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Deployment is a basic and key issue for all kinds of wireless sensor networks applications.Most of existing researches on deployment
problem of wireless sensor network are on generic network level and not for specific application scenarios and also do not utilize
any domain knowledge of practical applications. Focusing on the problem of limited number of sensing nodes in soil respiration
sensor networks, using domain knowledge such as some lightweight parameters (temperature, humidity, etc.) influencing soil
respiration and soil respiration having a day-periodic trend, we proposed a deployment method, TimSim, for soil respiration sensor
network based on time domain similarity of lightweight parameters. Lightweight parameters data from positions in the region to be
monitored are collected before the deployment of soil respiration sensing nodes, and then time domain similarities of lightweight
data among different positions are analyzed, according to which these positions are divided into some groups. A representative
position in each group is chosen to deploy a soil respiration sensing node. The experimental results show that TimSimmethod can
place nodes to proper positions so as to monitor regional soil respiration carbon flux effectively with a smaller estimation error
than uniform and random deployment methods.

1. Introduction

Deployment strategy is very important for the application
of wireless sensor network technology. On the one hand,
it affects the connectivity and coverage performance of the
entire network; on the other hand, it determines the number
of nodes that the network needs. Good deployment strategy
can maintain network performance and the monitoring
accuracy using fewer nodes in the network, which can
effectively reduce the cost of whole network when the nodes
are expensive.

Soil respiration is one of the main ways of carbon
exchange between the terrestrial ecosystem and atmosphere
system and plays an important role in the global carbon
cycle and carbon balance. CO

2
discharged to the atmosphere

through soil respiration is about 68 PgC/yr, accounting for
about 10% of the total atmospheric CO

2
[1]. Therefore,

objectively evaluating the contribution of soil respiration

carbon flux to the global carbon budget and analyzing the
influence of soil respiration on global climate change are
especially important and have become core issues of the
global carbon cycle.

As to the measurement of soil respiration flux of carbon,
accurate soil carbon flux data of a single position can be
achieved using some current equipment, for example, LI-8100
series of soil respiration measuring systems from LI-COR
company [2]. However, due to the influence of a variety of fac-
tors such as soil pore size and type, soil temperature, soil water
content, wind speed, and CO

2
concentration gradient, spatial

and temporal heterogeneities of soil respiration carbon flux
are very obvious [3], which makes existing methods hardly
achieve accurate measurement of regional soil respiration
carbon flux.

Wireless sensor networks have characteristics of wide
monitoring range, sustainable monitoring, collaborative
work, and transferring information in time and can meet
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Figure 1: Wireless sensor network for soil respiration monitoring.

the requirements of regional soil respirationmonitoring such
as area coverage, persistent monitoring, and synchronous
sampling. In order to apply wireless sensor networks to soil
respiration monitoring, we have designed an instrument for
soil respiration carbon flux measurement with communica-
tion ability using wireless sensor networks protocol, as is
shown in Figure 1, which can be used as soil respiration
sensing nodes [4].

But we encountered a problem during the practical
construction process of soil respiration monitoring sensor
networks; that is, the number of soil respiration sensing nodes
is limited due to the high cost, which makes a well-designed
deployment strategy become an urgent need to use fewer
nodes monitoring a target region.

Although there have been a lot of research works aimed
at nodes deployment issues in wireless sensor networks,
most of them are to study the coverage of monitoring area
and network connectivity issues. Furthermore, most of these
studies are generic methods to solve the deployment problem
and not for a specific application scenario. However, there
is usually some specific domain knowledge in the relevant
fields of each practical application, and using such domain
knowledge may lead to noneligible promoting effect on the
solution to the deployment problem when wireless sensor
network technology is applied in practical fields.

Because soil respiration in a position has an approxi-
mately day-periodic variation trend [5], the analyzing result
of the former sensing data can play a guiding role for the
later measurement. The diel variation trend of a position is
affected by the environment parameters, so positions with
similar parameters may have similar time domain features.
It is very possible that some positions in a region with the
same vegetation have similar parameters. As a result, if the
initial measurement data of different positions have similar
time domain features, the same similarity will be maintained
in the process of subsequent measurement.

Therefore, we designed a deployment strategy of soil
respiration sensor networks based on time domain feature
similarity of lightweight parameters,TimSim. At first, accord-
ing to the domain knowledge of soil respiration, the soil
respiration is described by some lightweight parameters.
Then positions are divided into groups according to time
domain similarity of lightweight parameters, and positions

in each group have similar trends of soil respiration. Then a
representative position is chosen from each group, in which
a soil respiration sensing node will be deployed. Because
the time domain similarity exists, the soil respiration data of
other positions in the same group can be obtained by a certain
conversion of the soil respiration data from the deployed
position. As a result, soil respiration data of the positions in
the monitored region can be obtained by a small number of
deployed nodes.

What should be emphasized is that although this method
is put forward for a specific application of soil respiration
monitoring, in fact the idea has universality and can be used
for other applications with lightweight parameters, in which
the monitoring data is periodic and sensing nodes costs are
high. Therefore, the presented method can provide reference
for solving problems during the application of wireless
sensor network technology to other fields and promote wider
application of wireless sensor networks.

The remaining parts of this paper are organized as follows.
Section 2 introduces some previous work related to the
subject this paper. Section 3 describes the nodes deployment
problem in soil respiration monitoring sensor network to
solve in this paper. Section 4 introduces in detail the proposed
deployment strategy of soil respiration measurement nodes
based on time domain similarity of lightweight parameters,
TimSim. Section 5 verifies the performance of TimSim by
experiments and compared with other two deployment
methods. Finally, Section 6 carries on the summary and
conclusions of the full paper and discusses the directions for
further research.

2. Related Work

2.1. Deployment of Wireless Sensor Networks. Wireless sensor
network technology can be used for many applications such
as industry automation, localization and track tracing, health
monitoring, and environment monitoring. Deployment is
an important and basic issue for each of such applications.
The concerns of the deployment problem include coverage,
connectivity, and energy-efficiency.

The coverage problem of a wireless sensor network for
different applications includes field coverage and barrier
coverage, and the fieldmay be two-dimensional area or three-
dimensional space or surface. The basic deployment method
for 2D area coverage is cell-based, and the shape of each cell
may be square, triangle, hexagon, and so on. Ammari andDas
[6] studied the coverage and connectivity of wireless sensor
networks in 3D space using integrated concentric sphere
model and continuum percolation theory, so as to determine
the critical density of sensor nodes for the deployment and
topology control. Liu and Ma [7] analyzed the expected
coverage ratios on both regular and irregular 3D surface using
stochastic sensors deployment method. For barrier coverage,
there are line-based model [8] and curve-based model [9]
for the deployment ofwireless sensor networks. Furthermore,
the coverage requirement may be 𝑘-coverage for redundancy
in some applications. Ammari and Das [10] studied the node
space density required for full 𝑘-coverage in an area so as to
guide the deployment of sensor nodes. Li et al. [11] proposed
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a field 𝑘-coverage autonomous deploymentmethodwhen the
count of nodes is not abundant with the consideration of
load-balance, using the localization and mobility of nodes.
Mahboubi et al. [12–14] studied the distributed deployment
of mobile sensor networks using weighted Voronoi diagram
model, in which nodes can move to sparse or empty area so
as to fulfill better coverage.

The connectivity and energy-efficiency are also consid-
ered by many deployment methods besides coverage. If there
are obstacles in the field, a serpentinemovement policy can be
used to handle obstacle [15]. The positions of relay nodes are
important for the connectivity of a network. Lee and Younis
[16] studied the selection and deployment problem of relay
nodes, when some nodes failed and the network is separated
into segments. The deployment of relay nodes can also be
guided by the communication load of the network, so as to
placemore relay nodes in heavy load region [17]. Liu et al. [18]
studied the deployment of sensor nodes using minimum cost
when the required lifetime of network is given. Energy can
also be saved through optimizing the distance of movement
of sensor nodes in mobile sensor networks [19].

Compared with the previous work, the main novelty
of TimSim lies in its different angle of view to solve
the deployment problem of sensor nodes. These previous
researches about the deployment of wireless sensor networks
focusing on the coverage, connectivity, and energy-efficiency
are on generic level and without specific application field.
What we are considering in this paper is the utilization of
domain knowledge of soil respiration, which is necessary and
important.

2.2. Wireless Sensor Networks for Environment Monitoring.
There are many systems using wireless sensor network tech-
nology in the recent years. Barrenetxea et al. [20] established
a wireless sensor network system for wild environment
monitoring. GreenOrbs is a wireless sensor network system
in forest for canopy closure sustainable estimation [21].
Besides, wireless sensor network technology is also used for
volcano monitoring [22], wildlife monitoring [23], marine
environment monitoring [24], soil property monitoring [25],
and so on. In these systems, the focus is the application rather
than deployment, so they do not have particular design for
the optimization of the count and positions of sensor nodes.

Some environment monitoring applications use graph
theory to optimize the positions of sensor nodes [26, 27].
However, these graph-based methods are generic and do
not utilize any knowledge of applications. Du et al. [28]
introduced a wireless sensor network system for wind dis-
tribution monitoring around an urban reservoir, in which
sparse deployment is accomplished by adjusting distance
of communication. However, it did not introduce how to
determine the positions of sensor nodes.

Du et al. [29] segmented a year into different monsoon
seasons according to the analysis of historical wind distribu-
tion data of the field and used computational fluid dynamics
to learn the spatial correlation of wind in the presence of
surrounding buildings. The most informative locations are
the outputs of the deployment method. This method uses
knowledge of application, which is similar to our method.

However it cannot be used in soil respiration monitoring
sensor network, because we cannot have historical soil
respiration data of a monitored field and computational fluid
dynamics cannot be used for soil respiration.

As to the previous works, the deployment methods of
them are all different from the method based on similarities
of lightweight parameters, which is to be studied in this paper.

3. Problem Descriptions

3.1. Soil Respiration Sensor Network. In order to monitor soil
respiration carbon flux data in a region, traditional methods
are to carry out measurements in one or a few sampling
positions using devices such as LI-8100 and then estimate
soil respiration carbon fluxes across the region. But the
results of such methods using a small number of measuring
positions are very inaccurate. On the one hand, for the spatial
heterogeneity of soil respiration, using a small amount of
measuring positions to represent other positions in the region
as a whole is not appropriate [30]; on the other hand, soil
respiration varies over time and the result measured at a
certain moment cannot represent the measurements of other
moments [31]. So the traditional measuring methods are not
representative in both time and space aspects, and regional
soil respiration carbon flux cannot be accurately estimated
using traditional methods.

Therefore accurate measurement and estimation of
regional soil respiration should meet the following three
requirements. (1) Measurements in multiple positions: due
to the spatial heterogeneity of soil respiration, only measure-
ment results of multiposition can describe the entire regional
soil respiration accurately. (2)Measurements at the same time
inmultiple positions: because of the time heterogeneity of soil
respiration, measurements in the same position at different
timemay be different, so onlymeasurements at the same time
inmultiple positions can describe the regional soil respiration
at the measuring time. (3) Continuousmeasurements: for the
temporal heterogeneity of soil respiration, fewmeasurements
cannot reflect the details of the soil respiration varying with
time, and only continuous measurements can reflect the
varying details of soil respiration along with time.

Wireless sensor network technology can well meet the
three aspects of requirements of measurements: multiple
positions, synchronization, and continuation. So we adopt
this technology to carry out the measurement and estima-
tion of regional soil respiration carbon flux. During the
construction of a soil respiration sensor network, because
the soil respiration measuring equipment is expensive which
leads to limited quantity of the equipment, we add some
routing nodes which bear only communication tasks and are
not responsible for the measurement task to guarantee the
connectivity of the network, as shown in Figure 1. In order to
save energy of these nodes, soil respiration measuring nodes
act as leaf nods in the data collecting tree, and measured
data will be transferred to the sink node by routing nodes.
In addition, we have studied segmental dynamic sampling
strategy to reduce energy consumption of soil respiration
measuring nodes and prolong the continuous working time
of the whole system in our previous study [32].
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3.2. Deployment of Soil Respiration Sensing Nodes. As men-
tioned above, a soil respiration sensor network contains some
routing nodes to guarantee the connectivity of the network,
so the deployment positions of soil respiration nodes mainly
consider the requirements of application layer rather than
network layer. At the application layer, in order to effectively
measure regional soil respiration using a limited number of
soil respiration sensing nodes, each node should be deployed
in a more reasonable position.

Deploying a soil respiration sensor network in the region
𝑍, in addition to the sink node, there are 𝑁 soil respiration
sensing nodes 𝑆 = {𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑁
} and some routing nodes

𝑅. Soil respiration nodes 𝑆 are deployed in 𝑃
𝑠

= {𝑝
𝑠
1

,
𝑝
𝑠
2

, . . . , 𝑝
𝑠
𝑁

}, and 𝑝
𝑠
𝑖

= (𝑥
𝑖
, 𝑦
𝑖
), (1 ≤ 𝑖 ≤ 𝑁) represents

the physical position where the soil respiration measuring
node 𝑠

𝑖
deploys. The number and positions of routing nodes

𝑅 depend on the quantity and location of soil respiration
nodes and are determined according to the connectivity and
robustness requirements, which is not in the scope of this
paper.

The goal of this paper is to determine small 𝑁 and
appropriate 𝑃

𝑠
, according to which soil respiration sensing

data SR = {sr
1
, sr
2
, . . . , sr

𝑁
} are obtained by sensing nodes

𝑆 = {𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑁
} in the positions 𝑃

𝑠
. The errors between

spatial interpolation results SR󸀠 = {sr
1
, sr
2
, . . . , sr

𝑁
, sr
𝑁+1

,
sr
𝑁+2

, . . . , sr
𝑁
󸀠} and the real soil respiration data in 𝑁

󸀠

positions, 𝐸 = {𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑁
}, are computed and small mean

error and small error variance are preferred.

4. Our Solution

4.1. Main Idea. In order to solve the problem of reasonable
layout of sampling positions, a relatively easyway is to arrange
more sampling positions in subregions with more drastic
changes of soil respiration so as to get more details of the
changes and to choose fewer sampling positions in subregions
with relatively flat changes of soil respiration. This approach
is based on the spatial correlation of soil respiration, which
means each measurement in a position represents the data
in surrounding area, and the correlation can be exploited
by spatial interpolation. As a result, the distribution state
of sensing data in the entire region can be obtained by
interpolation using a small number of measurement points.

The method above only pays attention to the local spatial
correlation of soil respiration, the main consideration of
which is the relationship of soil respiration of a position and
that of positions nearby it. But the approach does not take into
account the correlation between soil respiration of positions
which are not adjacent. In addition to the correlation among
adjacent positions which are naturally used in the spatial
interpolation process, the correlation of soil respiration data
measured in nonadjacent positionsmay play a significant role
in promoting the rationality of the layout of soil respiration
sensor network, which is the focus of this paper.

In this paper we designed a soil respiration nodes
deployment method exploiting the correlation of soil res-
piration data in nonadjacent positions. According to the
similarity of time domain features of soil respiration data
in different positions of monitored area, these positions

are divided into groups regardless of whether positions in
each group are adjacent or not in physical space, and thus
soil respiration data monitored in one position from each
group can represent the remaining positions of the same
group for the time domain similarity. During the monitoring
stage, once soil respiration data are measured in the chosen
sampling position of each group, soil respiration data of
other positions in the same group can be obtained through
certain transformation relations which are found during the
grouping process. As a result, we can have soil respiration data
of positionsmuchmore than sensing nodes actually deployed
before final interpolation to simulate the real state of regional
soil respiration, which makes the interpolation result closer
to the real world.

However, obtaining the time domain similarities of soil
respiration data of all positions in the monitored area is very
difficult, since it needs fine-grained soil respiration data of
each position in the monitored area for a period of time,
which is the ultimate goal of soil respiration monitoring
sensor network, and can only be realized through dense
and regular deployment of soil respiration measuring nodes.
In fact, it is not realistic to densely deploy soil respiration
measuring nodes in the monitored area, because we cannot
have enough soil respiration measuring nodes usually due
to expensive cost, which is just the root cause of what to be
studied in this paper.

To solve the problem above, we introduced the tempo-
ral similarity of lightweight parameters into the solution.
According to the domain knowledge of soil respiration, soil
respiration sensing nodes use open chamber method to
measure the soil respiratory carbon flux, and the calculation
is shown by [4]

𝐶flux =
100𝑉𝑃

0
(1 − 𝑊

0
/1000)

𝑟𝑠 (𝑇
0
+ 273.15)

𝜕𝐶
󸀠

𝜕𝑡
. (1)

In the equation, 𝐶flux means soil respiration carbon flux,
𝑉 means chamber volume (cm3), 𝑃

0
means initial pres-

sure in the chamber (kPa), 𝑊
0
means initial water vapor

mole fraction (mmol⋅mol−1), 𝑟 means ideal gas constant
8.314472m3⋅Pa⋅mol−1⋅K−1, 𝑠 means soil surface area (cm2),
𝑇
0
means initial temperature (∘C), and 𝜕𝐶

󸀠
/𝜕𝑡 means initial

changing rate of CO
2
(mol⋅m−2⋅s−1).

From (1)we can see that soil respiration is affected by tem-
perature, humidity, pressure, and other factors. Because price
and energy consumption of sensors for these parameters are
relatively low, we refer to these factors such as temperature,
humidity, and pressure as “lightweight parameters” of soil
respiration in this paper.

In order to solve the problem that the similarities of time
domain features of fine-grained positional soil respiration
data in the monitored area cannot be obtained directly, we
converted the similarities into the similarities of time domain
features of lightweight parameters in different positions.
Because of the low cost and low energy consumption of
lightweight parameter sensing nodes, lightweight parameters
can be measured densely and regularly in the monitored area
and the similarities of time domain features of lightweight
parameters in different positions can be obtained.
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Therefore, we prposed a strategy for the deployment
of soil respiration monitoring sensor network based on
similarity of time domain features of lightweight parameters,
which is called TimSim in this paper. Firstly densely and
regularly deploy lightweight parameters sensing nodes in the
monitored area and measure for a period of time, and then
analyze the measurement results to observe the similarities
of time domain features of lightweight parameters, group
the positions according to the similarities, and finally choose
a representative position for each group to deploy a soil
respiration measurement node.

What should be emphasized is that because deploying a
soil respiration measuring node requires some complicated
special processes such as smoothing the ground surface and
embedding the device bottom into the soil, once the layout
scheme of sensor nodes is determined, it is usually assumed
that soil respiration sensing nodes in the monitoring period
will not be moved anymore after deployment. Therefore,
these complex preparatory works including the measure-
ment, analysis, and computation of lightweight parameters
are very necessary for the optimal layout scheme of sensor
nodes.

4.2. Temporal Similarity of Data in Different Positions. In
order to group similar positions in the monitored area using
the time domain features of the data, the similarity of time
domain features of data between different positions need be
defined.

Let 𝐷
𝑝

= {𝑑
𝑝
𝑖

| 1 ≤ 𝑖 ≤ 𝑙} and 𝐷
𝑞

= {𝑑
𝑞
𝑖

‖ 1 ≤

𝑖 ≤ 𝑙} denote two time series of data measured in positions
𝑝 and 𝑞, respectively, in which 𝑙 means the length of the data
series. In order to describe the similarity between𝐷

𝑝
and𝐷

𝑞
,

they are regarded as the two 𝑙 dimensional vectors, and then
the cosine value of angle 𝜃 between these two 𝑙 dimensional
vectors can be used as the similarity metrics. So we define the
temporal similarity of data in the two positions of the 𝑝 and
𝑞, Sim(𝑝, 𝑞), as

Sim (𝑝, 𝑞) = cos (𝜃) =
𝐷
𝑝
⋅ 𝐷
𝑞

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑝

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑞

󵄩󵄩󵄩󵄩󵄩

=
∑
𝑙

𝑖=1
(𝑑
𝑝
𝑖

× 𝑑
𝑞
𝑖

)

√∑
𝑙

𝑖=1
𝑑2
𝑝
𝑖

× √∑
𝑙

𝑖=1
𝑑2
𝑞
𝑖

.

(2)

Because all the data in this application, either soil respi-
ration data or lightweight parameters data, are all positive,
the components of 𝐷

𝑝
and 𝐷

𝑞
are not negative, and hence

the value of Sim(𝑝, 𝑞) is in the zone [0, 1]. Obviously, if the
directions of 𝐷

𝑝
and 𝐷

𝑞
are identical, that is, there exists the

same linear relationship between 𝐷
𝑝
and 𝐷

𝑞
components,

the similarity between 𝐷
𝑝
and 𝐷

𝑞
is the best, and Sim(𝑝, 𝑞)

equals 1. On the contrary, if the two vectors, 𝐷
𝑝
and 𝐷

𝑞
,

are orthogonal to each other, the similarity is minimum and
Sim(𝑝, 𝑞) equals 0.

4.3. Grouping Positions according to Temporal Similarity.
After the temporal similarity of data between two positions
is defined, we can divide multiple positions into different

groups according to the similarities between each other, and
the grouping result is that positions in each group have high
similarities of time domain features of data while there are
less similarities among positions from different groups.There
are two cases about the grouping problem in practice, one of
which is that the number of groups, 𝑘, is determined and the
other is that the lower bound of similarity among positions in
the same group, LBSim, is given.

When the number of groups 𝑘 is identified, which means
the count of soil respiration sensing nodes is limited, we can
use clustering algorithms based on partition, for example, 𝑘-
means, to divide 𝑛 positions 𝑃 = {𝑝

𝑖
| 1 ≤ 𝑖 ≤ 𝑛} into 𝑘

groups 𝐺 = {𝑔
𝑖
| 1 ≤ 𝑖 ≤ 𝑘}. The stop condition of clustering

procedure is that the differences among average similarities
of positions in every group 𝑔

𝑖
(1 ≤ 𝑖 ≤ 𝑘) are below a preset

threshold. Obviously, the bigger the 𝑘 is, the more the groups
are divided, the fewer the positions are in a group, the smaller
the 𝜃
𝑖
is, and the higher the similarities among positions in a

group are.
When the lower bound of group similarity LBSim is given,

which means the count of soil respiration sensing nodes is
relatively abound and what we are pursuing is the accuracy
of results, we can use clustering algorithmbased on hierarchy,
such as ROCK [33], to divide 𝑛 positions 𝑃 = {𝑝

𝑖
| 1 ≤ 𝑖 ≤ 𝑛}

into 𝑘
󸀠 groups 𝐺

󸀠
= {𝑔
𝑖
| 1 ≤ 𝑖 ≤ 𝑘

󸀠
}. Minimum similarity

in each group 𝑔
𝑖
(1 ≤ 𝑖 ≤ 𝑘

󸀠
), Sim

𝑖
, is bigger than the preset

similarity threshold LBSim. Obviously, the bigger the LBSim is,
the higher the similarities of positions in each group are, the
fewer the positions are in a group, themore the group number
𝑘
󸀠 is, and the more the sensing nodes are needed.
After the grouping scheme of positions in the monitored

area is determined and the grouping result is achieved, we
choose the position where the data vector has the highest
similarity with the center vector of all data vectors in the
same group as the position to deploy a soil respiration sensing
node.When the deploying positions in all groups are chosen,
the positions of routing nodes𝑅 can be determined according
to the connectivity requirement of soil respiration sensing
nodes.

One position in each group is selected as a representative
for the soil respiration sampling. Therefore, if the number
of soil respiration measuring nodes to deploy is certain,
we use the case of determined 𝑘, the number of groups.
Otherwise, the situation is corresponding to the case of
similarity lower bound LBSim which is identified. Higher
LBSim leads to not only highermonitored accuracy of regional
soil respiration, but also bigger group count 𝑘󸀠 which needs
more soil respiration sensing nodes, that is, higher network
cost, so an appropriate LBSim should keep a compromise
between accuracy of results and cost of network.

4.4. Reconstruction of Data for Positions of a Group. A
following problem is the reconstruction of data for the rest of
positions using the data of the sampling position in a group.
Data reconstruction should be done after the deployment and
during the working stage of soil respiration sensor network
system, and it seems that this issue is not a part of the
deployment of a soil respiration sensor network. But in fact, as
for the proposed deployment strategy based on time domain
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similarity of data, its main idea is taking advantage of the
correlation of data from nonadjacent positions, so we should
clarify that the method is able to rebuild the same correlation
in data before putting the deployment strategy into practice.
If the data correlation among nonadjacent positions used by
the deployment strategy cannot be reconstructed during the
network works, this deployment method will be not able to
be applied into any applications.

The reconstruction problem of data of each position in a
group is described as follows. Assume that a position group
𝑔 contains 𝑚 positions 𝑃

𝑔
= {𝑝
𝑖

| 1 ≤ 𝑖 ≤ 𝑚} and the
sampling position in the group is 𝑔𝑐, (𝑔𝑐 ∈ 𝑃

𝑔
), whose data

vector is the closest to the centroid of vectors of all group
member positions in the grouping result. Before the grouping
process, the temporal data sequence measured in position 𝑝

𝑖

is 𝐷
𝑝
𝑖

= {𝑑
𝑝
𝑖
𝑗
| 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑙} and data sequence

measured in position 𝑔𝑐 is 𝐷
𝑔𝑐

= {𝑑
𝑔𝑐
𝑖

| 1 ≤ 𝑖 ≤ 𝑙}.
After the deployment of whole sensor network (i.e., only in
position 𝑔𝑐 a soil respiration sensing node is deployed in this
group), we obtain data 𝑑

󸀠

𝑔𝑐
measured in position 𝑔𝑐. The data

reconstruction problemwe need solve is how to build data for
the rest of𝑚 − 1 positions in group 𝑔 using the data 𝑑

󸀠

𝑔𝑐
.

To fulfill this task, we need compute and save the
conversion relations between the data vectors of the rest
of 𝑚 − 1 positions in the group and that of 𝑔𝑐 during
the grouping procedure. These positions are grouped into a
group because the similarities of temporal features of data
vectors in these positions are high; that is, the directions
of the data vectors are closer and can be considered as the
same direction approximately, which means that the ratio
relationships among data of these positions at the same time
remain still. The norm of data vector of position 𝑝

𝑖
is ‖𝐷
𝑝
𝑖

‖

and that of 𝑔𝑐 is ‖𝐷
𝑔𝑐
‖. If we calculate and save the ratio

between these two norms ratio
𝑖
= ‖𝐷
𝑝
𝑖

‖/‖𝐷
𝑔𝑐
‖, the data of

position 𝑝
𝑖
at the same time to time 𝑑

󸀠

𝑔𝑐
was measured in

position 𝑔𝑐, 𝑑󸀠
𝑝
𝑖

, can be estimated by 𝑑
󸀠

𝑝
𝑖

= 𝑑
󸀠

𝑔𝑐
× ratio

𝑖
.

During the analysis of premeasured data for grouping,
record the ratios Ratio between data vector of every nodes
𝑝
𝑖
in group 𝑃

𝑔
and that of sampling position 𝑔𝑐:

Ratio = {ratio
𝑖
} = {

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑝
𝑖

󵄩󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑔𝑐

󵄩󵄩󵄩󵄩󵄩

} , 1 ≤ 𝑖 ≤ 𝑚. (3)

Then data of all positions in the group can be reconstructed
using Ratio after data 𝑑

𝑔𝑐
are measured in position 𝑔𝑐 after

the soil respiration measuring node is deployed in position
𝑔𝑐 and during the persistent practical monitoring procedure:

𝐷
󸀠

𝑝
𝑔

= {𝑑
󸀠

𝑝
𝑖

} = Ratio ⋅
󵄩󵄩󵄩󵄩󵄩
𝑑
󸀠

𝑔𝑐

󵄩󵄩󵄩󵄩󵄩
, 1 ≤ 𝑖 ≤ 𝑚. (4)

But in the approach we designed in this paper, the pre-
measured data is lightweight parameters data rather than soil
respiration data, and the ratio vector Ratio is the relation of
lightweight parameters data of each positionwithin the group
rather than that of soil respiration data. So this ratio vector
Ratio can only be used to reconstruct lightweight parameters
data and cannot be directly used for the reconstruction of soil
respiration data.

Because the soil respiration carbon flux is calculated
according to (1), the lightweight parameters such as tem-
perature and humidity measured in position 𝑝𝑐 by the soil
respiration sensing device can be used to calculate the soil
respiration carbon flux on the one hand; on the other hand,
these lightweight parameters data in position 𝑝𝑐 can be used
to get lightweight parameters data in other positions of the
same group using (4), and then the soil respiration data in
these positions can be calculated according to (1).

4.5. TimSim Algorithm. Now we formally describe the
deployment strategy for soil respiration monitoring sensor
network based on time domain similarity of lightweight
parameters, TimSim, proposed in this paper.

Algorithm 1 requires the following: 𝑃: positions uni-
formly and densely distributed in the monitored area; 𝐷

𝑃
:

lightweight parameters data serials in these positions 𝑃; 𝑘 or
LBSim: limiting conditions required for grouping in two cases,
𝑘 for count limit of groups and LBSim for lower bound of
similarity in groups. In the process of the algorithm, firstly,
outliers in data are rectified and other preprocessing opera-
tions are done, and then similarities of temporal features of
every two data sequences in different positions are calculated.
In the grouping process, positions in 𝑃 are divided into 𝑘

groups using 𝑘-means algorithm if parameter 𝑘 is provided
or divided into 𝑘

󸀠 groups using ROCK algorithm if parameter
LBSim is provided. For each group of positions, the centroid
vector of lightweight parameters data vectors is calculated,
and choose the position where lightweight parameters’ data
is the closest to the centroid vector as the representative
position of the group, 𝑔𝑐

𝑖
, and then the ratios between

data vectors in every other position and data vector in the
representative position, 𝑔ratio

𝑖
, are calculated and recorded

for the data reconstruction of subsequentmonitoring process
later.

As for the soil respiration sensing network, the length
of time lightweight parameter data sequence 𝐷

𝑃
covered is

usually 24 hours, considering the soil respiration has day-
periodic trends. Furthermore, to avoid the occasionality of
data sequence, several data sequences of different days should
be used as the basis of grouping operation after computing the
average data sequence with time-correspondence.

5. Experiments and Analysis

5.1. Experimental Data. In order to verify the proposed
deployment strategy of soil respiration monitoring sensor
network based on similarity of time domain features of
lightweight parameters, TimSim, the ideal experiment pro-
cedure should be as follows: densely and regularly deploy
lightweight parameters sensing nodes in the monitored area
𝑍 and carry out a few days of continuous measurement,
and then divide the positions into groups based on the
lightweight parameters data sequences measured, and find
the positions closest to the centroid of light weight data
sequences to deploy soil respiration sensing nodes. In order to
examine the performance of this method, we need collect soil
respiration data in positions where soil respiration sensing
nodes deployed and then do spatial interpolation with them
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Require: 𝑃 = {𝑝
𝑖
| 1 ≤ 𝑖 ≤ 𝑛} // 𝑛 positions regularly and densely distributed in the monitored area.

𝐷
𝑃
= {𝐷
𝑝𝑖

| 1 ≤ 𝑖 ≤ 𝑛} = {{𝑑
𝑝𝑖𝑗

| 1 ≤ 𝑗 ≤ 𝑙} | 1 ≤ 𝑖 ≤ 𝑛} // lightweight data sequence from each position
𝑘 // limited number of soil respiration sensing nodes
LBSim // limited lower bound of similarity in each group

Ensure: 𝐺 = {𝑔
𝑖
| ∪ 𝑔
𝑖
= 𝑃, ∩ 𝑔

𝑖
= 0, 1 ≤ 𝑖 ≤ 𝑘 (or 𝑘󸀠)} // result of positions group

𝐺𝐶 = {𝑔𝑐
𝑖
| 𝑔𝑐
𝑖
∈ 𝑔
𝑖
, 1 ≤ 𝑖 ≤ 𝑘 (or 𝑘󸀠)} // 𝑔𝑐

𝑖
is the position to place a node in group 𝑔

𝑖

Ratio = {𝑔ratio
𝑖
= {ratio

𝑗
| 𝑝
𝑗
∈ 𝑔
𝑖
} | 1 ≤ 𝑖 ≤ 𝑘 (or 𝑘󸀠)} // data ratio between positions to node position

(1) preprocess(𝐷
𝑃
); // rectify the outlier in data

(2) for 𝑖 = 1 to 𝑛 do
(3) for 𝑗 = 1 to 𝑛 do
(4) Sim(𝑝

𝑖
, 𝑝
𝑗
) = (𝐷

𝑝𝑖
⋅ 𝐷
𝑝𝑗
)/(‖𝐷

𝑝𝑖
‖‖𝐷
𝑝𝑗
‖);

(5) end for
(6) end for
(7) 𝐺 = {𝑔

𝑖
| 1 ≤ 𝑖 ≤ 𝑘} = 𝑘-means(𝑃, Sim, 𝑘); // for the case of 𝑘 is given

or 𝐺 = {𝑔
𝑖
| 1 ≤ 𝑖 ≤ 𝑘

󸀠
} = 𝑅𝑂𝐶𝐾(𝑃, Sim, LBSim); // for the case of LBSim is given

(8) for 𝑖 = 1 to 𝑘 (or 𝑘󸀠) do
(9) 𝐷𝑐

𝑖
= centroid({𝐷

𝑝𝑗
| 𝑝
𝑗
∈ 𝑔
𝑖
, ∪ {𝑝
𝑗
} = 𝑔
𝑖
}); // centroid of data vectors from all positions in 𝑔

𝑖

(10) Dist
𝑖
= {dist

𝑗
= 1/Sim(𝐷

𝑝𝑗
, 𝐷𝑐
𝑖
) | 𝑝
𝑗
∈ 𝑔
𝑖
, ∪ {𝑝
𝑗
} = 𝑔
𝑖
)}; // distance to centroid data vector

(11) 𝑔𝑐
𝑖
= {𝑝
𝑗
| dist
𝑗
== MIN({Dist

𝑖
}), 𝑝
𝑗
∈ 𝑔
𝑖
}; // position with nearest data vector to centroid

(12) 𝑔ratio
𝑖
= {‖𝐷

𝑝𝑗
‖/‖𝐷
𝑔𝑐𝑖

‖|𝑝
𝑗
∈ 𝑔𝑖, ∪ {𝑝

𝑗
} = 𝑔
𝑖
)};

(13) end for
(14) return 𝐺,𝐺𝐶 = {𝑔𝑐

𝑖
},Ratio = {𝑔ratio

𝑖
};

Algorithm 1: Time domain similarity of lightweight parameters based deployment algorithm (TimSim).

to estimate regional soil respiration of the monitored area,
SR
𝑇𝑖𝑚𝑆𝑖𝑚

. The estimated results should be compared with
the real soil respiration data SRreal of the monitored area
at the same time to analyze the measuring error of the
method. But the real soil respiration data of the area, SRreal,
cannot be obtained, because this requires to deploy many soil
respiration measuring equipments very densely throughout
the area, while we cannot have so many soil respiration
measuring equipments for the high cost.

We adopt a substitutional method to simulate real soil
respiration data of many dense positions in the monitored
area using temporal and spatial shift. We deploy 𝑥 soil
respiration sensing nodes in 𝑥 different positions of the
experimental area and let them keep working for 𝑑 days to
obtain data of soil respiration and lightweight parameters.
Thus 𝑑 serials of daily soil respiration data can be collected
by the equipment in each position in the 𝑑 days. We shift the
𝑑 daily serials of data of a position to 𝑑 different positions
for one day. So in order to simulate real data of one day in 𝑛

positions of the experimental area, SRreal, such 𝑥 equipment
need keep working for 𝑛/𝑥 days.

Taking into account that there are several factors affecting
soil respiration such as temperature, humidity, and air pres-
sure, too many lightweight parameters may complicate the
experiment. We carry out the experiment process in smooth
lawn with uniform illumination, in which the temperature
and pressure of different positions are almost the same; thus
humidity is the only main factor affecting soil respiration in
this area. So the lightweight parameter in our experiment
only remains humidity data.

In the experiment, we used 20 soil respiration mea-
suring equipments, deployed them in different positions of

the monitored area, let them keep working for 5 days, and
obtained 100 position-day serials of data. Then we changed
the positions of such equipment and repeated the data
collection process for 2 times. As a result, we obtained 3 data
sets, each of which includes 100 position-day serials of data,
and we distributed each data set regularly with 10 × 10 grids
pattern in the monitored area as a set of experimental data,
SRreal.

5.2. Experimental Scheme. Suppose that we have measured
regional soil respiration real data SRreal; then we can evaluate
a specific deployment strategy using the deviation of SRstrategy,
themeasured results of soil respiration data using the strategy,
from SRreal at each position 𝑝

𝑖
:

𝐸 = {𝑒
𝑖
} = {

󵄨󵄨󵄨󵄨󵄨󵄨
SRstrategy𝑝

𝑖

− SRreal𝑝
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
| 1 ≤ 𝑖 ≤ 𝑛} . (5)

Once we get the error between SRstrategy and SRreal, 𝑒𝑖, in
position 𝑝

𝑖
, we can use mean error and error variance

to analyze the performance of a deployment strategy. The
mean error indicates an overall performance of a deployment
scheme, and the error variance is helpful to analyze whether
the errors of the different positions are close and to analyze
the spatial distribution of error combining 𝑒

𝑖
and the location

of𝑝
𝑖
. Of coursewe expect that ourmethod,TimSim,may have

small mean error and small error variance.
In order to evaluate the performance of TimSim, we use

the scheme in Algorithm 2 to carry out the experiment. As
shown in Algorithm 2, we use multiple sets of the experi-
mental data to calculate the error of regional soil respiration
carbon flux measured using TimSim, Uniform, and Random
deployment strategies.
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Require: 𝑃 = {𝑝
𝑖
| 1 ≤ 𝑖 ≤ 𝑛} // 𝑛 positions regularly and densely distributed in the monitored area.

𝐷
𝑃
[ ] = {{𝐷

𝑝𝑖
= {𝑑
𝑝𝑖𝑗

| 1 ≤ 𝑗 ≤ 𝑙} | 1 ≤ 𝑖 ≤ 𝑛}
𝑡
| 1 ≤ 𝑡 ≤ times} // 𝑡𝑖𝑚𝑒𝑠 sets of lightweight data sequences of all positions

SRreal[ ] = {{srreali | 1 ≤ 𝑖 ≤ 𝑛}
𝑡
| 1 ≤ 𝑡 ≤ times} // 𝑡𝑖𝑚𝑒𝑠 sets of data for experiment

Ensure: Err[ ] // error for each strategy.
(1) times = 3, 𝑛 = 100,𝑁

𝑆
= {6, 9, 12, 15}; // Initialization

(2) STRATEGY = TimSim, Uniform, Random; // using three strategies respectively
(3) for each strategy ∈ STRATEGY do
(4) for each 𝑛

𝑠
∈ 𝑁
𝑆
do

(5) for 𝑡 = 1 to times do
(6) 𝑃sample = strategy(𝑃,𝐷

𝑃
[𝑡]) = {𝑝

𝑖
| 1 ≤ 𝑖 ≤ 𝑛

𝑠
}; // determining 𝑛

𝑠
sample positions using strategy

(7) SRsample = sample(SRreal[𝑡], 𝑃sample) = {sr
𝑝𝑖

| 𝑝
𝑖
∈ 𝑃sample, 1 ≤ 𝑖 ≤ 𝑛

𝑠
}; // sampling 𝑛

𝑠
data from SRreal[𝑡]

according to 𝑃sample
(8) SRstrategy = {sr

𝑝𝑖
| 1 ≤ 𝑖 ≤ 𝑛} = Kriging(SRsample, 𝑃sample, 𝑃) // interpolation using Kriging method

(9) 𝐸[strategy, 𝑛
𝑠
, 𝑡] = {𝑒

𝑖
| 1 ≤ 𝑖 ≤ 𝑛} = |SRstrategy − SRreal[𝑡]|

(10) end for
(11) end for
(12) Err[strategy, 𝑛

𝑠
] = (1/times) ∑times

𝑡=1
𝐸[stragegy, 𝑛

𝑠
, 𝑡];

(13) end for
(14) return Err;

Algorithm 2: Experiment procedure.
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Figure 2: Distribution of soil humidity and soil respiration carbon flux in the experimental area.

5.3. Experimental Results and Analysis

5.3.1. Deployment Results and Performance Analysis of Tim-
Sim. In order to demonstrate the procedure and result of
TimSim deploymentmethod, we choose a set of experimental
data, including lightweight parameter data, humidity, and
soil respiration carbon flux data of 100 positions, and the
data distribution of these positions at a moment is shown in
Figure 2.

Then the similarities of time domain features of light-
weight parameter data are calculated using the data set,
according to which the 100 positions are divided into groups
using 𝑘-means algorithm. Figure 3 shows the grouping results
of 𝑘-means algorithm for the case when the count 𝑘 of groups

is 6, 9, 12, and 15, respectively, in which positions marked
with the same number are in the same group. Furthermore,
the position to deploy a soil respiration sensing node in each
group is marked with a small square around the number,
whose data vector of lightweight parameter is the closest to
the centroid of data vectors of all positions in the same group.

As we can see from Figure 3, there is not any obvious
regular pattern in the spatial distribution of positions in each
group. Positions in each group are not all adjacent in the space
and their distribution is very disperse and irregular. When
comparing the lightweight parameter data of positions in the
same group, their values are not very close to each other at
the same time. This is because the grouping method is based
on the similarities of temporal pattern of data rather than the
distribution of data at a certain moment.
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Figure 3: Position grouping results for different group numbers.

As we can also see from Figure 3, the selected deployment
positions of soil respiration sensing nodes are not in the
geographical central positions of each group, because in our
TimSim method the deployment position is determined by
the centroid direction of data sequences in positions of a
group, and the selected position to deploy soil respiration
sensing node is the position whose direction of data vector
is the closest to the centroid direction among all directions of
data vectors in positions of the same group. So the selected
deployment position is independent of the geographical
distribution of positions of the same group.

After the deployment positions are determined, the distri-
bution of error between SR

𝑇𝑖𝑚𝑆𝑖𝑚
and SRreal can be obtained,

which are shown in Figure 4. Figure 4 shows the distribution
of average value of errors in each position using SR

𝑇𝑖𝑚𝑆𝑖𝑚

method for 3 times, as described in Algorithm 2, when group
number 𝑘 is 6, 9, 12, and 15, respectively. And the mean errors
and error variances of all these cases are shown in Figure 5.

From Figure 4 we can see that errors vary within a wide
range when the count of sampling positions is small and
there are large errors in some positions. For example, the
biggest error among all positions reaches 4.8 in Figure 4(a).
The reason is that the group count is low, and there are

weak similarities between data vectors of some positions and
that of the deployment positions in the same group, which
brings big errors during the reconstruction process of data in
these positions with weak similarities according to centroid
vector. For the same reason, the mean and variance of errors
of different positions are also relatively big when the group
count is low, as shown in Figure 5.

With the increase of the number of sampling positions,
the mean and variance of the errors decrease, as shown
in Figure 5. From Figure 4 we can see that errors of most
positions decrease with increasing the number of sample
points with also some exceptional positions, which is caused
by the alternation of directions of centroid vectors with the
change of count of groups. Grouping results alter with the
growth of count of groups, which makes the data vectors of
some positions farther from the centroid vector directions
than the former case leading to bigger error in these positions.
While with the growth of count of groups, quantity of
positions within a group is reduced at large, the similarities
in groups become better and there are no positions with very
large error. As shown in Figure 4(d), the maximum error
among all positions is only 0.9.
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Figure 4: Error distribution of TimSim for different group numbers.

5.3.2. Comparison of TimSim and Other Methods. In order
to show the advantage of the TimSim method, we also eval-
uate other two deployment strategies, uniform deployment
(Uniform) and random deployment (Random), using the
same experimental data in our experiment as described in
Algorithm 2, as shown in Figure 5. The experimental results
show that the performance of TimSim is better than those of
the other two strategies.

As can be seen from Figure 5, when the number of sam-
pling positions is low, themean errors ofUniform deployment
and TimSim deployment are close to each other and are 3.2
and 3, respectively, and both of them have significantly better
performance than random deployment, whose mean error is
3.9.The reason is that bothUniform deployment and TimSim
can make the sampling positions cover the entire area well
through spatial interpolation, while the coverage of Random
deployment strategy is seriously inadequate due to the small
number of nodes, resulting in large errors in the positions of
uncovered area.

In addition, the error variance of TimSim has obvious
advantages compared to those of both Uniform and Random
deployment strategies in the case of few sampling nodes
and the reason is that TimSim strategy takes the correlation
among nonadjacent positions into account, which makes
no positions have too large error. The other two strategies
use the spatial correlations of soil respiration during the
interpolation operations while the correlations may be not
the actual case, so there may be large local deviations in some
positions where nodes are sparse, which makes the errors
relatively dispersed and leads to large error variances.

When the count of sampling positions is high, TimSim
deployment strategy has obvious advantage in the aspect of
either mean error or error variance compared with Uniform
and Random deployment. When the number of sampling
positions is up to 15, the coverage of Random deployment
increases and the mean error was about to catch up with
theUniform deployment while the error variance is relatively
high due to the inhomogeneity of deployment positions.
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Figure 5: Error comparison of three deployment strategies.

With the increase of deployment positions, number of
groups increases in the TimSim deployment method and
number of positions included in each group is reduced, which
makes the similarities of temporal features of lightweight
parameters in positions of the same group become high.
As a result, the data in positions can be reconstructed with
small error using data in the deployment position, which
means that real datameasured in 15 positions can be extended
to approximate real data far more than 15 positions, so
both mean error and error variance of TimSim deployment
method are smaller than the other two deployment methods
when the number of sampling positions is large to a certain
extent.

6. Conclusions

Focusing on the problem of limited number of nodes for
its expensive cost in soil respiration sensor networks, we
proposed a new deployment strategy based on the time
domain similarity of lightweight parameters, TimSim. This
method is inspired by the knowledge that soil respiration
is mainly affected by some lightweight parameters such as
temperature and humidity. Using this method, the count of
sampling positions can be reduced while the accuracy of
results remains by proper arrangement of the node positions.
The performance of TimSim is examined by experiments,
and the results show that TimSim can measure regional soil
respiration carbon flux effectively and can achieve smaller
deviation than uniform or random deployment when using
the same amount of measuring equipment.

In the proposed method, lightweight parameters data
need to be measured densely and regularly in advance, which
is infeasible when the area to be monitored is very large.
In this case lightweight parameters can be relatively sparsely

measured and then be interpolated to increase the density.
Although this can reduce the accuracy of the final result, it is
a feasible way anyway.

Themethod proposed in this paper is more convenient to
be used for single factor than multiple factors of lightweight
parameters, and the experiment in the paper also emphasized
the guidance of a single lightweight parameter, humidity, to
the deployment of soil respiration sensing nodes.When there
are multiple factors, the problem is that the grouping results
may be different using different lightweight parameters. A
possible solution is to fuse multiple lightweight parameters
as a complex lightweight parameter and analyze its temporal
similarities among different positions using TimSim deploy-
ment strategy and the detailed solution to this problem is a
direction we will study in future.

Finally, although the proposed deploymentmethod based
on lightweight parameters in this paper is described as a
solution to soil respiration sensor networks, this idea for
deployment is applicable and can provide a reference and
guidance to other applications of wireless sensor networks.
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