is the optimal solution of SML. The global
solutionwhich locates out of the solution space is not optimal.
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In (30), define

𝐿Conv. (Θ) = 𝐿
𝑆
(Θ) 𝐿
𝑁
(Θ) , (32)

where

𝐿
𝑆
(Θ) = det {R̂

𝑆𝑆
(Θ)} ,

𝐿
𝑁
(Θ) = (

1

𝑝 − 𝑞
(tr {R̂

𝑁𝑁
})
𝑝−𝑞

) .

(33)

Next, we analyze the nonuniqueness of global solution of
conventional SML criterion in two cases.

3.2.1. Noise-Free Case. Because of assumption (A5), a unique
solution of DOA exists. As proved in the Appendix, the
DML estimator has a unique solution in the noise-free case.
Therefore, the DML estimator provides the true directions of
arrival Θ.

In the noise-free case, 𝐿conv.(Θ) = 0 holds when 𝐿
𝑆
(Θ) =

0 or 𝐿
𝑁
(Θ) = 0. Since 𝐿

𝑁
(Θ) = 0 is equivalent to 𝐿DML(Θ) =

0, a set of the true directions Θ is one of the solutions.
Next, we consider the question if there exists Θ̂ such that

𝐿
𝑆
(Θ̂) = 0.
Since

detR
𝑆𝑆

(Θ̂) =

󵄨󵄨󵄨󵄨󵄨
det {A𝐻 (Θ̂)A (Θ)}

󵄨󵄨󵄨󵄨󵄨

2

det S

det {A𝐻 (Θ̂)A (Θ̂)}
, (34)

𝐿
𝑆
(Θ̂) = 0 holds when

det S = 0 or

det {A𝐻 (Θ̂)A (Θ)} = 0

(35)

holds. In the former case, that is, the case of 𝑟 < 𝑞, 𝐿conv.(Θ̂) ≡

0 holds for any Θ̂. This indicates that the SML estimation
fails completely. If 𝜎

2 is not zero but very small, then the
same failure does not happen. Instead, the latter case, that
is, det{A𝐻(Θ̂)A(Θ)} = 0, becomes a dominant factor which
makes 𝐿

𝑆
(Θ̂) or 𝐿conv.(Θ̂) small.

The remaining question is whether there exists Θ̂ such
that det{A𝐻(Θ̂)A(Θ)} = 0. To illustrate this question, we
do numerical simulations. We consider the case of uniform
linear arrays. The steering vector for a uniform linear array
composed of omnidirectional sensors is represented as

a (𝜃) = [1 𝑒
−𝑗𝜙(𝜃)

⋅ ⋅ ⋅ 𝑒
−𝑗(𝑝−1)𝜙(𝜃)

]
𝑇

,

𝜙 (𝜃) =
2𝜋Δ

𝜆
sin 𝜃,

(36)

where 𝜆 is the wavelength of signals impinging on the
array and Δ is the sensor spacing between the adjacent two
sensors. As a necessary condition that a unique direction 𝜃 is
determined by the phase parameter 𝜙,Δ ≤ 𝜆/2 is imposed on
the array configuration.

Numerical solutions of (35) are shown in Figure 1, where
the sensor spacing Δ = 𝜆/2. In Figure 1(b), 𝜃

3
is held fixed to

−60∘. Other parameters of simulations are shown in figure
caption.

From Figure 1, it can be confirmed that there exist an
infinite number of Θ̂ such that det{A𝐻(Θ̂)A(Θ)} = 0 for
uniform linear arrays.We have to note that these are solutions
of the conventional SML criterion in noise-free case, but
obviously they are not the adequate solutions. From the
simulation above, it can be stated that the conventional SML
is not unique in the noise-free case.

3.2.2. Noisy Case. In noisy case, to analyze the nonunique-
ness of the global solution of conventional SML, we do
simulations to plot all of the local solutions of it. In Figure 2,
we show two samples.The simulations are done with uniform
linear arrays of omnidirectional sensors which is the same
as above. The true DOA are 0∘ and 8∘. The scenarios are
described in captions. In Figure 2, the shadow area is the
solution space according to (31). Obviously, the solution
which locates in this area can guarantee condition (C2). The
crosses represent all local solutions.

In Figure 2(a), the local solution point A locates in
the solution space and it is the closest to the true DOA.
Furthermore, we find that this solution coincides with the
solution of Exact SML [23]. Therefore, point A is the optimal
solution of SML. However, in fact, the local solution point
B is the global solution of conventional SML. As a result,
global search methods fail in this case of conventional SML
estimation.

In Figure 2(b), point C is the solution of exact SML and
there is no local solution of conventional SML in the solution
space. It means that all the solutions can not guarantee
condition (C2). In fact, this case rarely happens only when
the SNR is low, for example, when SNR = 0 dB. Point E is the
global solution of conventional SML although it is obviously
not the adequate solution. Therefore, global search methods
also fail in this case.

Note that although point D locates out of the solution
space, it is the nearest local solution to the true DOA. We
call this local solution the suboptimal solution of SML. Com-
paring the criterions of DML and conventional SML, that is,
(29) and (30), we can find that the minimization of DML
criterion equals the minimization of 𝐿

𝑁
(Θ). Therefore, the

distinct part between DML and conventional SML criterion,
that is, 𝐿

𝑆
(Θ), leads to the problem. In fact, from Figure 2 we

can find that all the local solutions except for the optimal and
suboptimal solutions appear around the orbits ofΘ for which
𝐿
𝑆
(Θ̂) = 0 in noise-free case.

3.3. Exact SML Estimation. From the analysis above, we can
know that the essential reason of the failure of conventional
SML is that its criterion is formulated without considering
condition (C2). The main idea of the exact formulation of
SML is how to guarantee condition (C2) while maximizing
the log-likelihood function (15).

According to [23], the exact SML is shown as follows.
Let 𝑙
1
(Θ) ≥ 𝑙

2
(Θ) ≥ ⋅ ⋅ ⋅ ≥ 𝑙

𝑞
(Θ) be eigenvalues of R

𝑆𝑆
(Θ):

Θ̂ = argmax
Θ

𝐿
𝜂(Θ)

(Θ) , (37)
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𝐿
𝜂(Θ)

(Θ)

= −𝑁 ln{(

𝜂(Θ)

∏

𝑘=1

𝑙
𝑘
(Θ)) ⋅ (𝜎

2

𝜂(Θ)
(Θ))
𝑝−𝜂(Θ)

} ,

(38)

where the index 𝜂(Θ) is found as a unique index in
{0, 1, . . . , 𝑞} which satisfies one of the following:

𝜎
2

𝜂(Θ)
(Θ) ≥ 𝑙

1
(Θ) for 𝜂 (Θ) = 0,

𝑙
𝜂
(Θ) > 𝜎

2

𝜂(Θ)
(Θ) ≥ 𝑙

𝜂(Θ)+1

for 𝜂 (Θ) = 1, 2, . . . , 𝑞 − 1,

𝑙
𝑞
(Θ) > 𝜎

2

𝜂(Θ)
(Θ) for 𝜂 (Θ) = 𝑞

(39)

and 𝜎
2

𝑘
(Θ) for 𝑘 = 0, 1, 2, . . . , 𝑞 are given as

𝜎
2

𝑘
(Θ) =

1

𝑝 − 𝑘
(tr {R̂} −

𝑘

∑

𝑖=1

𝑙
𝑖
(Θ)) . (40)



International Journal of Distributed Sensor Networks 7

Note that the index 𝜂(Θ) can be considered as the rank of
S which guarantees that Ŝ is nonnegative definite. In fact, the
conventional SML criterion is formulated under the model
that rank{S} = 𝑞 (this can be verified such that if we
impose 𝜂(Θ) = 𝑞 to (37), the exact SML criterion is the
same as the conventional SML criterion). However, when
SNR is low or snapshots are small (the failure case), the
estimated Ŝ becomes coherent which can not guarantee that
Ŝ is nonnegative definite.Therefore, themodel that rank{S} =
𝑞 is not suitable in this case and there is only suboptimal
solution for conventional SML criterion.

3.4. Efficient Algorithms for Conventional SML Estimation.
From the analysis above, we can obtain the following two
important properties of conventional SML criterion:

(1) Global search methods fail in conventional SML
estimation.

(2) The optimal or suboptimal solution of conventional
SML does exist in all local solutions.

Therefore, the next problem is how to find the optimal or
suboptimal solution of conventional SML. Since global search
methods fail in DOA estimation of conventional SML, here
we propose a local search method. This local search method
is based on the Alternating Minimization (AM) algorithm.

3.4.1. Local AM Algorithm. The local AM algorithm contains
two phases:

(1) Initialization phase: determine a set of initial values of
directions.

(2) Convergence phase: repeat the following updating
process until all parameters are converged. At each
updating process, let one parameter, say 𝜃

𝑘
, be vari-

able and let all other parameters be held fixed. Find 𝜃
𝑘

minimizing the criterion in (30) by one-dimensional
local search with respect to 𝜃

𝑘
. Change the index 𝑘 of

the parameter to be updated into (𝑘 mod 𝑞) + 1.

Note that in the convergence phase the parameter is
updated by one-dimensional local search. Therefore, the
search result is a local minimum which is near/around the
initial value. As a result, the initial value is very important.
Furthermore, since local search method is used, the compu-
tational complexity of this process is low.

3.4.2. Efficient Algorithms. As we have analyzed above, the
solution of DML is unique (see the proof in the Appendix).
The distinct part between DML and conventional SML
criterions leads to the problem of conventional SML but it
also makes the optimal solution of conventional SML have
higher resolution than that of DML. It can be considered
that the solution of DML is just near/around the optimal
or suboptimal solution of SML. Then, the solution of DML
becomes a best initial value.

Therefore, for conventional SML estimation, we propose
the first algorithm which uses the local AMmethod together

with the solution of DML as initial value. The effectiveness
of this proposed algorithm can be verified in the simulation
section.

For DML estimation, it is still a multidimensional non-
linear optimization problem. Its computational complexity is
still much higher than that of MUSIC. Then, an inspiration
comes to us that why do not we use the solution of MUSIC
as initial value since the solution of MUSIC is unique and
it is also near/around the optimal or suboptimal solution of
conventional SML.Then, its computational complexity could
be greatly decreased.

Therefore, we propose the second algorithm which uses
the local AMmethod together with the solution ofMUSIC as
initial value. Next we show the effectiveness and efficiency of
the proposed two algorithms through simulations.

4. Simulations

In this section, simulations are shown to demonstrate the
effectiveness and efficiency of the proposed algorithms by
comparing with Exact SML and MUSIC.

In the simulations, the array configuration is a uniform
linear array composed of omnidirectional sensors, of which
steering vector is represented as

a (𝜃) = [1 𝑒
−𝑗𝜙(𝜃)

⋅ ⋅ ⋅ 𝑒
−𝑗(𝑝−1)𝜙(𝜃)

]
𝑇

,

𝜙 (𝜃) =
2𝜋Δ

𝜆
sin 𝜃,

(41)

where 𝜆 is the wavelength of signals impinging on the
array and Δ is the sensor spacing between the adjacent two
sensors. As a necessary condition that a unique direction 𝜃 is
determined by the phase parameter 𝜙,Δ ≤ 𝜆/2 is imposed on
the array configuration. In our simulations, Δ = 𝜆/2.

The SNR is defined as

SNR
𝑘
= 10 log

10

𝐸 [
󵄨󵄨󵄨󵄨𝑠𝑘 (𝑡)

󵄨󵄨󵄨󵄨
2

]

𝜎2
. (42)

All signals are assumed to have the identical SNR. The Root-
Mean-Square-Error (RMSE) is defined as

RMSE = √
1

𝑞𝑁

𝑞

∑

𝑘=1

𝑁

∑

𝑛=1

󵄨󵄨󵄨󵄨󵄨
𝜃
𝑘,𝑛

− 𝜃
𝑘

󵄨󵄨󵄨󵄨󵄨

2

, (43)

where 𝜃
𝑘,𝑛

is the estimation of 𝜃
𝑘
at the 𝑛th trial. We do

simulations inMonte Carlo method and in each case we have
done 100 trials.

In all figures, “Exact SML” represents the Exact SML
criterion and the estimation algorithm is the original AM
algorithm [15]. “MUSIC” denotes the MUSIC algorithm [7].
Note that, for coherent cases, the spatial smoothing [12]
method is used. “DML + Local” is the proposed algorithm
one which uses DML solution as initial value and local AM
method of the estimation for conventional SML criterion.
In the estimation of DML, we use the AP algorithm [15].
“MUSIC + Local” represents the proposed algorithm two
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Figure 3: For incoherent case: 𝑝 = 3, 𝑞 = 2, 𝑟 = 2, and𝑁 = 300. The true DOA are 0∘ and 10∘.
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Figure 4: For coherent case: 𝑝 = 4, 𝑞 = 2, 𝑟 = 1, and𝑁 = 300. The true DOA are 0∘ and 10∘.

and the only difference to “DML + Local” is that it uses the
estimation ofMUSIC as initial value. “Operations” represents
the summation of all the complex additions, subtractions,
multiplications, and divisions in each algorithm, that is, the
computational complexity.

Figure 3 is the case that all the received signals are
independent. Figures 4 and 5 are the cases that there are
signals coherent.The scenarios are described in each caption.

Figures 3(a), 4(a), and 5(a) show the resolution compari-
son of each algorithm. We can find the following:
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Figure 5: For coherent case: 𝑝 = 6, 𝑞 = 4, 𝑟 = 3, and𝑁 = 300. The true DOA are 0∘ and 10∘ and 20∘ and 30∘.

(1) “Exact SML” has the highest resolution while
“MUSIC” is the worst. The resolutions of “DML +
Local” and “MUSIC + Local” are almost the same.

(2) The resolutions of “DML + Local” and “MUSIC +
Local” become the same as “Exact SML” when SNR
grows to about 10 or 15 dB.

These points mean that the proposed two algorithms outper-
form the estimation ofMUSIC in resolution and they can find
the optimal solution of SML when SNR grows to about 10 or
15 dB.

Figures 3(b), 4(b), and 5(b) show the comparison of
computational complexity between each algorithm. We can
find the following:

(1) “Exact SML” has the highest computational com-
plexity. Its computational complexity grows heavily
when the number of received signals (𝑞) becomes
larger because it is amultidimensional nonlinear opti-
mization problem and its computational complexity
depends on the dimension while AM algorithm is
used.

(2) “MUSIC” has the lowest computational complexity.
Its computational complexity does not grow so dra-
matically as “Exact SML” when 𝑞 becomes larger
because it is just a one-dimensional search problem.

(3) “DML + Local” also shows high computational com-
plexity since the estimation of DML is also a multidi-
mensional nonlinear optimization problem.

(4) The computational complexity of “MUSIC + Local” is
comparable to “MUSIC” even when 𝑞 becomes larger
because of the local search AM algorithm.

The similar simulation results are observed in other
scenarios. Therefore, we can conclude that the proposed
two algorithms have good resolutions in DOA estimation
which are better than that of MUSIC. In particular, the
computational complexity of the proposed algorithm two
(MUSIC + Local) is comparable to MUSIC.

5. Conclusions

This paper focused on how to reduce the computational
complexity of SML estimation of DOA in positioning of
nodes in WSNs. To find the optimal or suboptimal solution
of SML, firstly, we proposed a local AM searchmethod which
can find a local minimum around the initial value. Then,
we proposed two algorithms which use a local AM search
method together with solution of DML andMUSIC as initial
value, respectively. Simulation results have shown that the
proposed two algorithms have better resolutions than that
of MUSIC. Furthermore, the proposed algorithm which uses
the local AMsearchmethod togetherwith solution ofMUSIC
as initial value has comparable computational complexity
to MUSIC. Next we will have practical application of this
proposed algorithm in WSNs to check whether it could be
applied in real systems and that is our following work.

Appendix

Uniqueness of the DML Estimation

In assumption (A5), we assume that 𝑞 < 2𝜂𝑝/(2𝜂+1) and𝑀 ≥

𝜂. These conditions guarantee that a unique solution of DOA
exists in the noise-free case [26]. In otherwords, the following
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equation has a unique solution of Θ to the observation data
X when 𝑝, 𝑞,𝑀, and 𝜂 satisfy assumption (A5):

X = A (Θ) S. (A.1)

On the other hand, in the noise-free case, the solution Θ̂

of DML estimator obviously makes the DML estimator reach
the minimum value 0; that is,

𝐿DML (Θ̂) = tr {R
𝑁𝑁

(Θ̂)} = 0. (A.2)

Next, we demonstrate that the solution Θ̂ of (A.1) is
identical to the solution of (A.2).

Proof. Assumption (A1) guarantees that matrixA(Θ) has full
rank. Since

X = A (Θ) S (A.3)

holds, then we have

A𝐻 (Θ)X = A𝐻 (Θ)A (Θ) S. (A.4)

And since A(Θ) is not singular, we get

S = (A𝐻 (Θ)A (Θ))
−1

A𝐻 (Θ)X. (A.5)

Substituting (A.5) into (A.1), we have

X = A (Θ) (A𝐻 (Θ)A (Θ))
−1

A𝐻 (Θ)X. (A.6)

Here, define

PA(Θ) = A (Θ) (A𝐻 (Θ)A (Θ))
−1

A𝐻 (Θ) , (A.7)

where PA(Θ) is the projection matrix onto the signal subspace
spanned by A(Θ). From the definition of V

𝑆
(Θ) and V

𝑁
(Θ),

we have
PA(Θ) = V

𝑆
(Θ)V𝐻

𝑆
(Θ) ,

P⊥A(Θ) = I − PA(Θ) = V
𝑁
(Θ)V𝐻

𝑁
(Θ) ,

(A.8)

where P⊥A(Θ) is the projection matrix onto the noise subspace
which is the orthogonal complement of the signal subspace.
Hence, the solution Θ̂ of (A.1) is identical to the solution of
the following equation:

X = PA(Θ)X. (A.9)

Then, we have

(I − PA(Θ))X = P⊥A(Θ)X = 0. (A.10)

On the other hand, from the definition of R
𝑁𝑁

(Θ̂), it is
obvious that (A.2) is identical to the following equation:

V𝐻
𝑁
(Θ̂)X = 0. (A.11)

Multiply V
𝑁
(Θ̂) in each side of (A.11); then, we have

V
𝑁
(Θ̂)V𝐻

𝑁
(Θ̂)X = P⊥A(Θ̂)X = 0, (A.12)

which is the same as (A.10).
Therefore, the solution Θ̂ of (A.1) is identical to the

solution of (A.2). It demonstrates that the DML estimation
has a unique solution in the noise-free case under assumption
(A5).
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