
Research Article
Efficient Reverse Skyline Processing over Sliding Windows in
Wireless Sensor Networks

Jun-Ki Min

School of Computer Science and Engineering, Korea University of Technology and Education, Byeongcheon-myeon,
Cheonan, Chungnam 330-708, Republic of Korea

Correspondence should be addressed to Jun-Ki Min; jkmin@koreatech.ac.kr

Received 26 November 2014; Revised 13 March 2015; Accepted 24 March 2015

Academic Editor: Ibrahim Kamel

Copyright © 2015 Jun-Ki Min. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Owning to the proliferation of cost-effective sensors, there has been an increased growth in a number of applications of wireless
sensor networks (WSNs). In addition, the skyline operator as well as its variants such as the dynamic skyline and reverse skyline
operator has attracted increasing attention since those are useful for multicriteria decision making applications. Since the energy
efficiency is utmost important issue to prolong the network lifetime, in this paper, we proposed efficient algorithms to process a
reverse skyline query over a sliding window inWSN environments. We first devise our algorithm for the data stream environments
and extend it to WSN environments. To compute the reverse skyline, we partition the data space into several orthants with respect
to a query point. And, in each orthant, we compute the reverse skyline independently using two buffers. In our experiment study,
we demonstrate that our algorithm is much better than other algorithms.

1. Introduction

Since being introduced in the database community, the
skyline operator [1] and its variants such as dynamic skyline
[2] and reverse skyline [3] operators have attracted increasing
attention in multicriteria decision making applications such
as product recommendations [4, 5], querying wireless sensor
networks [6], and graph analysis [7].

Given a 𝑑-dimensional point set 𝑃, a point 𝑝
𝑖

∈ 𝑃

dominates another point 𝑝
𝑗

∈ 𝑃 if 𝑝
𝑖
is smaller than 𝑝

2
in

at least one dimension and not greater than 𝑝
2
in all other

dimensions.The skyline on𝑃 comprises all points that are not
dominated by any other points. Papadias et al. [2] proposed
the dynamic skyline which is a set of points in 𝑃 not to
be dynamically dominated by any other point with respect
to (wrt) coordinate-wise distances to a given query point
𝑞. Another interesting skyline variant is the reverse skyline
operator which returns a set of every point in 𝑃, denoted as
𝑅𝑆𝐿(𝑞, 𝑃), whose dynamic skyline contains a query point 𝑞

[3].
In general, a wireless sensor network (WSN) is considered

as a cost effective platform to monitor environments. A
WSN consists of spatially distributed devices with various

sensors and a powered base station which serves as an
access point for users to pose ad hoc queries. The research
for diverse types of queries over WSNs, for example data
gathering [8], aggregation queries [9, 10], join queries [11,
12], and skyline queries [6, 13, 14], has been conducted to
satisfy the diverse application demands. Among the diverse
types of queries, a reverse skyline query is very useful for
environmental monitoring applications. For example, in an
application of monitoring the forest environment, a lot of
sensors are deployed in a forest to collect sensor readings
such as temperature and humidity. Assume a query point
𝑞 represents the thresholds of a possible fire disaster on
different attributes.

A naive method to detect a forest fire with a query point 𝑞
is that only the sensor nodes with sensor readings exceeding
thresholds report their sensor reading. For instance, let each
point in Figure 1(a) represent the sensor reading of each sen-
sor node. Since many sensor readings, represented by dotted
circles in Figure 1(a), exceed the thresholds, many sensor
nodes consume much energy to transmit a lot of sensor
readings. Because each sensor node is battery-powered and
located in hazardous or hard-to-reach place, it is impossible
or very difficult to change the batteries of sensor nodes.Thus,

Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2015, Article ID 375630, 16 pages
http://dx.doi.org/10.1155/2015/375630

2 International Journal of Distributed Sensor Networks

H
um

id
ity

30

60

0 30 60 90

Temperature

p1

p2

p3

p4

p5

p6
p7

q

(a) Naive method

q

H
um

id
ity

30

60

0 30 60 90

Temperature

p1

p2

p3

p4

p5

p6
p7

(b) Reverse skyline

Figure 1: An example for a forest fire.

in WSN environments, the energy efficiency is the utmost
important issue to prolong the network lifetime.

In contrast to the naive method, the reverse skyline
operator considers the dominance relationship for attributes
with respect to a query point 𝑞which indicates a potential fire
disaster as shown in Figure 1(b). The reverse skyline points
are represented by dotted circles in Figure 1(b). A point 𝑝

𝑖

is a reverse skyline point when 𝑞 is a dynamic skyline point
wrt 𝑝

𝑖
. In other words, 𝑞 is not dynamically dominated by

other points wrt 𝑝
𝑖
. Informally, it means that 𝑞 and 𝑝

𝑖
are

close to each other at least in one dimension (i.e., 𝑞 and 𝑝
𝑖
are

similar to each other compared to other points at least in one
dimension).Thus, the reverse skyline can represent the sensor
nodes having sensor readings highly following the fire pattern
for at least one attribute comparedwith others.Therefore, this
can save much time and quickly locate the most dangerous
places.

In this paper, we investigate the problem of energy-
efficient in-network reverse skyline computation in WSN
environments. In particular, WSN can be considered as a
source of data streams. The data stream can be broken into
possibly overlapping partitions by specifying a window and
computation can be carried out in each partition. While
efficient processing techniques for window queries have
been proposed in the area of data streams, most of the
previous work on data stream processing assumes that query
processing is conducted at a centralized server. On contrary,
in-network processing is commonly used in sensor network
where each sensor calculates a partial result. Therefore, in
our work, we devise an energy efficient algorithm to compute
the reverse skyline considering sliding window queries which
return repeatedly reverse skyline points during a given time
interval. In this paper, we consider the sensor readings that
arrived in a sliding window with size 𝑤. Specifically, a sensor
reading generated at time 𝑡

𝑠
is alive during [𝑡

𝑠
, 𝑡
𝑒
) = [𝑡

𝑠
, 𝑡
𝑠
+𝑤).

Our Contributions. Our work has the following combination
of contributions to perform the reverse skyline operator over
a sliding window.

(i) To make an efficient algorithm of the reverse skyline,
we analyze the properties of the reverse skyline
theoretically. At first, we divide the 𝑑-dimensional
data space into 2

𝑑 orthants wrt a query point 𝑞. Then,
we prove that every reverse skyline point wrt 𝑞 is also
a dynamic skyline point wrt 𝑞 on each orthant and any
dynamic skyline point dominated by a midpoint of
another point in each orthant is not a reverse skyline
point.

(ii) Each sensor node can be regarded as a source of
stream data since each sensor node measures its
environment repeatedly. Thus, we first proposed an
effective algorithm which computes reverse skyline
for a sliding window over a data stream. The devised
algorithm is running on each sensor node to gen-
erate partial result. To compute the reverse skyline
progressively, our algorithm maintains two buffers
𝑜.𝐵𝑢𝑓𝑓

𝑑𝑠𝑘𝑦
and 𝑜.𝐵𝑢𝑓𝑓

𝑟𝑒𝑠𝑡
on each orthant 𝑜 which

keep the dynamic skyline points and the dynamic
skyline candidates, respectively.

(iii) We devise in-network reverse skyline processing
technique in WSN environments. Each node in a
WSN only transmits small number of points to its
parent node when the points become newly dynamic
skyline points or the states of them are changed.
Accordingly, the energy consumption of each node
decreases.

To evaluate our proposed algorithms, we implemented
our algorithms. In our experiments, we use the synthetic
data set and the real-world data set to show the effectiveness

International Journal of Distributed Sensor Networks 3

of our algorithms in data stream environments and WSN
environments. In data stream environments, we measure the
processing time of each algorithm and, in WSN environ-
ments, we measure the total energy consumption of every
node. Our comprehensive empirical evaluation demonstrates
that our algorithm delivers the best performance in all
situations.

The rest of the paper is organized as follows. Section 2
introduces the various skyline operators and wireless sensor
networks. Section 3 contains related work. We present the
basic features of the reverse skyline and propose our basic
algorithm to process the reverse skyline in Section 4. In
Section 5, we present the energy efficient in-network process-
ing technique to compute reverse skyline over slidingwindow
in WSN environments. Section 6 presents the empirical
evaluation results and Section 7 summarizes the paper.

2. Preliminaries

2.1. Various Skyline Operators. Formally, given a 𝑑-
dimensional data set 𝑃 = {𝑝

1
, . . . , 𝑝

|𝑃|
}, a point 𝑝

𝑖
∈ 𝑃

is represented as 𝑝
𝑖

= ⟨𝑝
𝑖
⋅ 𝑥

1
, 𝑝

𝑖
⋅ 𝑥

2
, . . . , 𝑝

𝑖
⋅ 𝑥

𝑑
⟩, where

𝑝
𝑖

⋅ 𝑥
𝑘
is the value of 𝑝

𝑖
’s 𝑘th coordinate. A point 𝑝

𝑖

dominates another point 𝑝
𝑗
, denoted as 𝑝

𝑖
≺ 𝑝

𝑗
, if the two

conditions hold: (1) ∀𝑘 ∈ {1, . . . , 𝑑}, 𝑝
𝑖
⋅ 𝑥

𝑘
≤ 𝑝

𝑗
⋅ 𝑥

𝑘
and (2)

∃𝑘 ∈ {1, . . . , 𝑑}, 𝑝
𝑖
⋅ 𝑥

𝑘
< 𝑝

𝑗
⋅ 𝑥

𝑘
. Based on the dominance

relationship, the skyline of 𝑃 is defined as follows.

Definition 1 (skyline). Given a 𝑑-dimensional data set 𝑃 =

{𝑝
1
, . . . , 𝑝

|𝑃|
}, the skyline of 𝑃, represented by SL(𝑃), is largest

subset of 𝑃 where every point in SL(𝑃) is not dominated by
any other point in𝑃. In other words, SL(𝑃) = {𝑝

𝑖
∈ 𝑃 | ∄𝑝

𝑗
(̸=

𝑝
𝑖
) ∈ 𝑃 s.t. 𝑝

𝑗
≺ 𝑝

𝑖
}.

Given a 𝑑-dimensional query point 𝑞, the dominance
relationship extended the dynamic dominance relationship.
We say that a point 𝑝

𝑖
dynamically dominates 𝑝

𝑗
with respect

to (wrt) 𝑞, denoted as 𝑝
𝑖
≺
𝑞
𝑝
𝑗
, if ∀𝑘 ∈ {1, . . . , 𝑑}, |𝑝

𝑖
⋅𝑥
𝑘
−𝑞

𝑘
| ≤

|𝑝
𝑗
⋅𝑥
𝑘
−𝑞⋅𝑥

𝑘
|, and∃𝑘 ∈ {1, . . . , 𝑑}, |𝑝

𝑖
⋅𝑥
𝑘
−𝑞

𝑘
| < |𝑝

𝑗
⋅𝑥
𝑘
−𝑞⋅𝑥

𝑘
|.

Definition 2 (dynamic skyline). Given a 𝑑-dimensional data
set 𝑃 and a query point 𝑞, the dynamic skyline of 𝑃 with
respect to 𝑞 is represented by𝐷𝑆𝐿(𝑞, 𝑃) such that𝐷𝑆𝐿(𝑞, 𝑃) =

{𝑝
𝑖
∈ 𝑃 | ∄𝑝

𝑗
(̸= 𝑝

𝑖
) ∈ 𝑃 s.t. 𝑝

𝑗
≺
𝑞
𝑝
𝑖
}.

Based on the dynamic skyline, the notion of the reverse
skyline was proposed in [3]. The reverse skyline is defined as
the follows.

Definition 3 (reverse skyline). Given a 𝑑-dimensional data
set 𝑃 and a query point 𝑞, the reverse skyline, represented
by 𝑅𝑆𝐿(𝑞, 𝑃), is the set of every point 𝑝

𝑖
in 𝑃 satisfying 𝑞 ∈

𝐷𝑆𝐿(𝑝
𝑖
, 𝑃 ∪ {𝑞} − {𝑝

𝑖
}).

Example 4. Consider the data set 𝑃 = {𝑝
1
, . . . , 𝑝

7
} in

Figure 2(a). Given a query point 𝑞 represented by 󳀅, a point
𝑝
4
is a dynamic skyline point wrt 𝑞 since𝑝

4
is not dynamically

dominated by the other points. However, since a point 𝑝
5
is

dynamically dominated by 𝑝
7
, 𝑝

5
is not a dynamic skyline.

The dynamic skyline of 𝑃 wrt 𝑞 is 𝐷𝑆𝐿(𝑞, 𝑃) = {𝑝
3
, 𝑝

4
, 𝑝

7
}

in Figure 2(a). Figure 2(b) shows the dynamic skyline wrt 𝑝
7
.

Since 𝑞 is not a dynamic skyline point wrt 𝑝
7
, 𝑝

7
is a reverse

skyline point (i.e., 𝑝
7
∉ 𝑅𝑆𝐿(𝑞, 𝑃)). As shown in Figure 1(b),

𝑅𝑆𝐿(𝑞, 𝑃) = {𝑝
3
}.

2.2. Wireless Sensor Networks. We consider a sensor net-
work consisting of 𝑛 stationary sensor nodes {𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑛
}

deployed in a field of interest and a powered base station
serving as an access point for users to pose ad hoc queries.
As a basic primitive to collect sensing data in WSNs, we use
an ad hoc spanning tree, such as TinyDB [15] and SNEE [16]
as the basic routing structure from each sensor node to the
base station. Figure 3 illustrates an example of simple sensor
network consisting of eight sensor nodes.

To form a routing tree, the base station first sends a
request message which contains a hop-counter indicating
the hop distance from the base station. When each node 𝑠

𝑐

receives a request message from another node 𝑠
𝑝
, if 𝑠

𝑐
does

not have a parent node yet, node 𝑠
𝑝
becomes the parent node

of 𝑠
𝑐
, and, then, 𝑠

𝑐
forwards the request message with the

hop-counter increased by 1 to the other nodes. If 𝑠
𝑐
already

has a parent, 𝑠
𝑐
simply ignores the request message. When

𝑠
𝑐
receives several request messages from the other nodes,

𝑠
𝑐
picks the one which has the smallest hop-counter as the

parent. To break ties, the heuristics such as signal strength
and arrival time can be applied. A sensor reading consists of
several attributes each of which is associated with a sensor
module. A sensor node may be equipped with several sensor
modules. Sensor nodes generate their readings periodically
and synchronously. To synchronize the sampling time, every
sensor node executes a global time synchronization protocol
[17].

3. Related Work

To reduce the energy consumption of WSNs, research on
diverse types of queries such as aggregation, data gathering,
join, and skyline has been conducted. One of the well-
known approaches to reduce the energy consumption of
WSNs is in-network processing. In the in-network processing
techniques, the partial results are progressively merged at
intermediate nodes on their way to the base station according
to the tree routing.

3.1. Aggregation. The pioneering TAG work by Madden et al.
in [9] studied in-network aggregation for reducing commu-
nication overhead using summary data (e.g., SUM) and/or
exemplary data (e.g., MIN and MAX). In TAG, as climbing
up a routing tree from leaf nodes to the base station, partial
aggregation values are computed. Approximate aggregation
techniques have been also proposed to reduce the energy
consumption. The work of Considine et al. [18] was based on
the FM sketch. Shrivastava et al. [19] developed the q-digest
structure to support approximate processing for quantile
queries such as MEDIAN. In [20], an effective aggregation
technique for the situation that sensor nodes can detect an
object duplicately was presented. To identify the duplicates

4 International Journal of Distributed Sensor Networks

H
um

id
ity

30

60

0 30 60 90

Temperature

p1

p2

p4

p5

p6

p6
p7

q

p
󳰀

4

p
󳰀

5

p
󳰀

7
p3

(a) 𝐷𝑆𝐿(𝑞,𝑃)

H
um

id
ity

30

60

0 30 60 90

Temperature

p1

p2

p3

p4

p5

p6
p7

q

p
󳰀

5

p
󳰀

6

(b) 𝐷𝑆𝐿(𝑝3 ,𝑃∪{𝑞}−{𝑝3})

Figure 2: An example of the dynamic skyline.

Base station

s1 s2

s3 s4 s5 s6 s7

si: sensor node

Figure 3: A simple sensor network.

eagerly, a variant of bloom filers was utilized in [20]. Refer to
[21] for the summary of in-network aggregation.

3.2. Data Gathering. For the situations that require the
sensor readings rather than an aggregate value, some approx-
imate sensor data gathering techniques have been proposed
since most applications of sensor networks do not require
highly accurate data. Some correlations appear among sensor
readings. Such correlations can be captured by standard
techniques like the linear regression and statistical distribu-
tion functions. Basically, each sensor estimates its readings
independently with its ownmodel. And the mirror model for
each sensor is in the base station. Thus, if a sensor node does

not transmit a sensor reading, the base station can obtain an
approximate reading using the mirror model.

BBQ [22] uses the multivariate Gaussian to model the
sensor readings instead of data interval. Chu et al. [23]
extends BBQ by partitioning the sensor field to cliques in
order to utilize the spatial correlation. Since the optimal
partitioning is NP-hard, Ken uses the greedy heuristics. Jain
et al. suggested dual Kalman filter [24] which is based on
the Kalman filter. In addition, Min and Chung proposed
EDGES [25] based on a variant of the Kalman filter, that
is, multimodel Kalman filter. In [8], by utilizing the spatial
correlation such that the change patterns of sensor readings
of the neighbor sensors are the same or similar, an effective
data gathering technique was presented.

3.3. Join. In some applications, a user wants to identify the
relationship between sensor readings in different regions.
This regional correlation can be expressed as a join query of
sensor readings in two regions. Thus, recently, research on
in-network join processing has been proposed to reduce the
communication overhead. Some works [26, 27] study how
to find an optimal join location using the cost models. In
these works, the optimal join location is near to the weighted
centroid of three points: the center points of two regions and
the base station.

Some in-network join techniques utilize a semijoin oper-
ator which filters out one of the relations based on the join
attribute values of the other relation. However, due to a large
number of join attribute values, a lot of energy is consumed.
To alleviate this overhead, some work utilizes the synopsis
of join attribute values. In [28], a histogram based semijoin
approach is proposed. Stern et al. propose the method called
SENS-Join [29], which is similar to that of [28], in order
to avoid shipping tuples through the network that do not

International Journal of Distributed Sensor Networks 5

participate in the joins. As the compact representation, they
use pointless quadtree representation.

3.4. Skyline. After Börzsönyi et al. [1] proposed the skyline
operator, various techniques [30, 31] have been presented
to improve the performance of skyline queries. The sort-
filter skyline (SFS) algorithm [30] improves BNL using
presorted data set according to the scores computed by a
monotone function. By exploiting R*-tree, Kossmann et al.
[31] presented an improved algorithm, called NN, based
on the nearest neighbor search. The dynamic skyline was
introduced by Papadias et al. [2]. Later on, the reverse skyline
was proposed by Dellis and Seeger [3].

Since the skyline operator as well as its variants is
useful to detect interesting events, there are some studies
for in-network skyline processing in WSN environments.
In [13], a filtering technique was proposed to reduce the
energy consumption of WSNs in which some filter points
are broadcasted to every sensor node and the data points
dominated by the filter points are not transmitted since they
cannot be in the skyline. Recently, a multiple filter-based
algorithm called SKYFILTER was proposed to processing
skyline over the sliding window in [14]. However, to compute
filter points, every sensor node wastes its energy. The most
related literature to our work is [6]. To obtain the reverse
skyline points in WSNs, the 2-Skyband query that retrieves
every point which is dominated by at most one point wrt 𝑞 is
used. However, this technique calculates the reverse skyline
with the currently generated points only. In other words, the
reverse skyline processing over a sliding window is not sup-
ported. In contrast to previous work, we investigate effective
reverse skyline processing techniques over a sliding window
in data stream environments as well as WSN environments.

4. Reverse Skyline Processing over
Sliding Windows

Before the presentation of the overall behavior of our pro-
posed in-network reverse skyline processing, we first present
the properties of the reverse skyline in Section 4.1. Since each
sensor node in WSNs generates its readings continuously,
each sensor node can be considered as a source of streamdata.
Thus, in Section 4.2, we present our basic algorithm in the
context of stream data. Our in-network processing technique
based on the basic algorithm will be presented in Section 5.

4.1. Properties of Reverse Skyline. In this section, we present
the properties of the reverse skyline. Park et al. [32] showed
that, when the 𝑑-dimensional space is divided into 2

𝑑

orthants with respect to a query point 𝑞 as shown in Figure 4,
the reverse skyline can be computed with each subset 𝑃

𝑜
⊂ 𝑃

independently, where 𝑃
𝑜
denotes the set of points located in

each orthant 𝑜.

Lemma 5. Given a data set 𝑃, a query point q, and an orthant
𝑜, if and only if a point 𝑝

𝑖
∈ 𝑃

𝑜
⊆ 𝑃 is not in 𝑅𝑆𝐿(𝑞, 𝑃), then

there exists another 𝑝
𝑗
in 𝑃

𝑜
which dynamically dominates 𝑞

with respect to 𝑝
𝑖
(i.e., 𝑝

𝑗
≺
𝑝𝑖
𝑞).

H
um

id
ity

30

60

0 30 60 90

Temperature

p1

p2

p3

p4

p5

p6
p7

qP1

P2

P3

P4

Figure 4: Subsets 𝑃
(𝑜=1⋅⋅⋅4)

in 𝑃.

Proof. (:⇐) For 𝑝
𝑖
, 𝑝

𝑗
∈ 𝑃

𝑜
, if 𝑝

𝑗
≺
𝑝𝑖
𝑞, 𝑞 is not a dynamic

skyline with respect to 𝑝
𝑖
(i.e., 𝑞 ∉ 𝐷𝑆𝐿(𝑝

𝑖
, 𝑃∪ {𝑝}− {𝑞

𝑖
})). By

Definitions 2 and 3, 𝑝
𝑖
is not in 𝑅𝑆𝐿(𝑞, 𝑃).

(⇒:) If a point 𝑝
𝑖
∈ 𝑃

𝑜
is not in 𝑅𝑆𝐿(𝑞, 𝑃), there exists 𝑝

𝑗

such that𝑝
𝑗
≺
𝑝𝑖
𝑞 byDefinition 3.Thenwe have |𝑞⋅𝑥

𝑘
−𝑝

𝑖
⋅𝑥
𝑘
| ≥

|𝑝
𝑗
⋅ 𝑥

𝑘
− 𝑝

𝑖
⋅ 𝑥

𝑘
|∀𝑘 ∈ {1, . . . , 𝑑}. Squaring both sides, we get

0 ≥ (𝑝
𝑗
⋅ 𝑥

𝑘
− 𝑝

𝑖
⋅ 𝑥

𝑘
)
2
− (𝑞 ⋅ 𝑥

𝑘
− 𝑝

𝑖
⋅ 𝑥

𝑘
)
2. Rearranging terms,

we have 0 ≥ (𝑝
𝑗
⋅ 𝑥

𝑘
+ 𝑞 ⋅ 𝑥

𝑘
− 2𝑝

𝑖
⋅ 𝑥

𝑘
) ⋅ (𝑝

𝑗
⋅ 𝑥

𝑘
− 𝑞 ⋅ 𝑥

𝑘
) =

− 2 ⋅ (𝑝
𝑖
⋅ 𝑥

𝑘
− 𝑞 ⋅ 𝑥

𝑘
)(𝑝

𝑗
⋅ 𝑥

𝑘
− 𝑞 ⋅ 𝑥

𝑘
) + (𝑝

𝑗
⋅ 𝑥

𝑘
− 𝑞 ⋅ 𝑥

𝑘
)
2. Since

2 ⋅ (𝑝
𝑖
⋅ 𝑥

𝑘
− 𝑞 ⋅ 𝑥

𝑘
) ⋅ (𝑝

𝑗
⋅ 𝑥

𝑘
− 𝑞 ⋅ 𝑥

𝑘
) ≥ (𝑝

𝑗
⋅ 𝑥

𝑘
− 𝑞 ⋅ 𝑥

𝑘
)
2
≥

0∀𝑘 ∈ {1, . . . , 𝑑}, (𝑝
𝑖
⋅ 𝑥

𝑘
− 𝑞 ⋅ 𝑥

𝑘
) and (𝑝

𝑗
⋅ 𝑥

𝑘
− 𝑞 ⋅ 𝑥

𝑘
) have

the same sign. Thus, 𝑝
𝑗
is also in 𝑃

𝑜
.

By Lemma 5, we have 𝑅𝑆𝐿(𝑞, 𝑃) = ∪
∀𝑃𝑜

𝑅𝑆𝐿(𝑞, 𝑃
𝑜
). Now,

for brevity, we explain our algorithmon a single orthant 𝑜 and
the corresponding data set 𝑃

𝑜
⊆ 𝑃.

The following lemma addresses that every reverse skyline
point wrt 𝑞 is also a dynamic skyline point wrt 𝑞 but not vice
versa.

Lemma 6. Given an orthant 𝑜 and a query point 𝑞,
𝑅𝑆𝐿(𝑞, 𝑃

𝑜
) ⊆ 𝐷𝑆𝐿(𝑞, 𝑃

𝑜
).

Proof. For the purpose of contradiction, we assume 𝑝
𝑖
(∈

𝑃
𝑜
) ∉ 𝐷𝑆𝐿(𝑞, 𝑃

𝑜
). Thus, there exists 𝑝

𝑗
∈ 𝑃

𝑜
such that 𝑝

𝑗
≺
𝑞
𝑝
𝑖
,

and, hence, |𝑝
𝑗
⋅ 𝑥

𝑘
− 𝑞 ⋅ 𝑥

𝑘
| ≤ |𝑝

𝑖
⋅ 𝑥

𝑘
− 𝑞 ⋅ 𝑥

𝑘
| ∀𝑘 ∈ {1, . . . , 𝑑}

(and ∃𝑘 ∈ {1, . . .}, |𝑝
𝑗
⋅ 𝑥

𝑘
−𝑞 ⋅ 𝑥

𝑘
| < |𝑝

𝑖
⋅ 𝑥

𝑘
−𝑞 ⋅ 𝑥

𝑘
|). It means

that 𝑝
𝑖
⋅ 𝑥

𝑘
is located farther than 𝑝

𝑗
⋅ 𝑥

𝑘
from 𝑞 ⋅ 𝑥

𝑘
in the

orthant 𝑜. It implies that 𝑝
𝑗
⋅ 𝑥

𝑘
is closer to 𝑝

𝑖
⋅ 𝑥

𝑘
than 𝑞 ⋅ 𝑥

𝑘

is. Obviously, |𝑝
𝑗
⋅ 𝑥

𝑘
− 𝑝

𝑖
⋅ 𝑥

𝑘
| ≤ |𝑞 ⋅ 𝑥

𝑘
− 𝑝

𝑖
⋅ 𝑥

𝑘
| ∀𝑘 (and ∃𝑘,

|𝑝
𝑗
⋅𝑥
𝑘
−𝑝

𝑖
⋅𝑥
𝑘
| < |𝑞 ⋅𝑥

𝑘
−𝑝

𝑖
⋅𝑥
𝑘
|).Then, we have 𝑝

𝑗
≺
𝑝𝑖
𝑞.Thus,

𝑝
𝑖
∉ 𝑅𝑆𝐿(𝑞, 𝑃

𝑜
). Therefore, 𝑅𝑆𝐿(𝑞, 𝑃

𝑜
) ⊆ 𝐷𝑆𝐿(𝑞, 𝑃

𝑜
).

From Lemma 6, in order to compute the reverse skyline
of each𝑃

𝑜
, a nonreverse skyline point in𝐷𝑆𝐿(𝑞, 𝑃

𝑜
) should be

eliminated. For this purpose, we utilize the idea of midpoints
introduced in [3, 6, 32]. The midpoint 𝑚

𝑖
of a point 𝑝

𝑖
with

6 International Journal of Distributed Sensor Networks

H
um

id
ity

Temperature

p1

p2

p3

q

P4

m1

m2

m3

Figure 5: Midpoints in an orthant.

respect to a query point 𝑞 is defined as 𝑚
𝑖
= ⟨(𝑝

𝑖
⋅ 𝑥

1
+ 𝑞 ⋅

𝑥
1
)/2, (𝑝

𝑖
⋅ 𝑥

2
+ 𝑞 ⋅ 𝑥

2
)/2, . . . , (𝑝

𝑖
⋅ 𝑥

𝑑
+ 𝑞 ⋅ 𝑥

𝑑
)/2⟩.

Lemma 7. Given an orthant 𝑜 and a query point 𝑞, 𝑝
𝑖

∈

𝐷𝑆𝐿(𝑞, 𝑃
𝑜
) is not a reverse skyline if there exists another point

𝑝
𝑗
∈ 𝑃

𝑜
whose midpoint dynamically dominates 𝑝

𝑖
with respect

to 𝑞 (i.e., 𝑚
𝑗
≺
𝑞
𝑝
𝑖
).

Proof (by contradiction). Assume that 𝑝
𝑖

∈ 𝑅𝑆𝐿(𝑞, 𝑃
𝑜
) ⊂

𝐷𝑆𝐿(𝑞, 𝑃
𝑜
). Since 𝑝

𝑖
∈ 𝑅𝑆𝐿(𝑞, 𝑃

𝑜
), there does not exist 𝑝

𝑗
∈ 𝑃

𝑜

s.t.; 𝑝
𝑗
≺
𝑝𝑖
𝑞.Then, in the proof of Lemma 5, we infer that there

does not exist 𝑝
𝑗
∈ 𝑃

𝑜
satisfying 2 ⋅ (𝑝

𝑖
⋅ 𝑥

𝑘
− 𝑞 ⋅ 𝑥

𝑘
) ⋅ (𝑝

𝑗
⋅ 𝑥

𝑘
−

𝑞 ⋅ 𝑥
𝑘
) ≥ (𝑝

𝑗
⋅ 𝑥

𝑘
− 𝑞 ⋅ 𝑥

𝑘
)
2
∀𝑘 ∈ {1, . . . , 𝑑}.

However, when𝑚
𝑗
≺
𝑞
𝑝
𝑖
, we have |(𝑝

𝑗
⋅𝑥
𝑘
+𝑞⋅𝑥

𝑘
)/2−𝑞⋅𝑥

𝑘
|

= |𝑝
𝑗
⋅ 𝑥

𝑘
− 𝑞 ⋅ 𝑥

𝑘
|/2 ≤ |𝑝

𝑖
⋅ 𝑥

𝑘
− 𝑞 ⋅ 𝑥

𝑘
| ∀𝑘 ∈ {1, . . . , 𝑑}. By

multiplying 2 ⋅ (𝑝
𝑗
⋅ 𝑥

𝑘
− 𝑞 ⋅ 𝑥

𝑘
) to both sides, we get (𝑝

𝑗
⋅ 𝑥

𝑘
−

𝑞 ⋅ 𝑥
𝑘
)
2
≤ 2 ⋅ (𝑝

𝑗
⋅ 𝑥

𝑘
− 𝑞 ⋅ 𝑥

𝑘
)(𝑝

𝑖
⋅ 𝑥

𝑘
− 𝑞 ⋅ 𝑥

𝑘
). Therefore, by

contradiction, 𝑝
𝑖
∉ 𝑅𝑆𝐿(𝑞, 𝑃

𝑜
) if 𝑚

𝑗
≺
𝑞
𝑝
𝑖
.

Example 8. Consider a data set 𝑃 in Figure 4. By Lemma 5,
we can compute the reverse skyline on each orthant 𝑜

independently.
Given a data set 𝑃

4
= {𝑝

1
, 𝑝

2
, 𝑝

3
} ⊂ 𝑃, as shown in

Figure 5, since each point in𝑃
4
is not dynamically dominating

each other wrt 𝑞, every point is a dynamic skyline point (i.e.,
𝐷𝑆𝐿(𝑞, 𝑃

4
) = 𝑃

4
). However, a midpoint𝑚

2
of 𝑝

2
dynamically

dominates 𝑝
1
wrt 𝑞. Thus, by Lemma 7, 𝑝

1
is not a reverse

skyline point (i.e., 𝑝
1

∉ 𝑅𝑆𝐿(𝑞, 𝑃
4
)). Similarly, 𝑝

2
does not

belong to 𝑅𝑆𝐿(𝑞, 𝑃), either. In this example, 𝑝
3
, denoted

as a bold circle, is a reverse skyline point since 𝑝
3
is not

dynamically dominated by any midpoint wrt 𝑞 except its
midpoint 𝑚

3
.

4.2. Computing 𝑅𝑆𝐿(𝑞, 𝑃
𝑜
) over Sliding Windows. In this

section, we present our algorithm, called RSPW, to compute
reverse skyline over sliding windows in WSNs by utilizing
the properties of reverse skyline presented in Section 4.1.
Basically, RSPW is working on each sensor node to generate

partial reverse skyline. In Section 5, we will present how to
integrate the partial reverse skyline generated by each sensor
node.

To compute the skyline over a sliding window, Tao and
Papadias [33] proposed an effective method. Similarly, we
need to keep the dynamic skyline based on Lemma 6 to
obtain the reverse skyline.Thus, we adapt the sliding window
skyline processing technique (denoted as SWSP) proposed in
[33] to our reverse skyline processing over sliding windows.

Lemma9 (see [33]). Let𝑝
𝑖
be a point in𝐷𝐵. If𝑝

𝑖
is dominated

by a newly generated point 𝑝
𝑗
, then 𝑝

𝑖
can be safely discarded

from𝐷𝐵; that is, 𝑝
𝑖
will not be part of the skyline in the future.

Since SWSP is for the skyline processing, SWSP considers
a single data space. In addition, SWSP handles the database
DB (i.e, the set of points which are alive) based on Lemma 9.
Meanwhile, by Lemma 5, we can compute the reverse skyline
on each orthant independently. For each orthant 𝑜, two
buffers 𝑜.𝐵𝑢𝑓𝑓

𝑑𝑠𝑘𝑦
and 𝑜.𝐵𝑢𝑓𝑓

𝑟𝑒𝑠𝑡
are maintained in our work.

In addition, although SWSP maintains DB efficiently based
on Lemma 9, Lemma 9 does not hold in our work since
we need to prune out the nonreverse skyline points from
𝐷𝑆𝐿(𝑞, 𝑃

𝑜
) by Lemma 7.

For instance, as shown in Figure 6(a), 𝑝
1
and 𝑝

2
were

generatedwhere a point𝑝
𝑖
is generated at time 𝑖. Let awindow

size 𝑤 be 3. As shown in Figure 6(a), when time 𝑡 is 2, 𝑝
2

dynamically dominates 𝑝
1
wrt 𝑞. Thus, 𝑝

1
is not a dynamic

skyline point nor a reverse skyline point either. Meanwhile,
𝑝
2
is a dynamic skyline point but is not a reverse skyline

point since the midpoint𝑚
1
of 𝑝

1
dynamically dominates 𝑝

2
.

To indicate whether a dynamic skyline point is not a reverse
skyline, we assign a mark to the point which is not a reverse
skyline point. Note that, even though we use a mark, we
cannot discard 𝑝

1
simply in this example.

As shown in Figure 6(b), 𝑝
1
expires when time 𝑡 = 4

since 𝑤 = 3. If other points are not generated within the time
interval [13, 30], 𝑝

2
should become a reverse skyline point at

𝑡 = 4 since no midpoint dominates 𝑝
2
. In this case, if we

discard 𝑝
1
at 𝑡 = 2, we do not have a time information for

𝑝
2
being a reverse skyline point. In other words, a mark itself

is not sufficient to preserve the dominance relationship with
respect to time. To keep such information, each mark has an
expiry time. In Figure 6(a), a mark with an expiry time 𝑡exp is
represented by “∗, 𝑡exp.”

In our work, 𝑜.𝐵𝑢𝑓𝑓
𝑑𝑠𝑘𝑦

keeps the dynamic skyline in the
orthant 𝑜 at the current time. Every nonreverse skyline point
among the dynamic skyline points has a mark with its expire
time. 𝑜.𝐵𝑢𝑓𝑓

𝑟𝑒𝑠𝑡
maintains the dynamic skyline candidates

which will be a part of the dynamic skyline in the future. To
maintain 𝑜.𝐵𝑢𝑓𝑓

𝑑𝑠𝑘𝑦
and 𝑜.𝐵𝑢𝑓𝑓

𝑟𝑒𝑠𝑡
, we devise the following

proposition and lemma.

Proposition 10. Given a query point 𝑞 and an orthant 𝑜, every
point 𝑝

𝑖
in 𝑜.𝐵𝑢𝑓𝑓

𝑑𝑠𝑘𝑦
∪ 𝑜.𝐵𝑢𝑓𝑓

𝑟𝑒𝑠𝑡
dynamically dominated by

the midpoint of a newly generated point 𝑝
𝑗
could not be a

reverse skyline point for 𝑝
𝑗
’s lifespan.

Proof. It trivially holds by Lemma 7.

International Journal of Distributed Sensor Networks 7

H
um

id
ity

Temperature

p1

q

m1

p
∗,4

2

(a) 𝑡 = 2

H
um

id
ity

Temperatureq

p1

p
∗,4

2

(b) 𝑡 = 4

Figure 6: An example for a sliding window (𝑤 = 3).

By Proposition 10, when a point 𝑝
𝑗
appears in an orthant

𝑜 at time 𝑗, every point 𝑝
𝑖

∈ (𝑜.𝐵𝑢𝑓𝑓
𝑑𝑠𝑘𝑦

∪ 𝑜.𝐵𝑢𝑓𝑓
𝑟𝑒𝑠𝑡

)

dynamically dominated by 𝑚
𝑗
of 𝑝

𝑗
is assigned a mark with

expiry time (i.e., 𝑡exp) as 𝑝𝑗 ⋅ 𝑡𝑒.

Lemma 11. Given a query point 𝑞 and an orthant 𝑜, every
point 𝑝

𝑘
in 𝑜.𝐵𝑢𝑓𝑓

𝑑𝑠𝑘𝑦
and 𝑜.𝐵𝑢𝑓𝑓

𝑟𝑒𝑠𝑡
dynamically dominated

by a newly generated point 𝑝
𝑗
(i.e., 𝑝

𝑗
≺
𝑞
𝑝
𝑘
) can be discarded.

In addition, if there is a point 𝑝
𝑖
such that 𝑝

𝑖
has the largest

expiry time among the points in 𝑜.𝐵𝑢𝑓𝑓
𝑑𝑠𝑘𝑦

∪ 𝑜.𝐵𝑢𝑓𝑓
𝑟𝑒𝑠𝑡

whose
midpoints dynamically dominate 𝑝

𝑗
, then 𝑝

𝑗
cannot be a

reverse skyline point within 𝑝
𝑖
’s lifespan.

Proof. By Definition 2, given a new point 𝑝
𝑗
, every 𝑝

𝑘
∈

(𝑜.𝐵𝑢𝑓𝑓
𝑑𝑠𝑘𝑦

∪ 𝑜.𝐵𝑢𝑓𝑓
𝑟𝑒𝑠𝑡

) such that 𝑝
𝑗
≺
𝑞
𝑝
𝑘
cannot be a

dynamic skyline point. In addition, since 𝑝
𝑗
is newly gener-

ated, every 𝑝
𝑘
will expire before 𝑝

𝑗
. Thus, every 𝑝

𝑘
cannot

be a reverse skyline point within its lifespan due to 𝑝
𝑗
. In

addition, by definition of midpoints, if 𝑝
𝑗
≺
𝑞
𝑝
𝑘
, then𝑚

𝑗
≺
𝑞
𝑚
𝑘
.

Thus, since every point dynamically dominated by 𝑚
𝑘
is also

dynamically dominated by𝑚
𝑗
, we can discard𝑝

𝑘
.Meanwhile,

by Lemma 7, since the point 𝑝
𝑖
is the point whose expire time

is largest among the points whose midpoints dynamically
dominate 𝑝

𝑗
, 𝑝

𝑗
cannot be a reverse skyline during 𝑝

𝑖
’s

lifespan.

By Lemma 11, 𝑝
𝑗

∈ 𝑃
𝑜
has a mark with expiry time as

max
𝑝𝑖∈𝑃
𝑗

𝑜

(𝑝
𝑖
⋅ 𝑡
𝑒
) where 𝑃

𝑗

𝑖
= {𝑝

𝑖
∈ (𝑜.𝐵𝑢𝑓𝑓

𝑑𝑠𝑘𝑦
∪ 𝑜.𝐵𝑢𝑓𝑓

𝑟𝑒𝑠𝑡
) |

𝑚
𝑖
≺
𝑞
𝑝
𝑗
}. In addition, we can remove every point 𝑝

𝑖
in

𝑜.𝐵𝑢𝑓𝑓
𝑑𝑠𝑘𝑦

and 𝑜.𝐵𝑢𝑓𝑓
𝑟𝑒𝑠𝑡

if 𝑝
𝑖
is dynamically dominated by

the incoming point 𝑝
𝑗
.

The pseudocode of our proposed algorithm, denoted by
RSPW, is presented in Pseudocode 1. The algorithm RSPW
computes the reverse skyline over a sliding window. RSPW
consists of two parts. The first one is for processing a
newly created point 𝑝

𝑗
at the current time 𝑗 (lines 1–12 in

Pseudocode 1). The other one is for managing expired points
and expired marks at the current time 𝑗 (lines 14–20).

Recall that we maintain two buffers for each orthant
𝑜: 𝑜.𝐵𝑢𝑓𝑓

𝑑𝑠𝑘𝑦
and 𝑜.𝐵𝑢𝑓𝑓

𝑟𝑒𝑠𝑡
. Given a sliding window sized

𝑤, 𝑜.𝐵𝑢𝑓𝑓
𝑑𝑠𝑘𝑦

maintains the dynamic skyline points in
the orthant 𝑜. The nonreverse skyline points in 𝑜.𝐵𝑢𝑓𝑓

𝑑𝑠𝑘𝑦

are annotated with marks. The buffer 𝑜.𝐵𝑢𝑓𝑓
𝑟𝑒𝑠𝑡

keeps the
dynamic skyline candidates which can be a reverse skyline in
the future.

When a new point 𝑝
𝑗
is generated at the current time

𝑗 in an orthant 𝑜 (line 1), RSPW investigates whether 𝑝
𝑗
is

a dynamic skyline point or not by comparing with every
point 𝑝

𝑖
in 𝑜.𝐵𝑢𝑓𝑓

𝑑𝑠𝑘𝑦
and 𝑜.𝐵𝑢𝑓𝑓

𝑟𝑒𝑠𝑡
. If 𝑝

𝑗
is dynamically

dominated by 𝑝
𝑖
, since 𝑝

𝑗
cannot be a dynamic skyline, the

flag is dsky sets to 𝑓𝑎𝑙𝑠𝑒 (line 5). If there is a point 𝑝
𝑖
such

that the midpoint 𝑚
𝑖
of 𝑝

𝑖
dynamically dominates 𝑝

𝑗
, 𝑝

𝑗

should have a mark with an expiry time. Thus, based on
Lemma 11, RSPW maintains the largest expiry time for 𝑝

𝑗
’s

mark in mark time (line 6). In addition, RSPW removes 𝑝
𝑖

if 𝑝
𝑖
is dynamically dominated by Lemma 11. When 𝑝

𝑖
is

not dynamically dominated by 𝑝
𝑗
, 𝑝

𝑖
can become a dynamic

skyline point. But if 𝑝
𝑖
is dynamically dominated by the

midpoint𝑚
𝑗
of 𝑝

𝑗
, since 𝑝

𝑖
will not be a reverse skyline point,

we assign a mark with an expiry time as 𝑝
𝑗
⋅ 𝑡
𝑒
to 𝑝

𝑖
due to

Proposition 10 (line 8). After iterating all points in 𝑜.𝐵𝑢𝑓𝑓
𝑑𝑠𝑘𝑦

and 𝑜.𝐵𝑢𝑓𝑓
𝑟𝑒𝑠𝑡

, RSPW assigns a mark with mark time to 𝑝
𝑗
if

it is required (line 10). And 𝑝
𝑗
is inserted into 𝑜.𝐵𝑢𝑓𝑓

𝑑𝑠𝑘𝑦
or

𝑜.𝐵𝑢𝑓𝑓
𝑟𝑒𝑠𝑡

with respect to the flag is dsky (lines 11-12).
When a point 𝑝

𝑖
is expired at the current time 𝑗 (i.e., 𝑝

𝑖
⋅

𝑡
𝑒
= 𝑗) (line 15), 𝑝

𝑖
should be eliminated. By elimination of 𝑝

𝑖
,

every point 𝑝
𝑘
in 𝑜.𝐵𝑢𝑓𝑓

𝑟𝑒𝑠𝑡
which is dynamically dominated

by 𝑝
𝑖
exclusively becomes dynamic skyline point at time 𝑗.

Thus, the algorithm RSPW moves such 𝑝
𝑘
in 𝑜.𝐵𝑢𝑓𝑓

𝑟𝑒𝑠𝑡
to

𝑜.𝐵𝑢𝑓𝑓
𝑑𝑠𝑘𝑦

and removes 𝑝
𝑖
(lines 15–18). In addition, RSPW

unmarks every point 𝑝
𝑖
in 𝑜.𝐵𝑢𝑓𝑓

𝑑𝑠𝑘𝑦
whose mark’s expiry

time is 𝑗 (line 19).

8 International Journal of Distributed Sensor Networks

Procedure 𝑅𝑆𝑃𝑊(𝑃
𝑜
)

//𝑃
𝑜
is an input stream and this is invoked at each time 𝑗

//the midpoint of a point 𝑝
𝑖
is denoted as 𝑚

𝑖

begin
(1) Let 𝑝

𝑗
be a newly generated point at the current time 𝑗 and located on an orthant 𝑜;

(2) mark time = 0
(3) is dsky = 𝑡𝑟𝑢𝑒

(4) for each point 𝑝
𝑖
∈ (𝑜.𝐵𝑢𝑓𝑓

𝑑𝑠𝑘𝑦
∪ 𝑜.𝐵𝑢𝑓𝑓

𝑟𝑒𝑠𝑡
) do {

(5) if 𝑝
𝑖
≺
𝑞
𝑝
𝑗
then is dsky = 𝑓𝑎𝑙𝑠𝑒

(6) if 𝑚
𝑖
≺
𝑞
𝑝
𝑗
andmark time < 𝑝

𝑖
⋅ 𝑡
𝑒
thenmark time = 𝑝

𝑖
⋅ 𝑡
𝑒

//Lemma 11
(7) if 𝑝

𝑗
≺
𝑞
𝑝
𝑖
then remove 𝑝

𝑖
//Lemma 11

(8) else if 𝑚
𝑗
≺
𝑞
𝑝
𝑖
thenmark 𝑝

𝑖
where 𝑡exp = 𝑝

𝑗
⋅ 𝑡
𝑒

//Proposition 10
(9) }

(10) if mark time ̸= 0 thenmark 𝑝
𝑗
where 𝑡exp = mark time //Lemma 11

(11) if is dsky = 𝑡𝑟𝑢𝑒 then insert 𝑝
𝑗
into 𝑜.𝐵𝑢𝑓𝑓

𝑑𝑠𝑘𝑦

(12) else insert 𝑝
𝑗
into 𝑜.𝐵𝑢𝑓𝑓

𝑟𝑒𝑠𝑡

(13)
(14) for each point 𝑝

𝑖
∈ 𝑜.𝐵𝑢𝑓𝑓

𝑑𝑠𝑘𝑦
do {

(15) if 𝑝
𝑖
⋅ 𝑡
𝑒
= 𝑗 then {//𝑝

𝑖
expires at this time

(16) move every 𝑝
𝑘
∈ 𝑜.𝐵𝑢𝑓𝑓

𝑟𝑒𝑠𝑡
which is exclusively dominated by 𝑝

𝑖
to 𝑜.𝐵𝑢𝑓𝑓

𝑑𝑠𝑘𝑦

(17) remove 𝑝
𝑖
from 𝑜.𝐵𝑢𝑓𝑓

𝑑𝑠𝑘𝑦

(18) }

(19) else if 𝑝
𝑖
has a mark and 𝑡exp = 𝑗 then unmark 𝑝

𝑖

(20) }
(21) return 𝑜.𝐵𝑢𝑓𝑓

𝑑𝑠𝑘𝑦

end

Pseudocode 1: The pseudocode of RSPW.

Finally, the set of dynamic skyline point (i.e., 𝑜.𝐵𝑢𝑓𝑓
𝑑𝑠𝑘𝑦

)
is returned (line 21). Recall that every nonreverse skyline
point has a mark. Thus, we can easily identify reverse skyline
points from the dynamic skyline points in 𝑜.𝐵𝑢𝑓𝑓

𝑑𝑠𝑘𝑦
.

The following example illustrates the behavior of our
proposed algorithm RSPW within a single orthant 𝑜.

Example 12. Let the size of window 𝑤 be 2 and each point
𝑝
𝑡
be generated at time 𝑡. Figure 7(a) shows the states of

the points generated when 𝑡 is 1 to 4. When 𝑡 = 1, since
there is 𝑝

1
only in an orthant 𝑜, 𝑝

1
is a dynamic skyline

point (and a reverse skyline point), and, hence, 𝑝
1
is in

𝑜.𝐵𝑢𝑓𝑓
𝑑𝑠𝑘𝑦

. When 𝑡 = 2, since 𝑝
2
is dynamically dominated

by 𝑝
1
, 𝑝

2
is in 𝑜.𝐵𝑢𝑓𝑓

𝑟𝑒𝑠𝑡
. In addition, since the midpoint

𝑚
2
of 𝑝

2
dynamically dominates 𝑝

1
, 𝑝

1
is annotated with a

mark ∗, 4. Since 𝑝
2
is also dynamically dominated by 𝑚

1
, 𝑝

2

has a mark ∗, 3. When 𝑡 = 3, since 𝑝
3
is not dynamically

dominated by any other point as well as the other midpoints,
𝑝
3
becomes a reverse skyline point and is in 𝑜.𝐵𝑢𝑓𝑓

𝑑𝑠𝑘𝑦
. In

addition, since 𝑝
1
’s expiry time is 3, 𝑝

1
is removed, and,

then, 𝑝
2
becomes a dynamic skyline point. Thus, 𝑝

2
moves

to 𝑜.𝐵𝑢𝑓𝑓
𝑑𝑠𝑘𝑦

. Furthermore, the expiry time of 𝑝
2
’s mark is 3,

and 𝑝
2
becomes a reverse skyline point.

As shown in Figure 7(b), since 𝑝
2
⋅ 𝑡
𝑒

= 4, 𝑝
2
is expired

when 𝑡 = 4. Since 𝑝
4
dominates 𝑝

3
∈ 𝑜.𝐵𝑢𝑓𝑓

𝑑𝑠𝑘𝑦
, 𝑝

4
becomes

a dynamic skyline point and 𝑝
3
is discarded. Since 𝑚

3
does

not dynamically dominate 𝑝
4
, 𝑝

4
has no mark (i.e., 𝑝

4
is a

reverse skyline point at 𝑡 = 4). In addition, when 𝑡 = 5,
𝑝
5
is newly generated. Since 𝑝

5
and 𝑝

4
do not dynamically

dominate each other, 𝑝
5
and 𝑝

4
are dynamic skyline points as

well as 𝑝
4
is not removed. However, since their midpoints𝑚

4

and𝑚
5
dynamically dominate 𝑝

5
and 𝑝

4
, respectively, 𝑝

4
and

𝑝
5
have marks.

Up to now, we present our algorithm to compute the
reverse skyline over a sliding window in data stream environ-
ments. In the next section, we will describe how to calculate
the reverse skyline in WSN environments.

5. Energy Efficient RSPW for WSNs

As mentioned above, the energy efficiency is the utmost
important in WSN environments. A brute-force algorithm,
denoted as 𝑅𝑆𝑃𝑊

𝑏𝑓
, to compute reverse skyline over a

sliding window in WSNs is that every sensor node transmits
its sensor readings to the base station along the routing
path and the base station computes dynamic skyline using
the algorithm RSPW presented in Section 4.2 and extracts
reverse skyline points having no mark. However, since each
sensor node blindly sends its readings to the base station, each
sensor node consumes much energy.

Based on the following lemma, we can apply RSPW to
each sensor node in WSNs.

Lemma 13. Given an orthant 𝑜, a query point 𝑞, and two
sensor nodes 𝑠

1
and 𝑠

2
, let 𝑃

1

𝑜
and 𝑃

2

𝑜
be the set of points

located in 𝑜 and generated by 𝑠
1
and 𝑠

2
, respectively. Then,

International Journal of Distributed Sensor Networks 9

H
um

id
ity

Temperature

p3

q

m1

p
∗,3

2

p
∗,4

1

m2

(a) 𝑡 = 1∼3

Temperature

p3

q

m5

p
∗,6

5

m4

m3

H
um

id
ity

p2

p4 ⇒ p
∗,7

4

(b) 𝑡 = 4∼5

Figure 7: The behavior of RSPW.

𝑝
𝑖
is in RSPW(𝑃1

𝑜
∪ 𝑃

2

𝑜
) iff 𝑝

𝑖
is in RSPW(𝑃1

𝑜
∪ 𝑅𝑆𝑃𝑊(𝑃

2

𝑜
)),

where RSPW(𝑃𝑘
𝑜
) returns 𝑜.𝐵𝑢𝑓𝑓

𝑑𝑠𝑘𝑦
of 𝑃𝑘

𝑜
. In addition, 𝑝

𝑖
in

RSPW(𝑃1
𝑜
∪ 𝑃

2

𝑜
) has a mark iff 𝑝

𝑖
in RSPW(𝑃1

𝑜
∪ 𝑅𝑆𝑃𝑊(𝑃

2

𝑜
))

has a mark.

Proof. Assume that 𝑝
𝑖

∉ RSPW(𝑃
1

𝑜
∪ 𝑃

2

𝑜
) (i.e, 𝑝

𝑖
is not a

dynamic skyline point in (𝑃1
𝑜

∪ 𝑃
2

𝑜
)). Then there is another

point 𝑝
󸀠 in (𝑃1

𝑜
∪ 𝑃

2

𝑜
) such that 𝑝

󸀠
≺
𝑞
𝑝
𝑖
. Let the result of

RSPW(𝑃2
𝑜
) be 𝑜

2
.𝐵𝑢𝑓𝑓

𝑑𝑠𝑘𝑦
for brevity. If 𝑝󸀠 ∈ 𝑃

1

𝑜
, 𝑝

𝑖
is not in

RSPW(𝑃1
𝑜

∪ 𝑅𝑆𝑃𝑊(𝑃2
𝑜
)) trivially. Otherwise, if 𝑝󸀠 ∈ 𝑃

2

𝑜
and

𝑜
2
.𝐵𝑢𝑓𝑓

𝑑𝑠𝑘𝑦
, 𝑝

𝑖
cannot be in RSPW(𝑃1

𝑜
∪ 𝑅𝑆𝑃𝑊(𝑃2

𝑜
)) either.

If 𝑝󸀠 ∈ 𝑃
2

𝑜
but not in 𝑜

2
.𝐵𝑢𝑓𝑓

𝑑𝑠𝑘𝑦
, since 𝑝

󸀠 is not a dynamic
skyline point in 𝑃

2

𝑜
, there exists 𝑝

󸀠󸀠 in 𝑜
2
.𝐵𝑢𝑓𝑓

𝑑𝑠𝑘𝑦
such that

𝑝
󸀠󸀠
≺
𝑞
𝑝
󸀠
(≺

𝑞
𝑝
𝑖
). Consequently, 𝑝

𝑖
∈ RSPW(𝑃1

𝑜
∪ 𝑃

2

𝑜
) iff 𝑝

𝑖
∈

RSPW(𝑃1
𝑜
∪ 𝑅𝑆𝑃𝑊(𝑃2

𝑜
)).

Now, we assume that 𝑝
𝑖
in RSPW(𝑃1

𝑜
∪𝑃

2

𝑜
) has amark and

𝑝
𝑖
inRSPW(𝑃1

𝑜
∪𝑅𝑆𝑃𝑊(𝑃2

𝑜
)) does not havemark. Since𝑝

𝑖
has

amark, there is a point𝑝
𝑗
in𝑃

1

𝑜
∪𝑃

2

𝑜
, where themidpoint𝑚

𝑗
of

𝑝
𝑗
dynamically dominates 𝑝

𝑖
. If 𝑝

𝑗
is in 𝑃

1

𝑜
, 𝑝

𝑖
in RSPW(𝑃1

𝑜
∪

𝑅𝑆𝑃𝑊(𝑃2
𝑜
)) has also a mark trivially. Otherwise (i.e., 𝑝

𝑗
∈

𝑃
2

𝑜
), if 𝑝

𝑗
is in 𝑜

2
.𝐵𝑢𝑓𝑓

𝑑𝑠𝑘𝑦
, 𝑝

𝑖
∈ RSPW(𝑃1

𝑜
∪ 𝑅𝑆𝑃𝑊(𝑃2

𝑜
)) also

have a mark.Thus, in order not to have a mark, 𝑝
𝑗
should not

be in 𝑜
2
.𝐵𝑢𝑓𝑓

𝑑𝑠𝑘𝑦
. It implies that∃𝑝

󸀠

𝑗
∈ 𝑜

2
.𝐵𝑢𝑓𝑓

𝑑𝑠𝑘𝑦
s.t.𝑝󸀠

𝑗
≺
𝑞
𝑝
𝑗
.

By definition of midpoints, 𝑚
󸀠

𝑗
≺
𝑞
𝑚
𝑗
, and, hence, we have

𝑚
󸀠

𝑗
≺
𝑞
𝑝
𝑖
. Therefore, 𝑝

𝑖
∈ RSPW(𝑃1

𝑜
∪ 𝑅𝑆𝑃𝑊(𝑃2

𝑜
)) must have

a mark. Since the proof for the case that 𝑝
𝑖
in RSPW(𝑃1

𝑜
∪𝑃

2

𝑜
)

does not have a mark and 𝑝
𝑖
in RSPW(𝑃1

𝑜
∪ 𝑅𝑆𝑃𝑊(𝑃2

𝑜
)) has

mark is similar to the above, we omit it for brevity.

By Lemma 13, a simple extension of RSPW to WSN
environments is that, at each time, a sensor node performs
RSPW with its sensor reading and the dynamic skyline points

coming from its child nodes to maintain its 𝑜.𝐵𝑢𝑓𝑓
𝑑𝑠𝑘𝑦

and
𝑜.𝐵𝑢𝑓𝑓

𝑟𝑒𝑠𝑡
as well as transmiting 𝑜.𝐵𝑢𝑓𝑓

𝑑𝑠𝑘𝑦
to its parent node.

And, then, the parent node performsRSPW and so on. In this
way, the base station obtains the complete 𝑜.𝐵𝑢𝑓𝑓

𝑑𝑠𝑘𝑦
for each

orthant 𝑜. We denote the simple extension of RSPW toWSNs
as 𝐼𝑛-𝑁𝑒𝑡𝑅𝑆𝑃𝑊

𝑠𝑖𝑚
.

Since each sensor node transmits 𝑜.𝐵𝑢𝑓𝑓
𝑑𝑠𝑘𝑦

only in
𝐼𝑛-𝑁𝑒𝑡𝑅𝑆𝑃𝑊

𝑠𝑖𝑚
, each sensor node can reduce its energy

consumption. However, in 𝐼𝑛-𝑁𝑒𝑡𝑅𝑆𝑃𝑊
𝑠𝑖𝑚

, a dynamic sky-
line point in a sensor node’s 𝑜.𝐵𝑢𝑓𝑓

𝑑𝑠𝑘𝑦
can be transmitted

redundantly (at most 𝑤 times) within a window sized 𝑤. It
incurs energywaste.Thus,we present an enhanced algorithm,
referred to as 𝐼𝑛-𝑁𝑒𝑡𝑅𝑆𝑃𝑊

𝑒𝑛ℎ
, which is also based on

Lemma 13. The pseudocode of 𝐼𝑛-𝑁𝑒𝑡𝑅𝑆𝑃𝑊
𝑒𝑛ℎ

is presented
in Pseudocode 2.

The intuition of 𝐼𝑛-𝑁𝑒𝑡𝑅𝑆𝑃𝑊
𝑒𝑛ℎ

is that a sensor reading
becoming a dynamic skyline point newly and/or a dynamic
skyline point which has a mark recently is transmitted only
rather than transmitting all dynamic skyline points at each
time in order to reduce the energy consumption of each
sensor node. To do this, each sensor node 𝑠

𝑖
has 𝑜.𝐵𝑢𝑓𝑓

𝑠𝑒𝑛𝑡

which consists of the dynamic skyline points (i.e., sensor
readings) sent to its parent previously.

At first, each sensor node 𝑠
𝑖
collects sensor readings

coming from its child nodes into 𝑜.𝐵𝑢𝑓𝑓
𝑡𝑒𝑚𝑝 (lines 2–5).

Then, 𝑠
𝑖
conducts RSPW with its sensor readings and sensor

readings coming from its child nodes and the result of RSPW
is kept in 𝑜.𝑅𝑒𝑠𝑢𝑙𝑡 (lines 6-7). Before eliminating the point
sent previously from 𝑜.𝑅𝑒𝑠𝑢𝑙𝑡, we remove every expired point
from 𝑜.𝐵𝑢𝑓𝑓

𝑠𝑒𝑛𝑡 and unmark the point whose mark’s expire
time (i.e., 𝑡exp) is this time (lines 8-9).Then, every point 𝑝

𝑘
in

𝑜.𝑅𝑒𝑠𝑢𝑙𝑡 is evaluated on whether 𝑝
𝑘
was sent previously (lines

10–17). If 𝑝
𝑘
was sent (i.e., 𝑝

𝑘
is in 𝑜.𝐵𝑢𝑓𝑓

𝑠𝑒𝑛𝑡) and the status
of 𝑝

𝑘
is not changed, we do not need to send 𝑝

𝑘
(lines 11–15).

Otherwise, the old 𝑝
𝑘
in 𝑜.𝐵𝑢𝑓𝑓

𝑠𝑒𝑛𝑡 is removed and the new
𝑝
𝑘
is inserted into 𝑜.𝐵𝑢𝑓𝑓

𝑠𝑒𝑛𝑡 to maintain 𝑜.𝐵𝑢𝑓𝑓
𝑠𝑒𝑛𝑡 properly

10 International Journal of Distributed Sensor Networks

Procedure 𝐼𝑛-𝑁𝑒𝑡𝑅𝑆𝑃𝑊
𝑒𝑛ℎ

()

begin
//This is invoked at each time 𝑗

//𝑃𝑖
𝑜
is the input stream of this sensor node 𝑠

𝑖

//Let 𝑜.𝐵𝑢𝑓𝑓
𝑠𝑒𝑛𝑡 be the set of points sent previously

(1) for each orthant 𝑜 do {

(2) 𝑜.𝐵𝑢𝑓𝑓
𝑡𝑒𝑚𝑝 = 0

(3) for each child node 𝑠
𝑐
do {

(4) 𝑜.𝐵𝑢𝑓𝑓
𝑡𝑒𝑚𝑝 = 𝑜.𝐵𝑢𝑓𝑓

𝑡𝑒𝑚𝑝
∪ receiveFromChild(𝑠

𝑐
);

(5) }

(6) 𝑃
𝑖

𝑜
= 𝑃

𝑖

𝑜
∪ 𝐵𝑢𝑓𝑓

𝑡𝑒𝑚𝑝

(7) 𝑜.𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑅𝑆𝑃𝑊(𝑃
𝑖

𝑜
)

(8) remove every point 𝑝
𝑘
∈ 𝑜.𝐵𝑢𝑓𝑓

𝑠𝑒𝑛𝑡 where 𝑝
𝑘
⋅ 𝑡
𝑒
= 𝑗

(9) unmark every point 𝑝
𝑘
∈ 𝑜.𝐵𝑢𝑓𝑓

𝑠𝑒𝑛𝑡 where 𝑡exp = 𝑗

(10) for each point 𝑝
𝑘
∈ 𝑜.𝑅𝑒𝑠𝑢𝑙𝑡 do {

(11) if 𝑝
𝑘
∈ 𝑜.𝐵𝑢𝑓𝑓

𝑠𝑒𝑛𝑡 then {

(12) if 𝑝
𝑘
∈ 𝑜.𝑅𝑒𝑠𝑢𝑙𝑡 has not a mark and 𝑝

𝑘
∈ 𝑜.𝐵𝑢𝑓𝑓

𝑠𝑒𝑛𝑡 has not a mark then
(13) remove 𝑝

𝑘
from 𝑜.𝑅𝑒𝑠𝑢𝑙𝑡

(14) else if 𝑝
𝑘
∈ 𝑜.𝑅𝑒𝑠𝑢𝑙𝑡 has a mark and 𝑝

𝑘
∈ 𝑜.𝐵𝑢𝑓𝑓

𝑠𝑒𝑛𝑡 has a mark then
(15) remove 𝑝

𝑘
from 𝑜.𝑅𝑒𝑠𝑢𝑙𝑡

(16) else {

(17) remove 𝑝
𝑘
from 𝑜.𝐵𝑢𝑓𝑓

𝑠𝑒𝑛𝑡

(18) 𝑜.𝐵𝑢𝑓𝑓
𝑠𝑒𝑛𝑡 = 𝑜.𝐵𝑢𝑓𝑓

𝑠𝑒𝑛𝑡
∪ {𝑝

𝑘
}

(19) }

(20) } else 𝑜.𝐵𝑢𝑓𝑓
𝑠𝑒𝑛𝑡 = 𝑜.𝐵𝑢𝑓𝑓

𝑠𝑒𝑛𝑡
∪ {𝑝

𝑘
}

(21) }

(22) sendToParent(𝑜.𝑅𝑒𝑠𝑢𝑙𝑡)
(23) }
end

Pseudocode 2: The pseudocode of 𝐼𝑛-𝑁𝑒𝑡𝑅𝑆𝑃𝑊
𝑒𝑛ℎ

.

(lines 16–19). If 𝑝
𝑘
was not sent, 𝑝

𝑘
is inserted in 𝑜.𝐵𝑢𝑓𝑓

𝑠𝑒𝑛𝑡

(line 20). Finally, a sensor node 𝑠
𝑖
sends 𝑜.𝑅𝑒𝑠𝑢𝑙𝑡 to its parent

(line 22).
Since 𝐼𝑛-𝑁𝑒𝑡𝑅𝑆𝑃𝑊

𝑒𝑛ℎ
transmits new dynamic skyline

points and the dynamic skyline points whose states are
changed, the energy consumption of 𝐼𝑛-𝑁𝑒𝑡𝑅𝑆𝑃𝑊

𝑒𝑛ℎ
is

much smaller than those of 𝐼𝑛-𝑁𝑒𝑡𝑅𝑆𝑃𝑊
𝑠𝑖𝑚

and the brute-
force algorithm 𝑅𝑆𝑃𝑊

𝑏𝑓
. We will show the energy efficiency

of 𝐼𝑛-𝑁𝑒𝑡𝑅𝑆𝑃𝑊
𝑒𝑛ℎ

by conducting experiments with a real-
life data set.

6. Performance Study

We empirically evaluated the performances of our proposed
algorithms in two environments: data stream environments
and WSN environments. In data stream environments,
we measured the processing time of our proposed algo-
rithm RSPW and other algorithms with the synthetic data
sets. On contrary, in WSN environments, we present the
energy consumption of our algorithms 𝐼𝑛-𝑁𝑒𝑡𝑅𝑆𝑃𝑊

𝑠𝑖𝑚
and

𝐼𝑛-𝑁𝑒𝑡𝑅𝑆𝑃𝑊
𝑒𝑛ℎ

with a real data set to show the effectiveness
of our algorithms. All experiments were conducted on Intel
i5 platform with MS-Windows 7 and 4GB MBytes of main
memory.

6.1. Experiments in Data Stream Environments

6.1.1. Experimental Environments. We performed this
experiment to compare the execution time of RSPW with
Naive and 2-Skyband [6]. In Naive algorithm, each point in
a window is compared with the other points in a window to
check whether it is a reverse skyline point or not. In addition,
since 2-Skyband [6] did not consider the sliding window, we
extended 2-Skyband to the sliding window context which
computed 2-skyband with recent 𝑤 points at each time.

In order to evaluate the performance of each algorithm
over diverse environments, we used three synthetic data
sets which are generated by independent, correlated, and
anticorrelated as shown in Figure 8. These three data sets are
commonly used to evaluate the performance of the skyline
operator as well as its variants [1, 32].

Table 1 shows the parameters used in this experiment.
Each synthetic data set consists of 100,000 points. We ran
all algorithms 10 times with different query points generated
randomly and report the average execution times. We varied
the number of data points’ dimension from 2 to 10 as well as
the windows size of a query from 2 to 10.

6.1.2. Experimental Results. Figure 9 shows the execution
time of each algorithm according to the data sets with

International Journal of Distributed Sensor Networks 11

(a) Independent (b) Correlated

(c) Anticorrelated

Figure 8: Example of data sets (2-dimension).

Table 1: Parameters.

Parameter Default Range
Number of points 100,000 100,000
Number of queries 10 10
Number of dimensions (𝑑) 6 2∼10
Window size (𝑤) 6 2∼10

default values of the parameters. As shown in Figure 9, our
proposed algorithm RSPW is the best performer. In average
over all data sets, RSPW achieves up 9.23 times faster than
Naive and 4.73 times faster than 2-Skyband. In correlated
and anticorrelated data sets, since the data distributions are
skewed, a large number of points are dominated by a few
points in each orthant and hence the number of reverse
skyline points is small. Meanwhile, since the points are
uniformly distributed in independent data set, the number
of reverse skyline points is larger than those of the other data
sets.Thus, the processing time for the independent data set is
worse than those for the other data sets.

0

100

200

300

400

500

600

700

800

900

Independent Correlated Anti-correlated

Pr
oc

es
sin

g
tim

e (
m

s)

Data set type

Naive
2-Skyband

RSPW

Figure 9: Execution time over each data set.

With varying 𝑑 from 2 to 10, we plot the execution time
of each algorithm in Figure 10. As shown in Figure 10, as

12 International Journal of Distributed Sensor Networks

0

200

400

600

800

1000

1200

2 4 6 8 10

Pr
oc

es
sin

g
tim

e (
m

s)

Dimension (independent)

Naive
2-Skyband

RSPW

(a) Independent

0

100

200

300

400

500

600

700

800

900

2 4 6 8 10

Pr
oc

es
sin

g
tim

e (
m

s)

Dimension (correlated)

Naive
2-Skyband

RSPW

(b) Correlated

0

100

200

300

400

500

600

700

800

900

2 4 6 8 10

Pr
oc

es
sin

g
tim

e (
m

s)

Dimension (anti-correlated)

Naive
2-Skyband

RSPW

(c) Anticorrelated

Figure 10: Varying 𝑑.

the number of dimensions 𝑑 increases, the running time of
each algorithm also increases since the overhead evaluating
dominance relationship becomes increase with increasing 𝑑.
However, the performance gap between RSPW and the other
algorithms increases over all data sets as 𝑑 increases since
RSPW calculates the reverse skyline efficiently using two
buffers.

We varied𝑤 from 2 to 10 and present the running times of
the algorithms in Figure 11. As illustrated in Figure 11, when
the window size 𝑤 is small (i.e., 𝑤 = 2), all algorithms show
the similar performances. However, as 𝑤 increases, the exe-
cution times of Naive and 2-Skyband increase dramatically.
In contrast, the execution time of RSPW increases slowly.
This result indicates that RSPW computes reverse skyline
efficiently over a sliding window.

6.2. Experiments in WSN Environments

6.2.1. Experimental Environments. We show show the
effectiveness of our proposed algorithms for WSNs with
a real-life data set. As a real-life data set, we used the
data LUCE provided by Audiovisual Communications
Laboratory [34]. A sensor network is composed of 89
nodes deployed on the EPFL campus as shown in Figure 12
and they measured key environmental quantities at high
spatial and temporal resolution over a year. The data set
consists of 9 attributes such as surface temperature, solar
radiation, relative humidity, rain meter, and wind speed.
The size of the sensing field is 277 × 430 meter2 and the
base station is located at the center of the sensing field. To
make a routing tree, we set the communication distance to

International Journal of Distributed Sensor Networks 13

0

500

1000

1500

2000

2500

3000

3500

4000

2 4 6 8 10

Pr
oc

es
sin

g
tim

e (
m

s)

Window size (independent)

Naive
2-Skyband

RSPW

(a) Independent

0

500

1000

1500

2000

2500

2 4 6 8 10

Pr
oc

es
sin

g
tim

e (
m

s)

Window size (correlated)

Naive
2-Skyband

RSPW

(b) Correlated

0

500

1000

1500

2000

2500

2 4 6 8 10

Pr
oc

es
sin

g
tim

e (
m

s)

Window size (anti-correlated)

Naive
2-Skyband

RSPW

(c) Anticorrelated

Figure 11: Varying 𝑤.

Figure 12: Placement of sensor nodes.

55 meter. The average depth (i.e., average number of child
nodes) and the maximum width of the routing tree are

Table 2: Parameters.

Parameter Default value Range
Number of dimensions (𝑑) 5 2, 3, 5, 7, 9
Window size (𝑤) 12 4, 8, 12, 16, 20
Packet size (𝑝) 40 bytes 40, 80, 120, 160, 200

4.94 and 13, respectively. Since, in the real-life data set, the
values of sensor readings are fixed, it is hard to make diverse
configuration. Instead, to simulate diverse environments,
we used some parameters. The parameters used for our
experimental study are summarized in Table 2.

For this experiment, we implemented 𝑅𝑆𝑃𝑊
𝑏𝑓
,

𝐼𝑛-𝑁𝑒𝑡𝑅𝑆𝑃𝑊
𝑠𝑖𝑚

, and 𝐼𝑛-𝑁𝑒𝑡𝑅𝑆𝑃𝑊
𝑒𝑛ℎ

presented in
Section 5. To compute the energy consumption of each
algorithm, we used the free space channel model [35]. Under
this model, to transmit a 𝑙-bits message and a distance

14 International Journal of Distributed Sensor Networks

0

100

200

300

400

500

600

2 4 6 8 9

To
ta

l e
ne

rg
y

co
ns

um
pt

io
n

(J
)

Dimension

RSPWbf
In-NetRSPWsim

In-NetRSPWenh

(a) Varying 𝑑

0

50

100

150

200

250

300

350

400

2 4 6 8 10

To
ta

l e
ne

rg
y

co
ns

um
pt

io
n

(J
)

Window size

RSPWbf
In-NetRSPWsim

In-NetRSPWenh

(b) Varying 𝑤

0

50

100

150

200

250

300

350

400

40 80 120 160 200

To
ta

l e
ne

rg
y

co
ns

um
pt

io
n

(J
)

Packet size

RSPWbf
In-NetRSPWsim

In-NetRSPWenh

(c) Varying 𝑝

Figure 13: The total energy consumption with the real-life data set.

𝑐, a sensor expends 𝐸
𝑇
(𝑙, 𝑐) = 𝐸

𝑇−elec(𝑙) + 𝐸
𝑇−amp(𝑙, 𝑐) =

𝑙 ∗ 𝐸elec + 𝜉amp ∗ 𝑙 ∗ 𝑐
2. And, to receive this message, a sensor

expends 𝐸
𝑅
(𝑙) = 𝐸

𝑅−elec(𝑙) = 𝑙 ∗ 𝐸elec. In this experiment,
we set 50 nJ/bit to the electronic circuit constant (𝐸elec)
and 100 pJ/bit/meter2 to the transmit amplifier constant
(𝜉amp). Like the experiments in data stream environments,
we executed all algorithms 10 times with different query
points generated randomly and report the average energy
consumption of a network for 100,000 time units.

6.2.2. Experimental Results. We plotted the total energy
consumption of the sensor network varying diverse param-
eter values in Figure 13. Figure 13(a) shows the consumed
energy of each algorithm varying 𝑑. As the number of
dimensions 𝑑 increases, the energy consumption of each
algorithm increases since the size of data to be transmitted

increases. However, since our algorithms 𝐼𝑛-𝑁𝑒𝑡𝑅𝑆𝑃𝑊
𝑠𝑖𝑚

and 𝐼𝑛-𝑁𝑒𝑡𝑅𝑆𝑃𝑊
𝑒𝑛ℎ

transmit the dynamic skyline points
only to the base station, the energy consumptions of
𝐼𝑛-𝑁𝑒𝑡𝑅𝑆𝑃𝑊

𝑠𝑖𝑚
and 𝐼𝑛-𝑁𝑒𝑡𝑅𝑆𝑃𝑊

𝑒𝑛ℎ
are less than that of

𝑅𝑆𝑃𝑊
𝑏𝑓
in which every sensor node sends its readings to the

base station blindly.
With varying the window size 𝑤 from 2 to 10, we plot

the energy consumption of each algorithm in Figure 13(b).
Since, in 𝑅𝑆𝑃𝑊

𝑏𝑓
, each sensor sends its readings, the energy

consumption of 𝑅𝑆𝑃𝑊
𝑏𝑓

is not affected by the window
size 𝑤. Interestingly, when 𝑤 becomes large, the energy
consumptions of our algorithms decrease. As𝑤 increases, the
lifespan of each point also increases. Thus, when a point 𝑝

𝑖

becomes a dynamic skyline point, it will stay in 𝑜.𝐵𝑢𝑓𝑓
𝑑𝑠𝑘𝑦

for a long time and the number of points dynamically
dominated by 𝑝

𝑖
increases as 𝑤 increases. Therefore, the data

volume to be transmitted decreases in our algorithms since

International Journal of Distributed Sensor Networks 15

𝐼𝑛-𝑁𝑒𝑡𝑅𝑆𝑃𝑊
𝑠𝑖𝑚

and 𝐼𝑛-𝑁𝑒𝑡𝑅𝑆𝑃𝑊
𝑒𝑛ℎ

transmit the dynamic
skyline points in 𝑜.𝐵𝑢𝑓𝑓

𝑑𝑠𝑘𝑦
. Furthermore, 𝐼𝑛-𝑁𝑒𝑡𝑅𝑆𝑃𝑊

𝑒𝑛ℎ

is better than 𝐼𝑛-𝑁𝑒𝑡𝑅𝑆𝑃𝑊
𝑠𝑖𝑚

since 𝐼𝑛-𝑁𝑒𝑡𝑅𝑆𝑃𝑊
𝑒𝑛ℎ

avoids
redundant transmissions.

Figure 13(c) presents the consumed energy of each
algorithm varying the packet size 𝑝. As the packet size 𝑝

increases, the number of transmissions decreases since many
points can be in a packet. Thus, the energy consumption
of each algorithm decreases with increasing 𝑝. However,
our enhanced algorithm 𝐼𝑛-𝑁𝑒𝑡𝑅𝑆𝑃𝑊

𝑒𝑛ℎ
shows the best

performance.

7. Conclusion

In this paper, we present an algorithm RSPW to compute the
reverse skyline over a sliding window. To calculate the reverse
skyline, we divide 𝑑-dimensional data space into 2

𝑑 orthants.
Basically, RSPW computes the reverse skyline in each orthant
independently. If a dynamic skyline point in an orthant is
dominated by the midpoint of another point, it is annotated
with amark since it cannot be a reverse skyline. To denote the
valid time of amarkwithin awindow, eachmark has an expire
time.We also extend RSPW toWSN environments. Since our
enhanced algorithm 𝐼𝑛-𝑁𝑒𝑡𝑅𝑆𝑃𝑊

𝑒𝑛ℎ
transmits newdynamic

skyline points and the dynamic skyline points which has a
mark recently, the energy consumption of each sensor node
is reduced. We implemented our algorithms and conducted
an extensive evaluation with synthetic and real-life data sets.
In our experiments, we demonstrated that the performance
of our proposed algorithm is significantly better than other
algorithms in data stream environments as well as WSN
environments.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work was supported by Defense Acquisition Program
Administration and Agency for Defense Development under
Contract UD140022PD, Republic of Korea.

References

[1] S. Börzsönyi, D. Kossmann, and K. Stocker, “The skyline opera-
tor,” in Proceedings of the 17th IEEE International Conference on
Data Engineering (ICDE ’01), pp. 421–430, April 2001.

[2] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “An optimal and
progressive algorithm for skyline queries,” in Proceedings of
the ACM SIGMOD International Conference on Management of
Data (SIGMOD ’03), pp. 467–478, San Diego, Calif, USA, June
2003.

[3] E. Dellis and B. Seeger, “Efficient computation of reverse skyline
queries,” in Proceedings of the 33rd International Conference on
Very Large Data Bases (VLDB ’07), pp. 291–302, 2007.

[4] J. Lee, S. wonHwang, Z. Nie, and J.-R.Wen, “Navigation system
for product search,” in Proceedings of the 26th International

Conference on Data Engineering (ICDE ’10), Long Beach, Calif,
USA, March 2010.

[5] J. J. Levandoski, M. F. Mokbel, and M. E. Khalefa, “Preference
query evaluation over expensive attributes,” in Proceedings of
the 19th International Conference on Information and Knowledge
Management and Co-Located Workshops (CIKM '10), pp. 319–
328, Ontario, Canada, October 2010.

[6] G. Wang, J. Xin, L. Chen, and Y. Liu, “Energy-efficient reverse
skyline query processing over wireless sensor networks,” IEEE
Transactions on Knowledge and Data Engineering, vol. 24, no. 7,
pp. 1259–1275, 2012.

[7] L. Zou, L. Chen, M. T. Özsu, and D. Zhao, “Dynamic skyline
queries in large graphs,” in Proceedings of the 15th International
Conference on Database Systems for Advanced Applications
(DASFAA ’10), pp. 62–78, Tsukuba, Japan, April 2010.

[8] J.-K. Min, “CMOS: efficient clustered data monitoring in sensor
networks,” The Scientific World Journal, vol. 2013, Article ID
704957, 11 pages, 2013.

[9] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“Tag: a tiny aggregation service for ad-hoc sensor networks,” in
Proceedings of the 5th Symposium on Operating Systems Design
and Implementation (OSDI ’02), Boston, Mass, USA, December
2002.

[10] A. Silberstein, K.Munagala, and J. Yang, “Energy-efficientmon-
itoring of extreme values in sensor networks,” in Proceedings of
the ACM SIGMOD International Conference on Management of
Data (SIGMOD ’06), pp. 169–180, June 2006.

[11] D. J. Abadi, S.Madden, andW. Lindner, “REED: robust, efficient
filtering and event detection in sensor networks,” in Proceedings
of the 31st International Conference on Very Large Data Bases
(VLDB ’05), pp. 769–780, September 2005.

[12] J.-K. Min, J. Kim, and K. Shim, “TWINS: efficient time-
windowed in-network joins for sensor networks,” Information
Sciences, vol. 263, pp. 87–109, 2014.

[13] B. Chen andW. Liang, “Progressive skyline query processing in
wireless sensor networks,” in Proceedings of the 5th International
Conference on Mobile Ad-Hoc and Sensor Networks (MSN ’09),
pp. 17–24, December 2009.

[14] Y. J. Roh, I. Song, J. H. Jeon, K.G.Woo, andM.H.Kim, “Energy-
efficient two-dimensional skyline query processing in wireless
sensor networks,” in Proceedings of the IEEE 10th Consumer
Communications and Networking Conference (CCNC ’13), pp.
294–301, January 2013.

[15] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“TinyDB: an acquisitional query processing system for sensor
networks,” ACM Transactions on Database Systems, vol. 30, no.
1, pp. 122–173, 2005.

[16] I. Galpin, C. Y. A. Brenninkmeijer, A. J. G. Gray, F. Jabeen, A.
A. A. Fernandes, and N. W. Paton, “Snee: a query processor for
wireless sensor networks,” Distributed and Parallel Databases,
vol. 29, no. 1-2, pp. 31–85, 2011.

[17] B. Sundararaman, U. Buy, and A. D. Kshemkalyani, “Clock
synchronization for wireless sensor networks: a survey,”AdHoc
Networks, vol. 3, no. 3, pp. 281–323, 2005.

[18] J. Considine, F. Li, G. Kollios, and J. W. Byers, “Approximate
aggregation techniques for sensor databases,” in Proceedings of
the 20th International Conference on Data Engineering (ICDE
’04), pp. 449–460, March-April 2004.

[19] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri,
“Medians and beyond: new aggregation techniques for sensor
networks,” in Proceedings of the 2nd International Conference on

16 International Journal of Distributed Sensor Networks

Embedded Networked Sensor Systems (SenSys ’04), pp. 239–249,
ACM, November 2004.

[20] J.-K. Min, R. T. Ng, and K. Shim, “Aggregate query processing
in the presence of duplicates in wireless sensor networks,”
Information Sciences, vol. 297, pp. 1–20, 2015.

[21] E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi, “In-network
aggregation techniques for wireless sensor networks: a survey,”
IEEE Wireless Communications, vol. 14, no. 2, pp. 70–87, 2007.

[22] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, and
W. Hong, “Model-driven data acquisition in sensor networks,”
in Proceedings of the 30th International Conference on Very
LargeData Bases (VLDB ’04), pp. 588–599, Trondheim,Norway,
August 2004.

[23] D. Chu,A.Deshpande, J.M.Hellerstein, andW.Hong, “Approx-
imate data collection in sensor networks using probabilistic
models,” in Proceedings of the 22nd International Conference on
Data Engineering (ICDE ’06), p. 48, April 2006.

[24] A. Jain, E. Y. Chang, and Y.-F. Wang, “Adaptive stream resource
management using Kalman Filters,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data
(SIGMOD ’04), pp. 11–22, June 2004.

[25] J.-K. Min and C.-W. Chung, “EDGES: efficient data gathering
in sensor networks using temporal and spatial correlations,”
Journal of Systems and Software, vol. 25, no. 5, pp. 933–944, 2010.

[26] A. Coman, M. A. Nascimento, and J. Sander, “On join location
in sensor networks,” in Proceedings of the 8th International
Conference on Mobile Data Management (MDM ’07), pp. 190–
197, May 2007.

[27] A. Pandit and H. Gupta, “Communication-efficient implemen-
tation of range-joins in sensor networks,” in Proceedings of the
11th International Conferenceon Database Systems for Advanced
Applications (DASFAA ’06), Singapore, April 2006, vol. 3882
of Lecture Notes in Computer Science, pp. 859–869, Springer,
Berlin, Germany, 2006.

[28] H. Yu, E.-P. Lim, and J. Zhang, “On in-network synopsis
Join processing for sensor networks,” in Proceedings of the 7th
International Conference on Mobile Data Management (MDM
’06), p. 32, May 2006.

[29] M. Stern, E. Buchmann, and K. Böhm, “Towards efficient
processing of general-purpose joins in sensor networks,” in
Proceedings of the 25th IEEE International Conference on Data
Engineering (ICDE '09), pp. 126–137, Shanghai, China, April
2009.

[30] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline
with presorting,” in Proceedings of the 19th IEEE International
Conference on Data Engineering (ICDE ’03), pp. 717–719, March
2003.

[31] D. Kossmann, F. Ramsak, and S. Rost, “Shooting stars in the sky:
an online algorithm for skyline queries,” in Proceedings of the
28th International Conference on Very Large Data Bases (VLDB
’02), pp. 275–286, 2002.

[32] Y. Park, J.-K.Min, andK. Shim, “Parallel computation of skyline
and reverse skyline queries usingmapreduce,” Proceedings of the
VLDB Endowment, vol. 6, no. 14, pp. 2002–2013, 2013.

[33] Y. Tao and D. Papadias, “Maintaining sliding window skylines
on data streams,” IEEE Transactions on Knowledge and Data
Engineering, vol. 18, no. 3, pp. 377–391, 2006.

[34] AdvancedCompliance Laboratory,LuceDeployment, Advanced
Compliance Laboratory, Hillsborough Township, NJ, USA,
2006, http://lcav.epfl.ch/page-86035-en.html.

[35] W. R. Heinzelman, A. Chandrakasan, and H. Balakrish-
nan, “Energy-efficient communication protocol for wireless
microsensor networks,” in Proceedings of the International
Conference on System Sciences, pp. 1–10, 2000.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

