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Although several algorithms have been presented to solve the simultaneous pose and correspondence estimation problem, the
correct solution may not be reached to with the traditional random-start initialization method. In this paper, we derive a novel
method which estimates the initial value based on genetic algorithm, considering the influences of different initial guesses
comprehensively. First, a set of random initial guesses is generated as candidate solutions. Second, the assignment matrix and
the perspective projection error are computed for each candidate solution. And then each individual is modified (selection,
crossover, andmutation) in current iterative process. Finally, the fittest individual is stochastically selected from the final population.
With the presented initialization method, the proper initial guess could be first calculated and then the simultaneous pose and
correspondence estimation problem could be solved easily. Simulation results with synthetic data and experiments on real images
prove the effectiveness and robustness of our proposed method.

1. Introduction

Estimating the position and orientation using 2D images
and known 3D targets, which is usually called pose esti-
mation, is a basic problem in computer vision, including
hand-eye coordination system, object tracking, augmented
reality, and autonomous navigation [1–8]. However, when the
correspondences between object features and image features
are unknown, for example, because the scene contains repet-
itive patterns or because the 3D points are simply salient
features on a geometric model without associated texture or
because occlusion and clutter should be taken into account,
it becomes difficult because no additional information is
available.

In this case, pose and correspondence should be deter-
mined simultaneously, which is simultaneous pose and cor-
respondence estimation problem. So far, designing a proper
method that can be generally applied to estimate position and
orientation when the correspondences are unknown is still
a challenging problem. Particularly, this problem also takes
occlusion, clutter, image noise, and model deformation into
account. The problem can be iteratively solved by optimizing

a global cost function. One limitation of such algorithm is
that the global minimum cannot be guaranteed. This is alle-
viated by randomly initializing it at different initial guesses.
Meanwhile, the algorithm is quite slow because hundreds of
different initial poses are needed to try randomly and it may
succeed only when the initial pose is close to the real pose.
Obviously, the consideration of occlusion and clutter makes
this problem complicated. Yet, certain configurations of the
data or situations with large amounts of occlusion and clutter
still cause the algorithm to fail.

In this paper, we formalize the simultaneous pose and cor-
respondence problem comprehensively and present a novel
initialization method based on genetic algorithm. We note
that the relationships between each randomly initial guess
are neglected by the traditional random-start initialization
method. In this case, an initial guess may still be used tomin-
imize the global objective function, even when a very similar
guess has also been attempt. What is worse, an appropriate
initial guess may not be selected in a long time if there are
many local optima. Actually, each initial guess has different
influence to the global optimum and a valid method should
consider the different results of previous attempts during
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searching for the global optimum. Our initialization method
is derived based on the analysis. Simulation results and exper-
iments on real images suggest that our method has faster
convergence speed and higher convergence rate than the tra-
ditional random-startmethod, which can be used to solve the
simultaneous pose and correspondence problem effectively
and robustly.

The rest of this paper is organized as follows: Section 2
carries out a study of simultaneous pose and correspondence
method and some relevant proposals using the genetic
algorithm. Section 3 provides a thorough analysis of the
simultaneous pose and correspondence estimation problem
and genetic algorithm.We describe our initializationmethod
based on genetic algorithm in Section 4. Section 5 presents
experimental results using both synthetic data and real
images and compares our algorithm with the state-of-the-
art pose estimation algorithms. Conclusions are drawn in
Section 6.

2. Related Works

In literature, many algorithms have been developed to solve
the simultaneous pose and correspondence problem. Most
of them determine correspondences between 3D targets and
2D image features explicitly or implicitly before computing
pose [9–11].Thehypothesize-and-test algorithm, for example,
RANSAC, is frequently used. In this approach, a small set of
2D image features and 3D object features are selected first and
the correspondences between them are then hypothesized.
Based on the hypothesized correspondences, the pose can be
easily computed. All the 3D object features are reprojected
into the image plane with the estimated pose. If the original
and reprojected images features are sufficiently similar, the
pose is accepted; otherwise, a new hypothesis is formed and
the process is repeated.

In the above algorithms, the correspondence problem
and the pose estimation problem are solved separately,
but the relationships between pose and correspondence are
neglected. Time complexity may become great, especially
when the number of 3D object points or 2D image points is
high.

Skrypnyk and Lowe [12] presented another similar algo-
rithmwhich uses view-variant 2D image features to index 3D
models. In his approach, a process named off-line training is
executed to learn 2D feature groupings associated with large
number of different views of the 3D models. Then, the on-
line recognition stage is performed to index 3D objectmodels
in a database of learned object-to-image correspondence
hypotheses. Correspondences could be determined based
on the object recognition results, which are used for pose
estimation and final verification.

In [13], Wunsch and Hirzinger formalized the problem
as the optimization of an objective function combining all
the correspondence and pose constraints. Combined with
a hybrid pose estimation algorithm, a random-start local
search method is performed in the object-to-image space.
However, in their algorithm, the correspondence constrains
are not represented analytically. Instead, each object feature

is explicitly matched to the closest sight line of the image
features.

David et al. derived a very similar algorithm named
SoftPOSIT in [14] by defining a global objective function,
which combined an iterative correspondence assignment
technique called Softassign [11] and an iterative pose estima-
tion technique called POSIT [15] into a single iteration loop.
SoftPOSIT stands out in the simultaneously estimating pose
and correspondence approaches because of its accuracy and
speed. The drawback is that it tries different initial poses and
succeeds when the initial pose is close to the real pose.

SoftSI algorithm [16] proposed by Zhou et al. is also based
on the global objective function, which can simultaneously
obtain pose and correspondences.The SoftSI algorithm com-
bines the SI algorithm and two singular value decomposition-
(SVD-) based shape description theorems. By analyzing the
calculation process of SI algorithm, the method can avoid
pose ambiguity and quickly eliminate bad initial values.

This objective function can be also solved by different
optimization algorithms [17–21] and can contains line fea-
tures [22], cornerless images [23], and nonrigid shape [24].
Unfortunately, there is no guarantee of finding the global
optimum given a single random-start initial guess in the
algorithm, especially when the number of points is not equal
because of occlusion, clutter, and image noise.

Genetic algorithm (GA), which simulated the natural
evolution process, is a useful tool for many optimization
problem. Recently, GA and its variations have been used in
many fields, such as computer vision, artificial intelligence,
pattern recognition, telecommunication, smart sensing, and
mobile computing. In telecommunications, the quality of
service (QoS) parameters may conflict with each other, so
this problem is actually a multiobjective optimization [25].
A genetic algorithm can be used to solve complicated global
optimization problems. In quantum computing, genetic algo-
rithm can be used in stimulated annealing for combinatorial
optimization so as to avoid premature convergence [26].

3. Problem Formulation

In this section,we first give a description of cameramodel and
the formulation of pose estimation algorithm with known
correspondences, using the closed-form global optimal func-
tion.Then the function is modified to characterize the global
pose-correspondence problem without known correspon-
dences. The genetic algorithm is introduced at last.

3.1. Camera Model. Generally, a camera can be seen as a pin-
hole model, which describes the mathematical relationship
between the coordinates of a 3D point and its projection onto
the image plane, where the camera aperture is described as
a point. Some of the effects that the pinhole camera model
does not take into account can be compensated, for example,
by applying suitable coordinate transformations on the image
coordinates.This means that the pinhole camera model often
can be used as a reasonable description of how a camera
depicts a 3D scene, for example, in computer vision and
computer graphics.
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Figure 1: The pinhole model of a camera.

The geometry related to the mapping of a pinhole camera
is illustrated in Figure 1.

In the model, a 3D orthogonal coordinate system is
abstracted with its origin at 𝑂

𝑐
, which is also where the

camera aperture is located. The three axes of the coordinate
system are referred to as𝑋

𝑐
,𝑌
𝑐
, and𝑍

𝑐
. Axis𝑍

𝑐
is pointing in

the viewing direction of the camera and is referred to as the
optical axis, principal axis, or principal ray. The image plane
is parallel to axes 𝑋

𝑐
and 𝑌

𝑐
and is located at a distance 𝑓

from the origin 𝑂
𝑐
in the negative direction of the 𝑍

𝑐
axis.

A practical implementation of a pinhole camera implies that
the image plane is located such that it intersects 𝑍

𝑐
axis at

coordinate −𝑓 where 𝑓 > 0. 𝑓 is also referred to as the focal
length of the pinhole camera.

A point 𝐶
𝑝
at the intersection of the optical axis and the

image plane is referred as the principal point or image center.
A point 𝑃 somewhere in the world has the coordinates

(𝑋, 𝑌, 𝑍) relative to the axes𝑋
𝑐
,𝑌
𝑐
, and𝑍

𝑐
.Theprojection line

of point 𝑃 into the camera (the green line in Figure 1) passes
through point 𝑃 and the point 𝑂

𝑐
. The projection of point 𝑃

onto the image plane is denoted as𝑝.This point is given by the
intersection of the projection line (green line) and the image
plane. In any practical situation we can assume that 𝑍 > 0,
which means that the intersection point is well defined.

There is also a 2D coordinate system in the image plane,
with origin at 𝐶

𝑝
and with axes𝑋 and 𝑌 which are parallel to

𝑋
𝑐
and 𝑌

𝑐
, respectively. The coordinates of point 𝑝 relative to

this coordinate system is (𝑥, 𝑦).
As depicted in Figure 1, the projection function can be

formulated as

𝑥 = 𝑓
𝑋

𝑍
,

𝑦 = 𝑓
𝑌

𝑍

(1)

which can be rewritten in homogenous coordinate system:

𝑍
[
[

[

𝑥

𝑦

1

]
]

]

=
[
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[

𝑓 0 0 0

0 𝑓 0 0
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]
]
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Figure 2: The perspective projection of a pinhole model.

In image coordinate system, there is an equation as
follows:

[
[

[

𝑢

V

1

]
]

]

=
[
[

[

𝑠
𝑥

0 𝑢0

0 𝑠
𝑦

V0
0 0 1

]
]

]

[
[

[

𝑥

𝑦

1

]
]

]

, (3)

where 𝑢0 and V0 are the image center in image coordinate
system and 𝑠

𝑥
and 𝑠
𝑦
are scale factors.

According to (2) and (3), the pinhole model of a camera
can be described as

𝑢− 𝑢0 = 𝑓𝑠
𝑥

𝑋

𝑍
= 𝑓
𝑥

𝑋

𝑍
,

V− V0 = 𝑓𝑠
𝑦

𝑌

𝑍
= 𝑓
𝑦

𝑌

𝑍
,

(4)

where 𝑓
𝑥

= 𝑓𝑠
𝑥
and 𝑓

𝑦
= 𝑓𝑠
𝑦
are defined as equivalent focal

length of axes 𝑋
𝑐
and 𝑌

𝑐
, respectively. 𝑓

𝑥
, 𝑓
𝑦
, 𝑢0, and V0 are

called the camera intrinsic parameters.

3.2. Pose Estimation with Known Correspondences. Themap-
ping from 3D to 2D coordinates described by a pinhole
camera is a perspective projection followed by a 180∘ rotation
in the image plane, which corresponds to how a real pinhole
camera operates. The resulting image is rotated 180∘ and the
relative size of projected objects depends on their distance to
the focal point and the overall size of the image depends on
the distance 𝑓 between the image plane and the focal point.
In order to produce an unrotated image, which is what we
expect from a camera, we can place the image plane so that
it intersects the 𝑍

𝑐
axis at 𝑓 instead of at −𝑓 and rework

the previous calculations. This would generate a virtual (or
front) image plane which cannot be implemented in practice
but provides a theoretical camera which may be simpler to
analyze than the real one. This relationship is illuminated in
Figure 2.

Assuming that the coordinates of corresponding
3D object points and normalized 2D image points are
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P
𝑖

= [𝑋
𝑖
, 𝑌
𝑖
, 𝑍
𝑖
]
𝑇 and k

𝑖
= [𝑥

𝑖
, 𝑦
𝑖
]
𝑇, the perspective

projection camera model can be described as

𝑙
𝑖
[
k
𝑖

1
] = RP

𝑖
+T, (5)

where 𝑙
𝑖
is a scale factor. R and T are the rotation matrix and

translation vector, respectively, which describe the relation-
ship between the camera and the 3D target. Pose estimation
with known correspondences is then to seek the optimal
rotation matrix R and translation vector T that best satisfy
the equations in (5). According to the above equation, R is a
3 × 3 matrix and T is a 3 × 1 vector, which can described as

R =
[
[

[

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

]
]

]

=
[
[
[

[

R𝑇1
R𝑇2
R𝑇3

]
]
]

]

,

T =
[
[

[

𝑡
𝑥

𝑡
𝑦

𝑡
𝑧

]
]

]

,

(6)

where R𝑇1 , R
𝑇

2 , and R𝑇3 indicate the row vectors of rotation
matrix R and each of them is a unit vector. 𝑡

𝑥
, 𝑡
𝑦
, and

𝑡
𝑧
represent the coordinates of the original point of object

coordinate system onto the three axes of the camera.
The perspective projection camera model can then be

rewritten as

[
[

[

𝑙
𝑖
𝑥
𝑖

𝑙
𝑖
𝑦
𝑖

𝑙
𝑖

]
]

]

=
[
[
[

[

R𝑇1 𝑡
𝑥

R𝑇2 𝑡
𝑦

R𝑇3 𝑡
𝑧

]
]
]

]

[
P
𝑖

1
] . (7)

If wemultiply the same factor 𝑠 = 1/𝑡
𝑧
on all the elements

of the right-side perspective projection matrix and the left-
side homogeneous image point coordinates, the equality is
not affected. Introducing a scaling factor𝑤

𝑖
= 𝑙
𝑖
/𝑡
𝑧
, we obtain

[
𝑤
𝑖
𝑥
𝑖

𝑤
𝑖
𝑦
𝑖

] = [

𝑠R𝑇1 𝑠𝑡
𝑥

𝑠R𝑇2 𝑠𝑡
𝑦

][
P
𝑖

1
] (8)

with

𝑤
𝑖
= R3 ⋅

P
𝑖

𝑡
𝑧

+ 1. (9)

In photogrammetry, the pose estimation problem is usu-
ally formulated as the problem of optimizing the following
objective function:

𝐸 =

𝑁

∑

𝑖=1
((Q
𝑥
⋅P
𝑖
−𝑤
𝑖
𝑥
𝑖
)
2
+ (Q
𝑦
⋅P
𝑖
−𝑤
𝑖
𝑦
𝑖
)
2
) , (10)

where 𝑁 is the number of 2D image points. To simplify the
subsequent notation, we introduce three new vectorsQ

𝑥
,Q
𝑦
,

and P̃
𝑖
with four homogeneous coordinates:

Q
𝑥
= 𝑠 (R1, 𝑡𝑥) ,

Q
𝑦
= 𝑠 (R2, 𝑡𝑦) ,

P̃
𝑖
= (P
𝑖
, 1) .

(11)

We callQ
𝑥
andQ

𝑦
the pose vectors.

In the objective function 𝐸, the pose vectors are those for
which all the partial derivatives of the objective function with
respect to the coordinates of these vectors are zero.Q

𝑥
andQ

𝑦

can then be solved using the conditions:

Q
𝑥
= (

𝑁

∑

𝑖=1
P
𝑖
P𝑇
𝑖
)

−1

(

𝑁

∑

𝑖=1
𝑤
𝑖
𝑥
𝑖
P
𝑖
) ,

Q
𝑦
= (

𝑁

∑

𝑖=1
P
𝑖
P𝑇
𝑖
)

−1

(

𝑁

∑

𝑖=1
𝑤
𝑖
𝑦
𝑖
P
𝑖
) .

(12)

3.3. Pose EstimationwithUnknownCorrespondences. Accord-
ing to the above analysis with known correspondences, pose
vectors can be computed in each iterative loop byminimizing
the object function 𝐸. When correspondences are unknown,
each image point k

𝑖
can potentially match any of the object

points P
𝑗
, and therefore the scaling factor 𝑤 should be

corrected specific to the coordinates of P
𝑗
:

𝑤
𝑗
= R3 ⋅

P
𝑗

𝑡
𝑧

+ 1, 𝑗 = 1, 2, . . . ,𝑀, (13)

where 𝑀 is the number of 3D object points.
Therefore, the simultaneous pose and correspondence

problem can then be formulated as follows:

𝐸

=

𝑁

∑

𝑖=1

𝑀

∑

𝑗=1
𝑚
𝑖𝑗
((Q
𝑥
⋅ P
𝑖
− 𝑤
𝑖
𝑥
𝑖
)
2
+ (Q
𝑦
⋅ P
𝑖
− 𝑤
𝑖
𝑦
𝑖
)
2
) ,

(14)

where 𝑚
𝑖𝑗
(equal to 0 or 1) are correspondence weights.

In next stage, we should find a zero-one assignment
matrixm = {𝑚

𝑖𝑗
}, which specifies the matching between a set

of𝑁 image points and a set of𝑀 object points explicitly. The
assignment matrix m, which has one row for each of image
point k

𝑖
and one column for each of object point, must satisfy

the constraint that each 2D image point matches at most one
3D object point and vice versa. Given that pose vectors have
been estimated, the assignment matrix can be calculated by
the iterative Softassign technique [11].

Assuming the correspondence variables 𝑚
𝑖𝑗
are known

andfixed, the pose vectorsQ
𝑥
andQ

𝑦
can then be determined
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through minimizing the objective function in an iteration
step. The solutions are

Q
𝑥
= (

𝑀

∑

𝑗=1
𝑚


𝑗
P
𝑗
P𝑇
𝑗
)

−1

(

𝑁

∑

𝑖=1

𝑀

∑

𝑗=1
𝑚
𝑖𝑗
𝑤
𝑗
𝑥
𝑖
P
𝑗
) ,

Q
𝑦
= (

𝑀

∑

𝑗=1
𝑚


𝑗
P
𝑗
P𝑇
𝑗
)

−1

(

𝑁

∑

𝑖=1

𝑀

∑

𝑗=1
𝑚
𝑖𝑗
𝑤
𝑗
𝑦
𝑖
P
𝑗
) ,

(15)

with 𝑚


𝑘
= ∑
𝑁

𝑖=1 𝑚𝑖𝑗.
The objective function is minimized iteratively, with the

following three operations at each iteration step:
(1) Given the initial guess of pose vectors Q

𝑥
and Q

𝑦
,

compute the assignment matrixm.
(2) Assuming the scaling factor 𝑤

𝑗
is known and fixed,

calculate the pose vectors using the assignment
matrixm.

(3) Using the estimated pose vectors Q
𝑥
and Q

𝑦
, update

the scaling factor 𝑤
𝑗
.

The above iterative approach can be summarized as
follows. First, given an appropriate initial guess for the pose
vectors according to the set of 2D image points and 3D object
points, then the assignment matrix which represents corre-
spondence between the image points and object points is esti-
mated. Finally, the pose vectors are updated, using the results
of the correspondences between 2D image points and 3D
object points. This process is repeated until these estimations
converge. In this case, through the final pose vectors

Q
𝑥
= (𝑞
𝑥1, 𝑞𝑥2, 𝑞𝑥3, 𝑞𝑥4)

𝑇

,

Q
𝑦
= (𝑞
𝑦1, 𝑞𝑦2, 𝑞𝑦3, 𝑞𝑦4)

𝑇

,

(16)

pose variables can be calculated as follows:

𝑠 = √
(𝑞𝑥1, 𝑞𝑥2, 𝑞𝑥3)

 ⋅

(𝑞
𝑦1, 𝑞𝑦2, 𝑞𝑦3)


,

R1 =
(𝑞
𝑥1, 𝑞𝑥2, 𝑞𝑥3)

𝑇

𝑠
,

R2 =

(𝑞
𝑦1, 𝑞𝑦2, 𝑞𝑦3)

𝑇

𝑠
,

R3 = R1 ×R2,

𝑡
𝑥
=

𝑞
𝑥4
𝑠

,

𝑡
𝑦
=

𝑞
𝑦4

𝑠
,

𝑡
𝑧
=
1
𝑠
.

(17)

Then the final rotation matrix R and translation vector T
are

R = [R1 R2 R3]
𝑇

,

T = (𝑡
𝑥
, 𝑡
𝑦
, 𝑡
𝑧
)
𝑇

.

(18)
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Random < Pc[0,1]

Random [0,1] < Pm

Figure 3: The flow chart of genetic algorithm.

3.4. Genetic Algorithm. Genetic algorithm (GA) was an
optimalmodel which simulated the natural evolution process
[25–27].The algorithmwas first presented by JohnHolland in
1975.

In a genetic algorithm, a population of candidate solu-
tions, called individuals, to an optimization problem is
evolved toward better solutions. Each candidate solution has
a set of properties, its chromosomes, which can be mutated
and altered. Traditionally, candidate solutions are represented
in binary as strings of 0 and 1, but other encodings are also
possible.

The evolution usually starts from a population of ran-
domly generated individuals and is an iterative process, and
the population in each iteration is called a generation. In each
generation, the fitness of every individual in the population
is evaluated, which is usually the value of the objective
function in the optimization problem being solved.Themore
fit individuals are stochastically selected from the current
population, and each individual’s genome ismodified to form
a new generation. The new generation of candidate solutions
is then used in the next iteration of the genetic algorithm.
Commonly, the genetic algorithm terminates when either a
maximum number of generations has been produced or a
satisfactory fitness level has been reached for the population.

A typical genetic algorithm requires two aspects.The first
one is a genetic representation of the solution domain, and
the second one is a fitness function to evaluate the solution
domain [25–27].

Theflowchart of genetic algorithm is depicted in Figure 3,
where 𝑝

𝑐
is the probability of crossover and the 𝑝

𝑚
is the

probability of mutation.
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Once the genetic representation and the fitness function
are defined, a GA proceeds to initialize a population of solu-
tions and then to improve it through repetitive application of
the mutation, crossover, inversion, and selection operators.

4. Our Initialization Method

To solve the simultaneous pose and correspondence problem,
an iterative process starting from an initial guess is necessary
[14]. Usually, the minimized objective function has many
local optimal because of occlusion, clutter, and image noise.
If the initial guess is not appropriate, the correct global
optimum will not be reached to or the objective function

will converge to its other local optimal. Therefore we present
an effective strategy based on genetic algorithm to solve the
simultaneous pose and correspondence problem.

4.1. Initialization. The random-start method is a common
initialization method, which starts from a random initial
guess. There are 12 different variables, including a 3 × 3
rotationmatrixR and a 3×1 translation vectorT. All the vari-
ables can be generated through six degrees of freedom and
include three Euler angles and the translation parameters.
Therefore the traditional random-start initialization method
generates a random 6D vectors 𝑝0 = (𝛼, 𝛽, 𝛾, 𝑥, 𝑦, 𝑧) in a 6D
hypercube.Then the rotationmatrixR and translation vector
T are defined as

R =
[
[

[

cos 𝛾 cos𝛽 − sin 𝛾 cos𝛼 + cos 𝛾 sin𝛽 sin𝛼 sin 𝛾 sin𝛼 + cos 𝛾 sin𝛽 cos𝛼
sin 𝛾 cos𝛽 cos 𝛾 cos𝛼 + sin 𝛾 sin𝛽 sin𝛼 − cos 𝛾 sin𝛼 + sin 𝛾 sin𝛽 cos𝛼
− sin𝛽 cos𝛽 sin𝛼 cos𝛽 cos𝛼

]
]

]

,

T = (𝑥, 𝑦, 𝑧)
𝑇

.

(19)

4.2. Algorithm Framework. In the traditional random-start
initializationmethod, beginning from a random initial guess,
pose and correspondence are iteratively estimated until
meeting a specified termination criterion. If the calculated
pose and correspondence are not correct, all the steps are
processed againwith another new random initial guess.How-
ever, the random-startmethod does not consider the different
influence of each random initial guess because they are inde-
pendent with each other in this method. Even worse, the ini-
tial guess𝑝0 may repeat in some range, and the count of initial
guess will increase rapidly and the convergence rate will
decrease sharply.

To get an appropriate initial guess, we present a new
initialization method based on genetic algorithm [21]. First,
instead of generating an initial guess one by one, a set of 𝐾
random initial guesses {𝑝

(𝑘)

0 }, 𝑘 = 1, 2, . . . , 𝐾, is generated as
candidate solutions called a population. Second, the assign-
ment matrix m is computed for each candidate solution in
the population and then the perspective projection error 𝐸 is
evaluated as the fitness of every individual in the population.
Finally, the more fit individuals are stochastically selected
from the current population, and each individual is modified
(selection, crossover, and mutation) to form a new popula-
tion. The new population of candidate solutions is then used
in the next iteration of the algorithm.

To illustrate the three modified operations, we use two
candidate solutions in an iterative step as example:

𝑝
(𝑖)

0 = (𝛼
(𝑖)

, 𝛽
(𝑖)

, 𝛾
(𝑖)

, 𝑥
(𝑖)

, 𝑦
(𝑖)

, 𝑧
(𝑖)

) ,

𝑝
(𝑗)

0 = (𝛼
(𝑗)

, 𝛽
(𝑗)

, 𝛾
(𝑗)

, 𝑥
(𝑗)

, 𝑦
(𝑗)

, 𝑧
(𝑗)

) .

(20)

We define three genetic algorithm operations.

Selection. Consider

𝑝
(𝑖+1)
0 = (𝛼

(𝑖)

, 𝛽
(𝑖)

, 𝛾
(𝑖)

, 𝑥
(𝑖)

, 𝑦
(𝑖)

, 𝑧
(𝑖)

) ,

𝑝
(𝑗+1)
0 = (𝛼

(𝑗)

, 𝛽
(𝑗)

, 𝛾
(𝑗)

, 𝑥
(𝑗)

, 𝑦
(𝑗)

, 𝑧
(𝑗)

) .

(21)

Crossover. Consider

𝑝
(𝑖+1)
0 = (𝛼

(𝑖)

, 𝛽
(𝑖)

, 𝛾
(𝑖)

, 𝑥
(𝑗)

, 𝑦
(𝑗)

, 𝑧
(𝑗)

) ,

𝑝
(𝑗+1)
0 = (𝛼

(𝑗)

, 𝛽
(𝑗)

, 𝛾
(𝑗)

, 𝑥
(𝑖)

, 𝑦
(𝑖)

, 𝑧
(𝑖)

) .

(22)

Mutation. Consider

𝑝
(𝑖+1)
0 = (𝛼



, 𝛽


, 𝛾


, 𝑥
(𝑖)

, 𝑦
(𝑖)

, 𝑧
(𝑖)

) ,

𝑝
(𝑗+1)
0 = (𝛼



, 𝛽


, 𝛾


, 𝑥
(𝑗)

, 𝑦
(𝑗)

, 𝑧
(𝑗)

) .

(23)

Commonly, the iterative process will terminate when
either a maximum number of iterations has been produced
or a satisfactory fitness level has been reached for the
population.

In practice, the search for better solution should be
terminatedwhen the current solution is such that the number
of matching points is smaller than the threshold 𝑡

𝑚
, which is

defined as

𝑡
𝑚

= 𝜌𝑁, 0 < 𝜌 ≤ 1, (24)

where 𝑁 is the total number of the image points and 𝜌 is a
scale factor of matching rate, which determines what percent
of the detected object points must be matched.
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Figure 4: 3D object points and 2D image points with one occluded point.

In this case, we can deduce that the current initial guess
is not suitable for the simultaneous pose and correspondence
problemand anew initial guess should be given.Due to image
noise, occlusion, and measurement error, 𝜌 will not reach to
1 even when a good initial guess is found. Therefore, in the
experiments discussed below, we take 𝜌 ≡ 0.75.

This test is not perfect, as it is possible for an initial guess
to be very accurate even when the number of matched points
is less than this threshold, which occurs mainly in cases of
high noise. Conversely, a wrong initial guess may be accepted
when the ratio of clutter features to detected object points
is high. However, these situations are relatively uncommon
both in simulation case and in practice.

5. Experiments

We first show the simulation results to confirm the effective-
ness of our initialization method, compared with traditional
random-start initialization method. Then experiments with
real images intuitively present the computed pose and corre-
spondences.

5.1. Synthetic Experiments. We generate synthetic data as fol-
lows: 3D object has eight points, distributing in the vertexes
of a cube; there are seven 2D image points with unknown
correspondence to 3D object points, where one vertex of the
cube is occluded, as shown in Figure 4. All the coordinates
of image points have been normalized for the sake of
convenience. Connecting edges are used for understanding,
instead of computing.

In synthetic experiments, the convergence rate and
convergence speed of global object function are evaluated,
respectively, initialized with the traditional random-start
method and our novel initial method.

An initial guess is convergent only when the global
objective function𝐸 in (14) reaches to a stable minimumwith
finite iterations. It means that, with the initial guess, pose and
correspondence can be calculated simultaneously in a few of
iterations.

We first compute the convergence rate (CR) at different
noise levels, which is defined as

CR =
number of convergent initial guesses

total number of initial guesses
, (25)

where total number of initial guesses is set to 1000 in each
different noise level.

Figure 5 shows the convergence rates of our initial
method and the traditional random start method as a func-
tion of noise level. In this figure, each point depicts results
averaged over 1000 random initial guesses. It can be seen
that our initial method has a higher convergence rate and
decreases more slowly than the traditional random-start
method. This is due to the fact that our initial method using
genetic algorithmconsiders different influences between each
initial guess and has a higher probability of approaching the
minimumof the global objective function than the traditional
random start method.

In the synthetic experiment, a set of random initial
guesses is first generated as candidate solutions in ourmethod
based on genetic algorithm. Then certain processes are done
with all the initial guesses until that the proper pose is
determined. Similarly, the traditional random-start method
also generates a list of globally aware guesses and tests against
these random guesses as a whole. At this time, if the list of
initial guesses contains the proper pose, the selection process
terminates. However, the proper pose may be not in the list,
and in this case, another list of initial guesses is needed to
randomly generate. The whole procedure does not consider
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Figure 5: Convergence rate at different noise level. The results
initialized with random start method are plotted as circles (I) and
the results using our initialized method are plotted as squares (◻).
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Figure 6: The value of object function 𝐸 at each iteration without
noise. The results initialized with random start method are plotted
as circles (I) and the results using our initializedmethod are plotted
as squares (◻).

the former initial guess that has already been computed. On
the opposite, ourmethod based on genetic algorithm takes all
the initial guesses as a whole population and new initial guess
is generated according the results of former population.

We then compare the convergence speed when an initial
guess computed by our method or random start method is
convergent. The results are depicted in Figures 6 and 7.

From Figures 6 and 7, we can see that the value of objec-
tive function 𝐸 decreases quickly with our initial guess and
the number of iterations is always low. However, initialized
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Figure 7: Number of iterations at different noise level.
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Figure 8: Average time consumption at different noise level.

with random start, the value of object function 𝐸 decreases
quickly only at the first several iterations and becomes very
slowly at the subsequent iterations, which leads to a very large
number of iterations. Meanwhile, the random start method
does not consider the different influence of each random
initial guess because every initial guess is independent with
each other. Even worse, the initial guess may repeat in some
range, and the count of iterations will increase rapidly and the
convergence speed will decrease greatly.

When in presence of large amounts of clutter, occlusions,
or image noise, the random-start method searches for the
proper initial pose in the pose space by using aRANSAC-style
approach. It should consider all possible correspondences
between 2D image points and 3D object points. What is
worse, the initial guesses are represented in a 6D pose space
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(a) Frame number 1 (b) Frame number 5 (c) Frame number 10 (d) Frame number 15

(e) Frame number 20 (f) Frame number 25 (g) Frame number 30 (h) Frame number 38

Figure 9: The iteration step of perspective projection with an initial value calculated by our method.

(𝑝0 = (𝛼, 𝛽, 𝛾, 𝑥, 𝑦, 𝑧)). As a consequence, it would lead to
computational explosion and quickly become computation-
ally intractable with realistic numbers of features.

Figure 8 depicts the average time consumption until the
initial guess is convergence.

When the noise level is low, the initial guess in the 6D
pose space has high probability to converge. Only a few
of times is needed to determine the proper guess with the
randomly selected initial pose. However, when the noise level
becomes high, the time consumption increases obviously
because the convergence rate fast decreases and more times
are needed to try to find a proper initial value. On the
opposite, the average time consumption increases slowly with
the different noise level.

Figure 9 shows an example computation of simultaneous
pose and correspondence algorithm initialized with our
method, using the cube model depicted in Figure 4.

In Figure 9, we can see that the perspective projection of
3D object points overlaps with original 2D image points grad-
ually after few iterations, giving the appreciate initial guess
calculated by our method, which means that pose between
the coordinate system of 3D object and the coordinate system
of camera can be estimated with unknown correspondences
and occlusion.

5.2. Real Images. We test our initializationmethod for simul-
taneous pose and correspondence problem on real images.

In the test, there are 11 or 10 image points in 2D image
and 28 object points in the 3D model. An initial pose is first

given by random start method (the results are showed in
Figure 10) and then by our initialization method (the results
are showed in Figure 11). Figure 12 is another experiment
results initialized using our method.

3D object model with 28 points is known and 2D image
points are recognized by our implementation of Harris
algorithm [12].

As depicted in Figure 10, with the unsuitable initial pose
given by random start method, the final pose is not correct
and the simultaneous pose and correspondence problem
cannot be solved very well.

As shown in Figures 11 and 12, the number of image
points is less than 3D object points; what is more, the cor-
respondences between 2D image points and 3D object points
are unknowndue to occlusion, clutter, and image noise. Using
our initialization method based on genetic algorithm, an
appropriate initial guess is first calculated and then pose and
correspondences are estimated with the initial value. Finally,
3D object model is accurately reprojected onto image plane
using the rotation matrix and translation vector contained
in pose. The effectiveness of the initial guess can be verified
by observing the overlapping degree between the perspective
projection and the original image.

6. Conclusions and Future Work

In this paper, we present an initialization method for deter-
mining the pose of 3D objects from images to solve the simul-
taneous pose and correspondence problem. Pose and corre-
spondences can be computed simultaneously by minimizing
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(a) (b)

(c) (d)

Figure 10: The results of real image initialized by random start method (11 image points): (a) 2D image points 𝑠 (point number 9); (b) the
projection of 3D model with the calculated initial pose; (c) the projection results at each iteration; (d) the final result of simultaneous pose
and correspondence algorithm.

(a) (b)

(c) (d)

Figure 11: The results of real image initialized by our method (11 image points): (a) 2D image points; (b) the projection of 3D model with the
calculated initial pose; (c) the projection results at each iteration; (d) the final result of simultaneous pose and correspondence algorithm.
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(a) (b)

(c) (d)

Figure 12:The results of real image initialized by our method (10 image points): (a) 2D image points; (b) the projection of 3Dmodel with the
calculated initial pose; (c) the projection results at each iteration; (d) the final result of simultaneous pose and correspondence algorithm.

a global objective function initialized using our initial pose,
which is calculated based on genetic algorithm considering
the influences of different initial values comprehensively.
Compared with the traditional random-start initialization
method, our proposed method has higher convergence rate
and lower number of iterations, which has been verified
through experiments.

Future work will involve initializing the simultaneous
pose and correspondence algorithm automatically using
special features extracted in 3D object and 2D image plane.
The effectiveness of other optimization algorithms would be
analyzed. We are also interested in implementing a more
thorough formalism to include initialization, pose estima-
tion, and correspondence determination.
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