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The semantics of UTop-𝑘 query is based on the possible world model, and the greatest challenge in processing UTop-𝑘 queries is
the explosion of possible world space. In this direction, several optimized algorithms have been developed. However, uncertain
databases are different in data distributions under different scoring functions, which has significant influence on the performance
of the existing optimizing algorithms. In this paper, we propose two novel algorithms, MSSUTop-𝑘 and quick MSSUTop-𝑘,
for determining the minimum scan scope for UTop-𝑘 query processing. This work is important because before UTop-𝑘 query
processing is started, users hope to know in advance how many and which tuples will be involved in UTop-𝑘 query processing.
Then, they can make a balance between result precision and processing cost. So, it should be the prerequisite for answering UTop-𝑘
queries. MSSUTop-𝑘 can achieve accurate results but is relatively more costly in time complexity. Oppositely, quick MSSUTop-𝑘
can only achieve approximate results but performs better in time cost. We conduct comprehensive experiments to evaluate the
performance of our proposed algorithms and analyze the relationship between the data distribution and the minimum scan scope
of UTop-𝑘 queries.

1. Introduction

Sensor networks have widespread range of applications these
days, such as industrial process monitoring and control,
personal health monitoring, environmental monitoring, and
moving object tracking. The view of sensor network as
a distributed database and the sensor node as a table is
being widely accepted by the database community. However,
data readings collected from sensors are often inevitably
imprecise, and thus they are called uncertain data in academic
circles. The uncertainty in the sensed data can arise from
multiple sources, including measurement errors due to sens-
ing instruments, transmission delay, and discrete sampling
of measurements. Therefore, it is necessary for the sensor
database to record the imprecision and also to take it into
account when the sensor data is processed. Handling the
uncertainty in the data raises great challenges in almost all
aspects of sensor data management.

UTop-𝑘 query is a crucial application in uncertain
database and attracts a lot of attentions in academic circles.

UTop-𝑘 query answer is a tuple vector with the maximum
aggregated probability of being Top-𝑘 across all possible
worlds. Let us take the uncertain databases in Table 1 as
an example. Table 1(a) is a database storing the velocities
of vehicles measured by radar. Each reading is associated
with a confidence level associated with the corresponding
measuring or statistic error. Exclusiveness rules are prior
knowledge and are derived from the specific application.
In this example, event 𝑡

2
is exclusive to 𝑡

3
because the car

Y-245 cannot be at two different speeds at the same time.
Generally, researchers employ possible world (PW) model to
describe uncertain database. All possible instances derived
from the corresponding uncertain database compose the
possible world space. Table 1(b) is the possible worlds space
of Table 1(a).

Given an uncertain database as Table 1(a), according to
the definition of UTop-𝑘 [1], the UTop-2 answer is {𝑡

2
, 𝑡
1
}.

The reason is that the combination of {𝑡
2
, 𝑡
1
}, as the top-2

answer, appears in four possible worlds: PW1, PW2, PW3, and
PW4, and aggregated probability is Pr(PW1) + Pr(PW2) +
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Table 1: Example of uncertain databases and UTop-𝑘 results.

(a) Uncertain database 1

ID Time Radar Plate Speed Conf.

𝑡
1

1145 L
1

X-123 115 1.0
𝑡
2

1150 L
2

Y-245 120 0.7
𝑡
3

1150 L
3

Y-245 80 0.3
𝑡
4

1210 L
4

W-541 90 0.4
𝑡
5

1210 L
5

W-541 110 0.6
𝑡
6

1215 L
6

L-105 105 1.0
t7 1230 L7 L-048 40 0.5
𝑡
8

1230 L
8

L-048 55 0.5
Exclusiveness rules: 𝑡

2
⊕ 𝑡
3
, 𝑡
4
⊕ 𝑡
5
, 𝑡
7
⊕ 𝑡
8

(b) Utop-𝑘 answer based on uncertain database 1

Possible World Top-2 Top-3 Conf.

PW
1
= {𝑡
1
, 𝑡
2
, 𝑡
4
, 𝑡
6
, 𝑡
7
} {𝑡

2
, 𝑡
1
} {𝑡

2
, 𝑡
1
, 𝑡
6
} 0.14

PW
2
= {𝑡
1
, 𝑡
2
, 𝑡
4
, 𝑡
6
, 𝑡
8
} {𝑡

2
, 𝑡
1
} {𝑡

2
, 𝑡
1
, 𝑡
6
} 0.14

PW
3
= {𝑡
1
, 𝑡
2
, 𝑡
5
, 𝑡
6
, 𝑡
7
} {𝑡

2
, 𝑡
1
} {𝑡

2
, 𝑡
1
, 𝑡
5
} 0.21

PW
4
= {𝑡
1
, 𝑡
2
, 𝑡
5
, 𝑡
6
,𝑡
8
} {𝑡

2
, 𝑡
1
} {𝑡

2
, 𝑡
1
, 𝑡
5
} 0.21

PW
5
= {𝑡
1
, 𝑡
3
, 𝑡
4
, 𝑡
6
, 𝑡
7
} {𝑡

1
, 𝑡
6
} {𝑡

1
, 𝑡
6
, 𝑡
4
} 0.06

PW
6
= {𝑡
1
, 𝑡
3
, 𝑡
4
, 𝑡
6
, 𝑡
8
} {𝑡

1
, 𝑡
6
} {𝑡

1
, 𝑡
6
, 𝑡
4
} 0.06

PW
7
= {𝑡
1
, 𝑡
3
, 𝑡
5
, 𝑡
6
, 𝑡
7
} {𝑡

1
, 𝑡
5
} {𝑡

1
, 𝑡
5
, 𝑡
6
} 0.09

PW
8
= {𝑡
1
, 𝑡
3
, 𝑡
5
, 𝑡
6
, 𝑡
8
} {𝑡

1
, 𝑡
5
} {𝑡

1
, 𝑡
5
, 𝑡
6
} 0.09

UTop-2 = ⟨{𝑡
2
, 𝑡
1
}, 0.7⟩; UTop-3 = ⟨{𝑡

2
, 𝑡
1
, 𝑡
5
}, 0.42⟩

(c) Uncertain database 2

ID Time Radar Plate Speed Conf.
𝑡
1

1145 L
1

X-123 115 1.0
𝑡
2

1150 L
2

Y-245 120 0.7
𝑡
3

1150 L
3

Y-245 80 0.3
𝑡
4

1210 L
4

W-541 90 0.4
𝑡
5

1210 L
5

W-541 110 0.6
𝑡
6

1215 L
6

L-105 105 1.0
t7 1230 L7 L-048 117 0.5
𝑡
8

1230 L
8

L-048 55 0.5
Exclusiveness rules: 𝑡

2
⊕ 𝑡
3
, 𝑡
4
⊕ 𝑡
5
, 𝑡
7
⊕ 𝑡
8

(d) Utop-𝑘 answer based on uncertain database 2

Possible World Top-2 Top-3 Conf.
PW
1
= {𝑡
1
, 𝑡
2
, 𝑡
4
, 𝑡
6
, 𝑡
7
} {𝑡

2
, 𝑡
7
} {𝑡

2
, 𝑡
7
, 𝑡
1
} 0.14

PW
2
= {𝑡
1
, 𝑡
2
, 𝑡
4
, 𝑡
6
, 𝑡
8
} {𝑡

2
, 𝑡
1
} {𝑡

2
, 𝑡
1
, 𝑡
6
} 0.14

PW
3
= {𝑡
1
, 𝑡
2
, 𝑡
5
, 𝑡
6
, 𝑡
7
} {𝑡

2
, 𝑡
7
} {𝑡

2
, 𝑡
7
, 𝑡
1
} 0.21

PW
4
= {𝑡
1
, 𝑡
2
, 𝑡
5
, 𝑡
6
, 𝑡
8
} {𝑡

2
, 𝑡
1
} {𝑡

2
, 𝑡
1
, 𝑡
5
} 0.21

PW
5
= {𝑡
1
, 𝑡
3
, 𝑡
4
, 𝑡
6
, 𝑡
7
} {𝑡

7
, 𝑡
1
} {𝑡

7
, 𝑡
1
, 𝑡
6
} 0.06

PW
6
= {𝑡
1
, 𝑡
3
, 𝑡
4
, 𝑡
6
, 𝑡
8
} {𝑡

1
, 𝑡
6
} {𝑡

1
, 𝑡
6
, 𝑡
4
} 0.06

PW
7
= {𝑡
1
, 𝑡
3
, 𝑡
5
, 𝑡
6
, 𝑡
7
} {𝑡

7
, 𝑡
1
} {𝑡

7
, 𝑡
1
, 𝑡
6
} 0.09

PW
8
= {𝑡
1
, 𝑡
3
, 𝑡
5
, 𝑡
6
, 𝑡
8
} {𝑡

1
, 𝑡
5
} {𝑡

1
, 𝑡
5
, 𝑡
6
} 0.09

UTop-2 = ⟨{𝑡
2
, 𝑡
1
}/{𝑡
2
, 𝑡
7
}, 0.35⟩; UTop-3 = ⟨{𝑡

2
, 𝑡
7
, 𝑡
1
}, 0.35⟩

Pr(PW3) + Pr(PW4) = 0.7. This probability is larger than
that of {𝑡

1
, 𝑡
6
} and {𝑡

1
, 𝑡
5
}, which are the top-2 answers in

the other four possible worlds and with the probability of
0.12 and 0.18, respectively. Similarly, the UTop-3 answer
is {𝑡
2
, 𝑡
1
, 𝑡
5
} with probability 0.42. In Table 1(a), there are

totally 8 tuples in the uncertain database. According to the
exclusive rules, the possible world space is composed of 8
possible world instances. Theoretically, given an uncertain
dataset containing𝑀 groups of mutually exclusive tuples, the
cardinality of the possible world space will be at least 2𝑀. It
implies that the possible world space grows quite faster than
the uncertain dataset itself. This poses a great challenge on
UTop-𝑘 processing.

Basically, we canuse the naive algorithm to processUTop-
𝑘 queries, in which the possible world space is comletely
produced and then the aggregated probability of each UTop-
𝑘 answer can be obtained. However, the naive algorithm is
prohibitively expensive in space and time cost. Actually, in
many cases we can achieve the Utop-𝑘 answers by reading
part of the uncertain dataset. Let us examine the possible
world space in Table 1(b). The UTop-2 answer candidates are
{𝑡
2
, 𝑡
1
}, {𝑡
1
, 𝑡
6
}, and {𝑡

1
, 𝑡
5
}.TheUTop-3 answer candidates are

{𝑡
2
, 𝑡
1
, 𝑡
6
}, {𝑡
2
, 𝑡
1
, 𝑡
5
}, {𝑡
1
, 𝑡
6
, 𝑡
4
}, and {𝑡

1
, 𝑡
5
, 𝑡
6
}. The tuples 𝑡

7

and 𝑡
8
in Table 1(a) do not appear either in any of UTop-2

answer candidates or in that of UTop-3 answer candidates.
In other words, the subset {𝑡

7
, 𝑡
8
}, as a group containing two

mutually exclusive tuples, only enlarges the possible world
space but has no contrition to the final UTop-𝑘 answer. So,
if we remove the subset of {𝑡

7
, 𝑡
8
} from the original uncertain

dataset, that is, we set {𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
, 𝑡
6
} as theminimum scan

scope for UTop-𝑘 processing, we can obtain accurate UTop-
2 and UTop-3 answers while only four possible worlds are
generated. Generally, if we eliminate a group with 𝑙mutually
exclusive tuples, the possibleworld spacewill decrease 𝑙 times.
However, in some other cases, the entire uncertain dataset
should be scanned for processing UTop-𝑘 queries. Let us
take Table 1(c) as an example. It is just a little different from
Table 1(a) in the value of 𝑡

7
. Table 1(d) is the possible world

space and UTop-2 and UTop-3 answers for Table 1(c). In
this example, all the tuples must be considered. From the
two examples in Table 1, we can see that, given an uncertain
dataset, a user-predefined scoring function, and a parameter
𝑘, the number of tuples that are necessarily involved in
processing UTop-𝑘 queries is different. It should be reduced
as much as possible for its great influence on processing time.

In this paper, we propose two different methods to
determine scan scope of tuples for UTop-𝑘 query processing.
According to the minimum scan scope for accurate result,
users can make a balance between the result precision with
processing time cost. Towards this end, our contributions are
summarized as follows:

(i) We propose our basic MSS4UTop-𝑘 algorithm for
determining the minimum scan scope when UTop-
𝑘 queries are handled. MSS4UTop-𝑘 can obtain the
exact minimum scan scope.

(ii) In order to promote the efficiency in scan scope
determination, we study some special cases in uncer-
tain dataset and propose the algorithm of Quick



International Journal of Distributed Sensor Networks 3

MSS4UTop-𝑘. It enlarges the minimum scan scope
but can perform better than MSS4UTop-𝑘 in time
cost.

(iii) We conducted an extensive experimental study on
real uncertain dataset to test the performance of
our algorithms. At the same time, we analyze the
relationship between the data distribution and the
minimum scan scope.

2. Problem Definitions

UTop-𝑘 semantics is based on the model of possible worlds
[1]. Assume that there is a user-specified scoring function
F, under which the tuples in an uncertain database can
be sorted. UTop-𝑘 query answer is a tuple vector with the
maximum aggregated probability of being top-𝑘 across all
possible worlds.

Definition 1 (UTop-𝑘 query). Let D = {𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑁
} be an

uncertain database with the possible world space PW =

{PW1,PW2, . . . ,PW𝑛}. Let T = {𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑚
} be a set of

𝑘-length tuple vectors, where for each 𝑇𝑖 ∈ T (1) tuples of
𝑇
𝑖 are ordered according to the scoring function F and (2)
𝑇
𝑖 is the top-𝑘 answer for a nonempty set of possible worlds

PW(𝑇𝑖) ⊆ PW. U-Top𝑘 query over D, based on F, return
𝑇
∗
∈ T, where 𝑇∗ = argmax

𝑇
𝑖
∈T(∑Pr(PW(𝑇𝑖))).

Definition 2 (X-tuple bucket𝐵). X-tuple [2] bucket consists of
one or more alternatives, where each alternative is a regular
tuple exclusive to the others according to the exclusiveness
rules derived fromapplications.Therefore, given anuncertain
databaseD = {𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑁
}, the X-tuple bucket 𝐵 is a subset

of D, that is, 𝐵 ⊆ D, and 𝐵 = {𝑡 | (∀𝑡󸀠 ∈ 𝐵, 𝑡 ⊕ 𝑡󸀠) ∧ (∀𝑡󸀠 ∉
𝐵, ¬(𝑡 ⊕ 𝑡

󸀠
))}.

Tuples in uncertain dataset 𝐷 can be divided into two
categories: (1) tuples with probability 1, which is called
deterministic tuples, and (2) tuples with probability less
than 1. Tuples in the first category appear in all possible
worlds deterministically, while those in the second category
appear in some of possible worlds at their own probability.
Furthermore, we can divide the tuples into subsets according
to the exclusiveness rules. Each deterministic tuple compose
a subset itself, and themutually exclusive tuples are organized
into one X-tuple bucket. Then, the uncertain dataset can also
be denoted as D = 𝐵

1
∪ 𝐵
2
∪, . . . , ∪𝐵

𝑀
, where each 𝐵

𝑖
is X-

tuple bucket.

Definition 3 (UTop-𝑘 minimum scan scope D𝑠). Given an
uncertain database D = {𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑁
}, the minimum scan

scopeD𝑠 for UTop-𝑘 processing is a subset ofD and satisfies
the following two criteria: (1) D𝑠 includes the minimum X-
tuple buckets and (2) D𝑠-based UTop-𝑘 answer is the same
asD-based UTop-𝑘 answer.

Obviously, D𝑠 is related to 𝑘 and data distribution
of uncertain dataset. The word “minimum” here has two
meanings: (1) tuples in D − D𝑠 will not enter any Top-𝑘

candidate set across the possible world space based onD; (2)
D𝑠 includes sufficient tuples to avoid possible errors.

In this paper, we aim at determiningD𝑠. For convenience
of later discussion, we summarize our notations in Notations.

3. Related Work

Top-𝑘 queries in deterministic database is always a hot topic
in academia, and several efficient methods for optimizing
Top-𝑘 queries have been proposed [3–5]. However, in recent
years it is noticed that physical data is usually uncertain
and/or fuzzy [6–11]. The marriage of Top-𝑘 and uncertain
data starts a novel research issue: Top-𝑘 queries in uncertain
database. There are several semantics of Top-𝑘 queries in
uncertain database: UTop-𝑘 [1], U-𝑘Ranks [1], PT-𝑘 [12],
PKTop-𝑘 [13], Expected Ranks [14, 15], and other recent
research works in [16–20].

In this paper, we focus on the semantics of UTop-𝑘.
The work in [1] is the first to introduce the definition of
UTop-𝑘. It proposed the OptUTop-𝑘 framework for UTop-
𝑘 processing as well. Its basic idea is based on the following
two assumptions: (1) tuples in uncertain database is accessed
one by one sequentially; that is, no random access is allowed;
(2) the global exclusiveness rules are unknown in advance.
OptUTop-𝑘maintains a priority state queue which is ordered
on probability. Then, it reads tuples one by one sequentially.
Each time when a new tuple arrives, the top state in the
priority state queue will be extended into two new states, with
the newly seen tuple and without the newly seen tuple. By
searching all possible states, OptUTop-𝑘 can obtain the most
probable top-𝑘 answers.

Another important work in UTop-𝑘 processing is intro-
duced in [21]. The basic idea in [21] is based on the following
two assumptions: (1) tuples in uncertain dataset are ordered
according to the scoring function; (2) the global exclusiveness
rules are known in advance. Based on these two assumptions,
the optimizing framework reads the tuples one by one in
sequence of scores. Each time when a new tuple arrives,
the possible world space will be produced based on all seen
tuples.This procedure repeats until the scan depth is reached.
Then, the Top-𝑘 candidate set in the possible worlds with the
highest probability is the final UTop-𝑘 answer.

Our work in this paper is different from the two works
above. Firstly, they are different in preconditions. Our work
is based on the following two assumptions: (1) the global
exclusiveness rules are known and (2) the whole uncertain
dataset can be traversed in advance; that is,𝑁 is known. The
justification for our first assumption is that the exclusiveness
rules come from applications, and with the help of domain
experts we can translate this prior knowledge into user-
defined constraints in database at the very beginning. The
justification for our second assumption is that uncertain
data is usually stored in RDBMS, in which traversing a
table is a common operation. Secondly, they are different
in goals. The two works above aim at optimizing UTop-
𝑘 processing. However, we view our work as a prerequi-
site step for UTop-𝑘 processing. We emphasize that before
we start any optimized algorithm, we must determine the
necessary scan scope in uncertain database for processing
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UTop-𝑘 query; that is, how many and which tuples are
necessarily involved for query processing? It is important
because in some cases all the uncertain tuples may be
involved in answering UTop-𝑘 queries. In such scenarios, any
effort seeking for precision results will lead to failure, and
the approximate algorithms are the best (or say the only)
choice.

Scoring function is another interesting research point
in rank queries. Soliman et al. [22] notice that in many
cases users cannot precisely specify their scoring functions,
which means that in such scenarios the scoring function is
uncertain or incomplete. This work is different from ours
for two aspects: (1) they are different in data model. In
the work of [22], data is determined, while the scoring
function it is uncertain.Therefore, theymodel their data with
traditional database (deterministic database). Oppositely, in
ourwork, we assume that data gathered from application field
is with uncertainty, while the scoring function is determined.
Researchers are inclined to make use of probability database
and possible world model to describe uncertain dataset. (2)
They are different in query semantics. Soliman et al. set their
focus on the “uncertain/incomplete scoring functions” in
Top-𝑘 queries. The question is that “Can we adopt a score
function with weight ranges and partially specified weight for
different data sources to capture the preferences of users so as
to give them a personalized Top-𝑘 result?”. Furthermore, they
analyze the sensitivity of the computed order with respect to
changes in weights. In our work, we aim at the semantic of
UTop-𝑘 over uncertain data. The most challenging problem
in processing UTop-𝑘 queries is the explosion of possible
world space, which makes it unfeasible for its quite expensive
cost in processing time. However, in our paper we demon-
strate that in many cases not all tuples in uncertain database
are necessarily involved in answering UTop-𝑘 queries. So, we
set our goal to conclude that “which is the minimum neces-
sary scan scope of tuples in uncertain data for UTop-𝑘 query
processing?”. In summary, although these twoworks are both
about “uncertainty” and “Top-𝑘 queries,” they are essentially
different.

Besides, query result evaluation and data cleaning are
always an attractive research problem in the field of uncer-
tain data management. Given the data uncertainty, a query
answer is inherently inexact. Paper [23] puts forward the
measurement method of the ambiguity of the query results.
If users are not satisfied with the quality of query answer, a
cleaning process will be launched. Ideally, all X-tuples should
be cleaned.However, this cleaning process is limited by power
resource, bandwidth, budget, successfulness, and so on,
which makes it an optimization problem for users. Xu et al.
[24] set their focus on the problem of automatically selecting
an extractive summary from entire set of objects as its rep-
resentatives. Practically, objects may have multiple uncertain
attributes. So, paper [24] proposes a general framework that
models the information contained in objects and optimizes
a probabilistic coverage property of the summary. Although
all these works are based on uncertain data, their research
point is not about the semantic and processing of UTop-𝑘
queries.

4. MSS4UTop-𝑘 Framework

In this section, we will introduce our algorithms to determine
the minimum scan scope for UTop-𝑘 query processing in
uncertain databases. In most cases, 𝑘 is far less than 𝑁.
It implies that some of, or maybe most of, tuples have no
influence on any Top-𝑘 candidates. According to this basic
idea, we believe that some of tuples in uncertain dataset can
be safely pruned when UTop-𝑘 query is processed. Then, the
remaining part is the minimum scan scope. The challenge is
that how we can distinguish those “useless” tuples.

4.1. Phrases ofMSS4UTop-𝑘. MSS4UTop-𝑘 has three phrases:
first, we traverse the uncertain dataset, group the tuples
in D according to exclusiveness rules, and choose one
representative tuple for each X-tuple group. We sort these
representative tuples under the scoring function F and
select top-𝑘 representative tuples to compose our repre-
sentative tuple set 𝑇𝑟. Next, we extend the representative
set. In some possible worlds, some tuples in the represen-
tative set may be absent from the top-𝑘 candidates and
replaced by others. So, we extend the representative set to
make sure that all the tuples that have chance to enter
any top-𝑘 result set, no matter in which possible world,
must be included. Finally, We determine the minimum
scan scope based on the extended representative tuple
set.

4.1.1. Initializing the Representative Tuple Set 𝑇𝑟. First, as we
mentioned in Section 2, we assign all the tuples in D into
X-tuple buckets; that is, D = 𝐵

1
∪ 𝐵
2
∪, . . . , ∪𝐵

𝑀
. Our

distribution rules are (1) each deterministic tuple has one
bucket by itself and (2) tuples that conflict with each other
under exclusiveness rules are put into the same bucket. Next,
for each bucket, we select the top-1 tuple under the scoring
functionF as the representative tuple. We use 𝑡max

𝐵𝑖
to denote

the representative tuple for the bucket 𝐵
𝑖
. Obviously, for ∀𝑡

𝑗
∈

𝐵
𝑖
, F(𝑡max

𝐵𝑖
) > 𝐹(𝑡

𝑗
). We sort all the representative tuples

according to their scores underF. Without loss of generality,
the sorted representative tuples can be denoted as fully
ordered vector 𝑇󸀠 = ⟨𝑡max

𝐵1
⪯F𝑡

max
𝐵2
⪯F ⋅ ⋅ ⋅ ⪯F𝑡

max
𝐵𝑖
⋅ ⋅ ⋅ ⪯F𝑡

max
𝐵𝑀
⟩,

and the corresponding buckets behind also have their order:
𝐵
1
⪯F𝐵2⪯F ⋅ ⋅ ⋅ ⪯F𝐵𝑖 ⋅ ⋅ ⋅ ⪯F𝐵𝑀. For simplicity of discussion,

we assume that all the scores of the tuples in 𝑇󸀠 are distinct.
Figure 1 illustrates how 𝑇󸀠 is generated under uncertain
dataset in Table 1(c).

When a UTop-𝑘 query is initiated, we first locate the 𝑘th
element in 𝑇󸀠. Then, the elements from 𝑡max

𝐵1
to 𝑡max
𝐵𝑘

compose
our initial representative tuple set 𝑇𝑟=⟨𝑡max

𝐵1
, 𝑡

max
𝐵2
, . . . , 𝑡

max
𝐵𝑘
⟩.

Obviously, 𝑇𝑟 ⊆ 𝑇󸀠. Next, we need to extend 𝑇𝑟 so that
it can cover all the X-tuple buckets that contain the tuples
with chance to enter any 𝑇𝑖 in T. We define a lower bound
tuple 𝑡max

lb . It is always assigned with the element next to the
last element of 𝑇𝑟 in 𝑇󸀠. Undoubtedly, 𝑡max

lb is corresponding
to the X-tuple bucket 𝐵lb, and initially 𝑡max

lb = 𝑡
max
𝐵𝑘+1

; that is,
lb = 𝑘 + 1 because 𝑡max

𝐵𝑘
is the last element of 𝑇𝑟 in the very

beginning.
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⟨t1, 1.0⟩ ⟨t2, 0.7⟩, ⟨t3, 0.3⟩
t2 ⊕ t3

⟨t4, 0.4⟩, ⟨t5, 0.6⟩
t4 ⊕ t5

⟨t6, 1.0⟩ ⟨t7, 0.5⟩, ⟨t8, 0.5⟩
t7 ⊕ t8

B1
B2 B3 B4 B5

t
max

B1
(= t2) t
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B2
(= t7) t

max

B3
(= t1) t

max

B4
(= t5) t

max

B5
(= t6) ℱ

Figure 1: 𝑇󸀠 under uncertain dataset in Table 1(c).

4.1.2. Extending the Representative Tuple Set 𝑇𝑟. We start to
traverse 𝑇𝑟 from the beginning to the end. Before we reach
the element 𝑡max

𝐵𝑘
, we may meet the following two cases.

Case 1. Wemeet a deterministic tuple 𝑡max
𝐵𝑖
(𝑖 ≤ 𝑘).

Theorem 4. Assume that 𝑡max
𝐵𝑖

is a deterministic tuple in 𝑇𝑟.
Then, one can conclude the following: (1) ∀𝑇𝑖 (𝑇𝑖 ∈ T), 𝑡max

𝐵𝑖
∈

𝑇
𝑖, and (2) 𝑡max

𝐵𝑖
∈ 𝑇
∗.

Proof. Since 𝑡max
𝐵𝑖
∈ 𝑇
𝑟
⊆ 𝑇
󸀠 and 𝑇󸀠 is ordered under scoring

functionF, it can be inferred thatF(𝑡max
𝐵𝑖
) > F(𝑡max

lb ) > ⋅ ⋅ ⋅ >

F(𝑡max
𝐵𝑀
). Moreover, according to the definition, F(𝑡max

𝐵
) is

the maximum in any X-tuple bucket 𝐵; then we can conclude
that F(𝑡max

𝐵𝑖
) is larger than any F(𝑡), where 𝑡 ∈ 𝐵

𝑗 (𝑘+1≤𝑗≤𝑀)
.

This means that 𝑡max
𝐵𝑖

must appear in the top-𝑘 answer sets
of all possible worlds. Furthermore, its rank under scoring
function F is at most 𝑖 (𝑖 ≤ 𝑘). So, (1) ∀𝑇𝑖 (𝑇𝑖 ∈ T),
𝑡
max
𝐵𝑖
∈ 𝑇
𝑖, and (2) 𝑡max

𝐵𝑖
∈ 𝑇
∗ are proved.

According to Theorem 4, a deterministic tuple 𝑡max
𝐵𝑖
(𝑖 ≤

𝑘)must have a position in 𝑇∗. So, in this scenario, we keep 𝑇𝑟
unextended. This is illustrated in Figure 2.

Case 2. We meet a tuple with probability less than 1; that is,
Pr(𝑡max
𝐵𝑖
) < 1 (𝑖 ≤ 𝑘).

In this case, the bucket 𝐵
𝑖
contains more than one

tuples, and ∑
𝑡∈𝐵𝑖
(Pr(𝑡) = 1). Essentially, there are two

more specific cases here: (1)min(F
𝑡∈𝐵𝑖
(𝑡)) > F(𝑡max

lb ) and
(2) ∃𝑡, F

𝑡∈𝐵𝑖
(𝑡) ≤ F(𝑡max

lb ). We discuss these two scenarios
in detail, respectively.

Case 2.1 (min(F
𝑡∈𝐵𝑖
(𝑡)) ≥ 𝑡

max
lb ). This case is quite similar to

Case 1. We call it the best situation. Since min(F
𝑡∈𝐵𝑖
(𝑡)) ≥

𝑡
max
lb , we can conclude that min(F

𝑡∈𝐵𝑖
(𝑡)) > F

𝑡∈𝐵𝑗 (𝑘+1≤𝑗≤𝑀)
(𝑡).

It implies that𝐵
𝑖
must devote one tuple to the top-𝑘 candidate

answer set in any of the possible worlds. Similarly, in this
scenario, we still keep𝑇𝑟 unextended, as depicted in Figure 2.

Case 2.2 (∃𝑡, F
𝑡∈𝐵𝑖
(𝑡) ≤ F(𝑡max

lb )). Assume that there
are 𝑙 elements in 𝐵

𝑖
, including 𝑡max

𝐵𝑖
; that is, 𝐵

𝑖
=

{⟨𝑡
1

𝐵𝑖
,Pr(𝑡1
𝐵𝑖
)⟩, . . . , ⟨𝑡

max
𝐵𝑖
,Pr(𝑡max
𝐵𝑖
)⟩, . . . , ⟨𝑡

𝑙

𝐵𝑖
,Pr(𝑡𝑙
𝐵𝑖
)⟩}.We con-

sider the worst situation ∀𝑡 (𝑡 ̸= 𝑡max
𝐵𝑖
), F
𝑡∈𝐵𝑖
(𝑡) ≤ F(𝑡max

lb ).

Under this worst assumption, 𝑡max
𝐵𝑖

will appear in 𝑛/𝑙 possible
worlds, and it undoubtedly must take a position in top-𝑘 set
in the 𝑛/𝑙 possible worlds. However, in the other 𝑛(1 − 1/𝑙)
possible worlds, tuples from 𝐵

𝑖
are kicked out of the top-𝑘

set and replaced by tuples from other buckets such as 𝐵lb. So,
we have to extend 𝑇𝑟 in order to make sure that it can cover
all the representative tuples whose corresponding buckets
contain the tuples with chance to enter top-𝑘 candidate sets.
Extension of 𝑇𝑟 as well as its start and stop principles are as
follows.

(i) Extension Start Principle. If ∃𝑡 ∈ 𝐵
𝑖
, F(𝑡) ≤ F(𝑡max

lb ),
𝑇
𝑟 extension starts.

(ii) Extension Principle. 𝑇𝑟 = 𝑇𝑟 ∪ {𝑡max
lb }, and 𝑡

max
lb will be

placed to the tail of 𝑇𝑟.
(iii) Extension Stop Principle 1. If 𝑡max

lb is a deterministic
tuple, 𝑇𝑟 extension stops.

(iv) Extension Stop Principle 2. If, ∀𝑡 ∈ 𝐵lb, F(𝑡) >
F(𝑡max
𝐵lb+1
), 𝑇𝑟 extension stops.

(v) Extension Stop Principle 3. If, ∀𝑡 ∈ 𝐵
𝑖
, F(𝑡) >

F(𝑡max
𝐵lb+1
), 𝑇𝑟 extension stops.

(vi) Extension Stop Principle 4. If the end of 𝑇󸀠 is reached,
that is, lb = 𝑀, 𝑇𝑟 extension stops.

Besides Cases 2.1 and 2.2, there are still another situation
which is between the best one and the worst one, more than
one tuple whose score is larger than F(𝑡max

lb ), and others
are the opposite. We call it the intermediate situation. This
intermediate situation should be handled in the same way
as the worst one because, as we mentioned above, we must
guarantee that all the tuples with chance to enter top-𝑘
candidate set have their bucket representative in 𝑇𝑟. So, the
extension of 𝑇𝑟 is necessary in this intermediate case.

In the above cases, we listed all of the possible situations
of 𝑡max
𝐵𝑖

. After 𝑡max
𝐵𝑖

is handled, we move to the next element in
𝑇
𝑟.We keep traversing𝑇𝑟 until the element 𝑡max

𝐵𝑘
is handled.𝑇𝑟

becomes larger and larger in this process. Figure 3 illustrates
how 𝑇𝑟 is extended with 𝑡max

lb .

4.1.3. Determine the Minimum Scan Scope D𝑠. After being
extended, 𝑇𝑟 is ⟨𝑡max

𝐵1
, . . . , 𝑡

max
𝐵𝑘
, . . . , 𝑡

max
𝐵𝑗
⟩. According to the

Extension Principle and the Extension Stop Principles, we
can conclude that the buckets corresponding to the tuples
in the current 𝑇𝑟, that is, 𝐵

1
, . . . , 𝐵

𝑘
, . . . , 𝐵

𝑗
, contain all
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Figure 2: 𝑇𝑟 keeps unchanged if Pr(𝑡max
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(𝑡)) ≥ F(𝑡max

lb ).
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Figure 3: The extension of 𝑇𝑟: 𝑇𝑟 = 𝑇𝑟 ∪ 𝑡
𝐵
max
lb

.

the tuples that have chance to enter the Top-𝑘 result sets
of some possible worlds. We combine all the tuples in
𝐵
1
, . . . , 𝐵

𝑘
, . . . , 𝐵

𝑗
, and the minimum scan scope is obtained;

that is, D𝑠 = ⋃
𝑡
max
𝐵𝑖
∈𝑇
𝑟 𝐵𝑖. Algorithm 1 describes how D𝑠 is

generated in detail.

4.1.4. Correctness. In this section, we will prove that theD𝑠-
based UTop-𝑘 result equals theD-based UTop-𝑘 result.

Theorem 5. Assume that the original uncertain dataset is D.
D𝑠 is the minimum scan scope for UTop-𝑘 queries on D.
PWD𝑠 is the D𝑠-based possible world space, and TD𝑠 is all
the top-𝑘 candidates derived from PWD𝑠 . 𝑇∗D𝑠 is the UTop-𝑘
answer based onPWD𝑠 . Then, 𝑇∗ = 𝑇∗D𝑠 .

Proof. PW = {PW1,PW2, . . . ,PW𝑛} is the D-base possible
world space, andT is 𝑘-length tuple vectors, where each 𝑇𝑖 ∈
T is a possible top-𝑘 solution derived fromPW. Definitely,

if the naive approach is adopted, we can get the correct UTop-
𝑘 answer 𝑇∗ = argmax

𝑇
𝑖
∈T(∑Pr(PW(𝑇𝑖))). If we use the

proposed MSS4UTop-𝑘, we can get D𝑠 = ⋃𝑗 (𝑗≤𝑀)
𝑖=1

𝐵
𝑖
. It

implies that any tuples from the set 𝐵
𝑗+1
, 𝐵
𝑗+2
, . . . , 𝐵

𝑀
have

no chance to enter any 𝑇𝑖 (𝑇𝑖 ∈ T).

Case 1 (𝑗 = 𝑀). Consider

𝑗 = 𝑀 󳨐⇒

D
𝑠
= D 󳨐⇒

𝑇
∗
= 𝑇
∗

D𝑠 .

(1)

Case 2 (𝑀− 𝑗 = 1). Consider

𝑀− 𝑗 = 1 󳨐⇒

D = D
𝑠
∪ 𝐵
𝑀
.

(2)
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Require:
The uncertain datasetD including exclusiveness rules;
The parameter 𝑘;

Ensure:
The reduced uncertain datasetD𝑠;

(1) Initialize: 𝑇󸀠 = 𝜙, 𝑇𝑟 = 𝜙,D𝑠 = 𝜙, 𝑡max
lb = null;

(2) Re-organizeD:D← {𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑀
}; //exclusiveness rules

(3) for (each 𝐵
𝑖
inD)

(4) 𝑡
max
𝐵𝑖
↔ 𝐵
𝑖
;

(5) 𝑇
󸀠
← 𝑇
󸀠
∪ 𝑡

max
𝐵𝑖

;
(6) end for //𝑇󸀠 is obtained
(7) Sort 𝑇󸀠;
(8) 𝑇𝑟 ← {𝑡max

𝐵1
, 𝑡

max
𝐵2
, . . . , 𝑡

max
𝐵𝑘
}; //the original 𝑇𝑟

(9) 𝑡max
lb ← 𝑡

max
𝑘+1
// ⇔ lb← 𝑘 + 1

(10) for (𝑖 = 0; 𝑖 < 𝑘; 𝑖 + +)
(11) if (Pr(𝑡max

𝐵𝑖
) = 1) then

(12) continue;
(13) else
(14) if (min(F

𝑡∈𝐵𝑖
(𝑡)) > F(𝑡lb)) then

(15) continue;
(16) else
(17) while (lb ≤ 𝑀)
(18) 𝑇

𝑟
← 𝑇
𝑟
∪ 𝑡

max
lb ;

(19) if (Pr(𝑡max
lb ) = 1) then

(20) break;
(21) else
(22) if ((min(F

𝑡∈𝐵lb
(𝑡)) > F(𝑡max

𝐵lb+1
)) ‖ (min(F

𝑡∈𝐵𝑖
(𝑡)) > F(𝑡max

𝐵lb+1
)))

(23) break;
(24) else
(25) lb← lb + 1;
(26) end if
(27) end if
(28) end while
(29) end if
(30) end if
(31) end for //the extended 𝑇𝑟.
(32) for (𝑡max

𝐵𝑖
∈ 𝑇
𝑟)

(33) D𝑠 ← D𝑠 ∪ 𝐵
𝑖
; //using 𝑡max

𝐵𝑖
↔ 𝐵
𝑖

(34) end for //D𝑠 is obtained.
(35) return D𝑠;

Algorithm 1: The MSS4UTop-𝑘 algorithm.

Suppose 𝐵
𝑀
= {𝑡
1

𝐵𝑀
, 𝑡
2

𝐵𝑀
, . . . , 𝑡

𝑙

𝐵𝑀
}; then

PW = {PW
𝑖

D𝑠 ∪ 𝑡
𝑗

𝐵𝑀
| 1 ≤ 𝑖 ≤

𝑚

𝑙
, 1 ≤ 𝑗 ≤ 𝑙} . (3)

For any 𝑡𝑗
𝐵𝑀

, it has no chance to enter the top-𝑘 result set, so
we can conclude that Top-𝑘(PW) = Top-𝑘(PW

𝐷
𝑠); that is,

T = T
𝐷
𝑠 . (4)

Assume that 𝑇𝑖
𝐷
𝑠 ∈ T

𝐷
𝑠 , according to (4), ∃𝑇𝑗 ∈ T, and

𝑇
𝑖

𝐷
𝑠 = 𝑇

𝑗. Since the tuples from 𝐵
𝑀

have no influence on

the top-𝑘 record set in any of the possible worlds, PW(𝑇𝑗) =
{PW
𝐷
𝑠(𝑇
𝑖

𝐷
𝑠) ∪ 𝑡
𝑥

𝐵𝑚
| 1 ≤ 𝑥 ≤ 𝑙}. So,

Pr (PW (𝑇𝑗))

= Pr ({PW
𝐷
𝑠 (𝑇
𝑖

𝐷
𝑠) ∪ 𝑡
𝑥

𝐵𝑚
| 1 ≤ 𝑥 ≤ 𝑙}) .

(5)

In addition,∑𝑙
𝑥=1

Pr(𝑡𝑥
𝐵𝑚
) = 1. Then, we have

Pr (𝑇𝑖
𝐷
𝑠) = Pr (𝑇𝑗) . (6)

Finally, with the formula (4) and (6), we can conclude

𝑇
∗
= 𝑇
∗

D𝑠 . (7)
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Require:
The uncertain datasetD including exclusiveness rules;
The parameter 𝑘;

Ensure:
The reduced uncertain datasetD𝑠;

(1) Initialize: 𝑇󸀠 = 𝜙, 𝑇𝑟 = 𝜙,D𝑠 = 𝜙, 𝑡max
lb = null;

(2) Re-organizeD:D← {𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑀
}; //exclusiveness rules.

(3) for (each 𝐵
𝑖
inD)

(4) 𝑡
max
𝐵𝑖
↔ 𝐵
𝑖
;

(5) 𝑇
󸀠
← 𝑇
󸀠
∪ 𝑡

max
𝐵𝑖

;
(6) end for //𝑇󸀠 is obtained
(7) Sort 𝑇󸀠;
(8) 𝑖 ← 1;
(9) 𝑗 ← 0;
(10) while (𝑗 ≤ 𝑘)
(11) if (Pr(𝑡max

𝐵𝑖
) = 1) then

(12) 𝑗 ← 𝑗 + 1;
(13) end if
(14) 𝑇

𝑟
← 𝑇
𝑟
∪ {𝑡

max
𝐵𝑖
};

(15) 𝑖 ← 𝑖 + 1

(16) end while //𝑇𝑟 is obtained.
(17) for (𝑡max

𝐵𝑖
∈ 𝑇
𝑟)

(18) D𝑠 ← D𝑠 ∪ 𝐵
𝑖
; //using 𝑡max

𝐵𝑖
↔ 𝐵
𝑖
.

(19) end for //D𝑠 is obtained.
(20) return D𝑠;

Algorithm 2: The quick MSS4UTop-𝑘 algorithm.

Case 3 (𝑀− 𝑗 > 1). Consider

𝑀− 𝑗 > 1 󳨐⇒

D = D
𝑠
∪ 𝐵
𝑗+1
∪ 𝐵
𝑗+2
∪ ⋅ ⋅ ⋅ ∪ 𝐵

𝑀

= (⋅ ⋅ ⋅ ((D
𝑠
∪ 𝐵
𝑗+1
) ∪ 𝐵
𝑗+2
) ∪ ⋅ ⋅ ⋅) ∪ 𝐵

𝑀
.

(8)

Essentially, Case 3 is the extension of Case 2, and it can be
proved by repeating the steps in Case 2.

In this section, we describe our basic MSS4UTop-𝑘 algo-
rithm in detail. Considering the different features of original
uncertain dataset, the efficiency of MSS4UTop-𝑘 varies. In
next section, we will introduce a variation of theMSS4UTop-
𝑘 algorithm, called Quick MSS4UTop-𝑘. The goal of Quick
MSS4UTop-𝑘 is to balance the accuracy of minimum scan
scope and the efficiency of MSS4UTop-𝑘.

4.2. The Quick MSS4UTop-𝑘 Algorithm. In the basic
MSS4UTop-𝑘 algorithm, we traverse 𝑇󸀠 from the element
𝑡
max
𝐵1

to the element 𝑡max
𝐵𝑘

, and for each element we judge
its possibility to be in Top-𝑘 record set so as to determine
whether 𝑇𝑟 should be extended. This procedure may result
in a large amount of comparison operations and decrease
the efficiency of MSS4UTop-𝑘. So, we propose the Quick
MSS4UTop-𝑘 algorithm to simplify the generation procedure
of 𝑇𝑟.

Given a uncertain databaseD and a UTop-𝑘 query onD,
we denoteD𝑑 as the set composed of the deterministic tuples

inD; that is, 𝐵𝑑 = {𝑡
𝐵𝑖
| 𝑡
𝐵𝑖
∈ D and Pr(𝑡

𝐵𝑖
) = 1}. The quick

MSS4UTop-𝑘 algorithm is suitable in the situations where
(1) |D𝑑| > 𝑘 and (2) the deterministic tuples are uniformly
distributed in D. The quick MSS4UTop-𝑘 algorithm is also
composed of three phrases.

(i) Phrase 1 (determine 𝑇󸀠). In this phrase, the sorted repre-
sentative tuple set 𝑇󸀠 is produced. We omit it because this
procedure is totally the same as that in the basicMSS4UTop-𝑘
algorithm.

(ii) Phrase 2 (determine 𝑇𝑟). In this phrase, the quick
MSS4UTop-𝑘 algorithm is different from the basic one.
In the quick MSS4UTop-𝑘 algorithm, we locate the 𝑘th
deterministic tuple in𝑇󸀠.We denote it as 𝑡max

𝐵
𝑘
󸀠
. Obviously, 𝑘󸀠 ≥

𝑘 and Pr(𝑡max
𝐵
𝑘
󸀠
) = 1. Then, 𝑇𝑟 = {𝑡max

𝐵1
, 𝑡

max
𝐵2
, . . . , 𝑡

max
𝐵𝑘
, . . . , 𝑡

max
𝐵
𝑘
󸀠
}.

(iii) Phrase 3 (determine D𝑠). This phrase is also the same
as that of the basic MSS4UTop-𝑘 algorithm; that is, D𝑠 =
⋃
𝑡
max
𝐵𝑖
∈𝑇
𝑟 𝐵𝑖.

Compared with that in the basicMSS4UTop-𝑘 algorithm,
𝑇
𝑟 in the quick MSS4UTop-𝑘 algorithm might be enlarged.

However, if the deterministic tuples are uniformly distributed
in D and |D𝑑| is close to |D|, the number of redundant
tuples in 𝑇𝑟 will be rational and acceptable. Algorithm 2
describes the detailed procedure of the algorithm Quick
MSS4UTop-𝑘.



International Journal of Distributed Sensor Networks 9

5. Experiments and Analysis

We built our framework on a 3.4-GHz Pentium IV PC
with 8GB main memory. Both the MSS4UTop-𝑘 and quick
MSS4UTop-𝑘 algorithm are implemented in Java and based
on the database MySQL5.5. We conducted extensive exper-
iments for two goals: (1) to examine how data distribution
and the parameter 𝑘 affect the minimum scan scope for
UTop-𝑘 processing; (2) to examine what the performance of
the MSS4UTop-𝑘 and quick MSS4UTop-𝑘 algorithm in time
consumption is.

5.1. Methodology

Data Set. Our experiment is based on the statistics that
describes the driving profiles in expressway of thousands of
drivers. It is derived from G15-Expressway Vehicle Speed
MonitoringDatabase.G15 is 387 kilometers long totally, along
which there are 13 vehicle speed measurement stations. Each
of themeasurement stations is equippedwith speed detecting
radar and HD cameras. When a vehicle passes by, its instant
speeds as well as the license plate and timestamps will be
recorded and transmitted back to the center database. The
upper speed limit of G15 is 120KM/h for small/medium-sized
motor vehicles and 100KM/h for large-sized vehicles.

Traffic insurance companies use the statistical data
derived from the Expressway Vehicle Speed Monitoring
Database to illustrate the driving profile of drivers. They
group speed values of a car according to three predefined
ranges: (1) ≥130 for small/medium-sizedmotors and ≥110 for
large-sized vehicles. Speeds in this area mean an extremely
dangerous driving behavior: (2) (120, 130) for small/medium-
sized motors and (100, 110) for large-sized motors. Speeds
in this area mean a dangerous driving behavior: (3) ≤120
for small/medium-sized motors and ≤100 for large motors.
Speeds in this areamean a normal-driving behavior. So, given
thirteen records of a car, the insurance companywill calculate
the average speed and frequency at each range; then they
obtain a driver’s driving profile. For example, Table 2 is the
speed records of a car on G15. According to Table 2, the
driver’s profile is {𝑡max

𝐵
= ⟨134.1, 1/13⟩, ⟨123.8, 2/13⟩, 𝑡

min
𝐵
=

⟨101.5, 10/13⟩}.
We use the records on September 22, 2010, in our exper-

iment. We choose the day of September 22, 2010, because
the weather was nice and traffic was flowing smoothly on
that day. Studies indicate that under these two conditions
a driver’s driving habit will not be influenced by other
drivers. In addition, on G15 the shortest distance between
two neighbored monitoring stations is 2.5 KM, which means
that the thirteen speed records in dataset for each vehicle
can be regarded as being independent. Actually, there were
totally 53,717 vehicles that ever ran on G15 on September
22, 2010. We picked out 4823 vehicles of them according to
the following two principles: (1) Each vehicle must finish a
complete single trip on G15 and (2) its thirteen licence plate
photos must be clear enough to be accurately recognized.
Next, We use the speed records of these 4823 vehicles to
generate the statistical data of driver’s driving profile, as
depicted in Table 3.

Table 2: An example of speed records.

RadarID Speed (KM/h)
G15N001 82.1
G15N002 111.5
G15N003 124.9
G15N004 114.1
G15N005 134.1
G15N006 96.2
G15N007 122.7
G15N008 100.0
G15N009 109.3
G15N010 119.3
G15N011 98.0
G15N012 104.5
G15N013 80.7

Table 3: Description of experiment data.

Subset Type Deterministic? Number
(𝑆/𝑀)

𝐷 Small/medium Yes 1606
(𝑆/𝑀)

𝑈 Small/medium No 1872
𝐿
𝐷 Large Yes 570
𝐿
𝑈 Large No 775

The subdataset (𝑆/𝑀)𝑈 and 𝐿𝑈 is uncertain, and each
vehicle may contain 2 or 3 mutually exclusive tuples. The
subdatasets (𝑆/𝑀)𝐷 and 𝐿𝐷 are deterministic dataset.

Methods and Evaluation Metrics. From the detailed descrip-
tion in Section 4, we can see that data distribution and the
value of 𝑘 are the two key metrics for determining the
minimum scan scope for UTop-𝑘 queries. So, we test our
proposed algorithm MSS4UTop-𝑘 and quick MSS4UTop-𝑘
in this paper on various datasets with different data distribu-
tions: (1) pure uncertain dataset, which is totally composed
of uncertain data, and (2) mixed uncertain dataset, which is
composed of uncertain data and deterministic tuples. In each
of our experiments, we describe the data distribution first.
Then, we measure the ratio of the minimum scan scope to
the whole dataset; that is, Ratio = D𝑠/D. The value of 𝑘
varies from 1 to 1000 uniformly. We also test the time cost
of MSSUTop-𝑘 and quick MSSUTop-𝑘 respectively.

5.2. Experiment Results

5.2.1. Pure Uncertain Dataset: (𝑆/𝑀)𝑈 ∪𝐿𝑈. We combine the
subdatasets (𝑆/𝑀)𝑈 and (𝐿)𝑈 to compose a pure uncertain
dataset, which contains the driving profiles of 2647 drivers;
that is, the number of X-tuple buckets is 2647. Figure 4(a) is
the data distribution of (𝑆/𝑀)𝑈∪𝐿𝑈.We sampled every 20 X-
tuple buckets and illustrate the speed ranges of these samples.
Figure 4(a) shows that data ranges overlap much.

Result Analysis. Theoretically, the scenario in Figure 4(a) is
the worst case because a large amount of tuples will be
involved in Top-𝑘 query processing, even if the value of 𝑘
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Figure 4: Data distribution, minimum scan scope, and time cost of MSSUTop-𝑘 and quick MSSUTop-𝑘 on pure uncertain dataset.

is very small. This is proved in Figure 4(b). For example,
when 𝑘 = 1, about 63% of 2647 vehicles have chance to
enter the answer set. In this scenario the Extension Stop
Principle 1 is invalid. Moreover, the Extension Stop Principles
2 and 3 are hard to be satisfied because the data ranges
overlap much. However, we also find that 𝐷𝑠 does not go
up sharply with 𝑘 when 𝑘 ≥ 100. This is because when
𝑘 ≥ 100, more large-sized vehicles are involved in the
calculation of 𝑇𝑟. So, the Extension Stop Principles 2 and 3
are relatively easier to be satisfied. It reflects the truth that,
compared with the large-sized vehicles, small/medium-sized
vehicles are more inclined to be present in the final Top-
𝑘 fast car set. In this scenario, quick MSSUTop-𝑘 is invalid
because the number of deterministic tuples is smaller than
𝑘. So, for the pure uncertain dataset as in Figure 4(a) the

scan scope of Quick MSSUTop-𝑘 algorithm is always the
complete uncertain dataset. Figure 4(c) shows the time cost
of MSSUTop-𝑘 and quickMSSUTop-𝑘. For quickMSSUTop-
𝑘, it is just the time to scan the whole uncertain dataset no
matter what the parameter 𝑘 is. For MSSUTop-𝑘, with the
increase of 𝑘, there are more elements in original𝑇𝑟. It means
that the MSSUTop-𝑘 algorithm has to do more comparison
operation to determine when the procedure of extension
should be started and stopped. So, we can see in Figure 4(c)
that the time cost of MSSUTop-𝑘 increases with 𝑘 and the
time cost of quick MSSUTop-𝑘 remains unchanged.

5.2.2.MixedDataset 1: (𝑆/𝑀)𝐷∪(𝑆/𝑀)𝑈∪𝐿𝑈. We conducted
our second experiment on the mixed uncertain dataset
{(𝑆/𝑀)

𝐷
∪ (𝑆/𝑀)

𝑈
∪ 𝐿
𝑈
}. There are totally 4253 drivers’
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Figure 5: Data distribution, minimum scan scope, and time cost of MSSUTop-𝑘 and quick MSSUTop-𝑘 on mixed uncertain dataset 1.

driving profiles. Figure 5(a) is the data range distribution of
(𝑆/𝑀)

D
∪ (𝑆/𝑀)

𝑈
∪ 𝐿
𝑈. The feature of this mixed uncertain

dataset is that deterministic tuples are not in uniform distri-
bution in the whole dataset. To be specific, most values of the
subdataset (𝑆/𝑀)𝐷 are lower than themax speed of the tuples
in (𝑆/𝑀)𝑈. It reflects the truth that the drivers who observed
the upper speed limit drive slower than the drivers who broke
the upper speed limit.

Result Analysis. When 𝑘 is small, this scenario is the same
as scenario 1; that is, 𝐷𝑠 increase very fast because of the
densely distributed uncertain data. However, when 𝑘 ≥ 50,
the deterministic tuples from (𝑆/𝑀)𝐷 are extended into 𝑇𝑟.
So, the 𝑇𝑟 will not increase sharply because the Extension

Stop Principle 1 is more likely to be satisfied. Figure 5(c) is
comparison of time consumption for MSSUTop-𝑘 and quick
MSSUTop-𝑘. Essentially, the quickMSSUTop-𝑘 abandons the
Extension Stop Principles 2 and 3 so as to reduce the cost
in comparison operation. Thus, from Figures 5(b) and 5(c),
we can see that𝐷𝑠 of quick MSSUTop-𝑘 increases faster than
that of MSSUTop-𝑘, but quick MSSUTop-𝑘 performs better
in time cost.

5.2.3. Mixed Dataset 2: (𝑆/𝑀)𝐷 ∪ 𝐿𝑈 ∪ 𝐿𝐷. In our third
experiment we employ another mixed dataset (𝑆/𝑀)𝐷 ∪
𝐿
𝑈
∪ 𝐿
𝐷, which is illustrated in Figure 6(a). In this uncertain

dataset, the data range of deterministic subdataset 𝐿𝐷 is lower
than that of 𝐿𝑈, which is similar to theMixed Dataset 1. How-
ever, considering the subdatasets 𝐿𝑈 and (𝑆/𝑀)𝐷, it is quite
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Figure 6: Data distribution, minimum scan scope, and time cost of MSSUTop-𝑘 and quick MSSUTop-𝑘 on mixed uncertain dataset 2.

different from the Mixed Dataset 1 in data distribution: the
data range of the deterministic subdataset (𝑆/𝑀)𝐷 partially
overlaps with that of the uncertain subdataset 𝐿𝑈. It means
that the deterministic tuples disseminates in the uncertain
tuples. It reflects the truth that the speed of furious-driving
large-sized vehicles are almost the same as that of normal-
driving small/medium-sized vehicles.

Result Analysis. Theoretically, there will be fewer tuples to
be involved in UTop-𝑘 query processing in this case. The
reason is when the deterministic tuples disseminates in the
uncertain tuples, the Extension Stop Principle 1 is more
inclined to be satisfied. It is proved by Figure 6(b). Initially,
when 𝑘 is small, the Extension Stop Principles 1, 2, and 3
are all valid. So, the ratio of minimum scan scope to the

whole dataset is quite smaller than that of the other two cases
above. When 𝑘 > 400, all the uncertain tuples are involved
in calculation of minimum scan scope. Hereafter, only the
Extension Stop Principle 1 is valid, and the remaining tuples
in 𝑇󸀠 waiting to be extended into 𝑇𝑟 are all deterministic.
So, the curves of MSSUTop-𝑘 and quick MSSUTop-𝑘 in
Figure 6(b) overlap when 𝑘 > 400. However, in time con-
sumption, as depicted in Figure 6(c), MSSUTop-𝑘 is always
more costly than quick MSSUTop-𝑘. This is because the
algorithm MSSUTop-𝑘 needs more comparison. It reminds
us that, given a dataset with a small proportion of uncertain
tuples, the approximate result achieved by quickMSSUTop-𝑘
may be very closer to or even the same as that of the accurate
algorithm, while the time cost of quick MSSUTop-𝑘 is much
less.
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5.2.4. Other Scenarios. Actually, there are 15(24 − 1) com-
binations with the four subdatasets except for empty one.
However, we just choose three typical combinations in our
experiments because they can represent other situations of
data distributions. For an example, the dataset 𝐿𝑈 ∪ 𝐿𝐷

has the same feature in data distribution as (𝑆/𝑀)𝐷 ∪
(𝑆/𝑀)

𝑈, which is included in our second experiment. We
also omit the scenarios like (𝑆/𝑀)𝐷, 𝐿𝐷, and (𝑆/𝑀)𝐷 ∪ 𝐿𝐷.
Obviously, these three datasets are completely composed of
deterministic tuples. Top-𝑘 queries on deterministic dataset
have been much studied and are not the emphasis in this
paper.

6. Conclusions

In this paper, we introduce two novel algorithms MSSUTop-
𝑘 and quick MSSUTop-𝑘 for determining the minimum scan
scope of UTop-𝑘 queries in uncertain databases. We test the
performance of the proposed algorithms through extensive
experiments based on real dataset. In addition, by analyzing
the relationship between the minimum scan scope for pro-
cessing UTop-𝑘 queries and the data distribution of various
of uncertain dataset, we know that the ratio of minimum
scan scope to the whole uncertain dataset varies dramatically
because of different data distribution. It demonstrates that
this work should be the indispensable prerequisite for UTop-
𝑘 processing. By the work in this paper, given a uncertain
dataset and 𝑘, users can determine exactly in advance how
many tuples and which tuples will be involved for processing
UTop-𝑘 queries. Then, they can make a balance between the
result precision and processing cost and then choose a proper
optimized solution according to the computing resources
they have.

Notations

F: Scoring function
D: Uncertain dataset
𝑁: Cardinality ofD
PW: Possible worlds space
𝑛: Cardinality ofPW
T: Candidate UTop-𝑘 answer set
𝑚: Cardinality ofT
PW(𝑇𝑖): Possible worlds with 𝑇𝑖 as top-𝑘 answer
𝐵
𝑖
: 𝐵

𝑖
⊆ D, the 𝑖th X-tuple bucket

𝑀: The number of 𝐵
𝑖
s inD

𝑡
max
𝐵𝑖

: The tuple in 𝐵
𝑖
with max(F

𝑡𝑖∈𝐵𝑖
(𝑡
𝑖
))

𝐷
𝑑: The subset of deterministic tuples inD

𝑇
󸀠: The sorted X-tuple buckets
𝑇
𝑟: Representative tuple set
𝐷
𝑠: Minimum scan scope for UTop-𝑘 queries.
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