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A core factor to consider when designing wireless sensor networks is the reliable and efficient transmission of massive data from
source to destination. In practical situations, data transmission is often disrupted by link interference and interruption resulting in
the data losses. Link quality prediction is an important approach to solve this problem. By estimating the link quality based on the
past knowledge and information, link quality prediction is essential for routing decisions of future data transmission. Traditional
link quality prediction algorithms are simply based on the statistical information of the links in the wireless sensor network. By
introducing complex network theory and machine learning techniques, we propose a neighborhood-based nonnegative matrix
factorization model to predict link quality in wireless sensor networks. Our model learns latent features of the nodes from the
information of past data transmissions combing with local neighborhood structures of the underlying network topology and then
estimates the link quality depending on the common latent features of the two nodes between the link. Extensive experiments on
both real-world networks and simulation networks demonstrate the effectiveness and efficiency of our proposed model.

1. Introduction

Wireless sensor network (WSN) is a special kind of mobile
communication network, which exhibits the properties of
dynamic network topology, multihop communication, and
limited energy [lI, 2]. In wireless sensor network, stable
links have great significance since many critical applications
fundamentally rely on efficient and reliable data transmission
from source node to sink node [3, 4]. However, in practical
situations, data transmission is often disrupted by link inter-
ference and interruption resulting in the data losses [5, 6].
When the link quality deteriorates, data losses are inevitable
since the size of internal buffers of intermediate nodes is
limited. In the presence of poor link quality, the sender could
easily fill up the buffer so that there is no sufficient time
and space to transmit all packets reliably. This problem is
especially severe for those applications which strongly require
real-time data transmission or high-fidelity data transmission
[7]. The main reason for this problem is the lack of feedback

of link layer information to the upper layer applications and
protocols.

Link quality prediction is an important approach to
decrease the probability of data losses in wireless sensor
network. For most applications in wireless sensor networks
[8-10], it is necessary that each node has thorough knowledge
about its direct neighbors. This information is collected
and provided by neighborhood management protocols. One
important criterion used by neighborhood management
protocols to determine the importance of a node is the quality
of the communication between nodes, which is provided by
link quality prediction [11]. By estimating the link quality
based on the past knowledge and information, link quality
prediction is essential for routing decisions of future data
transmission.

However, link quality prediction remains a challenging
task due to the dynamic nature of wireless links. Firstly, the
correlations between nodes cannot be directly obtained from
the network. Secondly, in some situations, network data is



quite sparse that the links used for data transmission are only
a small proportion of all possible links.

Motivated by the great practical significance, many
algorithms for link quality prediction have been proposed
recently. The most existing algorithms simply use statistical
information of the links to evaluate the link quality. In this
paper, we proposed a nonnegative matrix factorization model
for predicting link quality in wireless sensor networks, by
introducing complex network theory and machine learning
techniques. Our model is a supervised learning model. In
our model, we associate the probability of a link with a
nonnegative strength variable, which is related with the latent
features of the nodes between the link. We also consider the
influence of the neighborhood structure and make the latent
features of each node learnt from the past data transmissions
combing with local neighborhood structures of the underly-
ing network topology.

The rest of the paper is organized as follows. In
Section 2, we introduce the related background of link
quality prediction in wireless sensor networks. Our pro-
posed neighborhood-based nonnegative matrix factorization
model for link quality prediction is described in detail
in Section 3. The experimental results and discussions are
reported in Section 4. Finally, Section 5 gives the conclusion
of this paper.

2. Related Work

In recent years, various approaches have been proposed
to provide a meaningful metric describing the actual link-
quality and then predicting its future behavior. In this section,
an overview of popular link quality prediction algorithms is
presented at first. Then, we make an introduction of the link
prediction theory in complex networks.

2.1. Link Quality Prediction for Wireless Sensor Networks.
Basically, the measurements of link quality can be classified
into two categories: physical metrics and logical metrics.
Physical metrics depend on the radio hardware and evaluate
link quality by the signal strength of a received packet. No
additional costs are required by physical metrics, since the
measurement is performed by the receiver hardware every
time, a packet is received. Common physical metrics include
the received signal strength indication (RSSI), the link-
quality indication (LQI), and signal-to-noise ratio (SNR).
On the other hand, logical metrics estimate the link quality
by keeping track of message losses. They do not depend
on specific hardware so that they are not influenced by
the characteristics of hardware. Typical examples of logical
metrics are packet success rate (PSR) [12], required number of
packets (RNP) [13], and expected transmission count (ETX)
[14].

Woo et al. [12] made the first attempt to estimate the link
quality by proposing the window mean with exponentially
weighted moving average (WMEWMA). This metric com-
putes the average success rate of the link over a time period
and smoothens the average with an EWMA. WMEWMA
predicts the PSR of the link and has been widely adopted in
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WSNs. de Couto et al. [14] proposed ETX which uses the
number of expected transmissions for a successful packet
transmission as the evaluation of link quality. The ETX of a
link is calculated using the forward and reverse delivery ratios
of the link. The number of received packets within a fixed time
period is counted and compared to the number of expected
packets that are periodically broadcasted by each node. RNP
introduced by Cerpa et al. [13] incorporates the distribution
of losses within the time period. This metric is based on their
observation fact that a link with consecutive losses should be
rated lower than links with discrete losses.

Weyer et al. [15] proposed adaptive link estimator (ALE),
which is an EWMA filter of the measurement PSR. Links with
different qualities have different weights in the EWMA filter.
For good links, ALE uses a higher weight for more stable
estimation, while links with a lower quality are estimated in
an agile fashion for a faster reaction.

A Kalman Filter Based Link-Quality Estimation was
proposed by Senel et al. [16]. A Kalman filter is used to
smoothen the RSSI of successfully received packets and the
noise floor is subtracted to obtain an estimation of the SNR.
The final PSR is derived by applying a hardware specific
SNR-PSR mapping for the transceiver. This approach is very
complicated and only applicable to the cases in which SNR
and PSR are strictly correlated.

Chen et al. [17] proposed a model to predict link inter-
ruption and route interruption in wireless sensor networks by
the historical link information and channel state obtained by
periodic detection. The periodicity of environmental changes
is utilized to help predict link interruption.

LISP proposed by Ma et al. [18] is based on the premise
that, in order to achieve the best performance, the application
layer behavior should be aware of the link layer conditions
and adjust its behavior accordingly. They used the state
space model to predict link quality and then provided these
estimates as a system level service to application developers.

Wang et al. [19] introduced the supervised learning
techniques to predict link quality in wireless sensor network.
In their approach, link quality prediction is modeled as a
classification problem with the features of the link, including
forward probability, backward probability, channel load, and
node depth from the source node.

2.2. Link Prediction for Complex Networks. In complex net-
work theory, the research field of link prediction is very
similar to the link quality prediction in wireless sensor
network. Link prediction in complex networks focuses on
estimating the likelihood of the existence of links in the
network rather than the link quality.

Link prediction algorithms can be roughly classified into
two classes: unsupervised models and supervised models.
In unsupervised models, the probability of the existence
of a link is measured by some specific similarity indices
between the two nodes. Local similarity indices [20-24] only
depend on the information of the neighborhoods, such as the
common neighbors. Global similarity indices [25-27] require
the entire topological information of the network from the
perspectives of paths, random walks, and other properties.
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The similarity in unsupervised models is predefined and is
invariant to the specific structure of the input networks.

On the other hand, supervised models use the supervised
learning approaches. They usually propose some patterns
of the link behaviors and learn a series of parameters
according to the observed links. Some popular approaches
are hierarchical structure model (HSM) [28], stochastic block
model (SBM) [29], and latent factor model (LFM) [30, 31].
The former two models use the explicit topological properties
of the network, while latent factor models depend on latent
features of the network, which can be viewed as an implicit
representation of the network topological information. The
main drawback of the former two models is the high calcula-
tion complexity, which makes them only applicable to small
networks. By contrast, the latent factor models can be trained
in linear time with the number of observed links.

3. Our Model

In our model, link quality prediction is formally modeled
as a supervised learning problem. The information of past
data transmissions is the training set of the model. Given a
wireless sensor network, let the link between node i and node
j be denoted by link (i, j). When the packet is successfully
transmitted through a link (7, j), we have the label A;; = 1,
otherwise, the label A;; = 0. The predicted score of link
quality for link (4, j) obtained by our model is indicated by
K,-j. Our model is learnt from the training set by minimizing
the errors between the practical labels and the predicted
scores. The final goal is to use the model to predict the
link quality or successful transmission probability of all the
possible links in the network.

3.1. Basic Latent Factor Model. In basic latent factor model
(LFM), each node i is associated with a latent feature vector
F; € R, where k is the number of latent features. The latent
features of all the nodes in the network constitute the latent
feature matrix F € R™®¥, where # is the number of nodes
in the network. Under the assumption that the link quality
between two nodes is higher if they have more similar latent
features, the predicted score of the link quality between node
iand j can be written as

k
Xij:L<ZEfij>:L(FiFJT)> ®
=

where L(:) is a link function, which is monotonically increas-
ing and is usually taken as identity function or sigmoid
function.

The latent features of each node can be learnt by solving
the following optimization problem:

min Z C (Aij,L (FzF]T)) +Q(F), (2)
Fijeo

where O is the set of the past successful and unsuccessful
transmissions through the links in the network, C(:) is a
loss function, and Q(-) is a regularization term that prevents

overfitting. As suggested in [32], regularized square error
loss function and L, norm regulation are especially suitable
for latent factor models in practical applications. Then, the
optimization problem can be rewritten as follows:

mgn(léo(A,.j ~L(EFD) +A(EE),
L]

where A is the regulation parameter and ||F||12E is the Frobenius
norm of matrix F.

Stochastic gradient descent method is usually used to
solve this optimization problem. The total training process
exhibits linear time with the number of transmissions in the
training set.

3.2. Neighborhood-Based Nonnegative Matrix Factorization
Model. In basic latent factor model, the latent features of
some nodes may have negative values, which may mislead
the whole approach. Moreover, the influences of the neigh-
borhood structure in the network are not considered in basic
latent factor model.

We first assume that the latent feature matrix F is a
nonnegative matrix and each pair of nodes in the network has
a latent interaction of nonnegative strength variable X;;. The
transmission between the two nodes can be successful only
if the corresponding strength variable X;; > 0. Consider that

nodes i and j generate an interaction of strength ijf ! with

each latent feature f using a Poisson distribution with mean
Fig - Fiy:

X ~ Pois (- Fyf). (4)

The strength X;; between nodes i and j is the sum of ijf ) for
all the latent features:

k k
X;= Y X ~ Pois < Y Ey- ij> = Pois (FF!). ()
f=1 f=1

Then, the link quality between the pair of nodes (i, j) can be
figured out:

P(X;>0)=1-P(X;=0)=1-exp(-FF;). (6)

It is expected that the nodes with larger values in the same
latent features have a higher-quality link between them.

Let latent feature matrix F be nonnegative and 1 — exp(-)
be the link function we can reformulate the optimization
problem (3) as

. TY)\2 2

min Z (Aij —1+exp (—Fl-Fj )) + A(||F||F). )
(1,j)eO

Taking the node-specific biases into account, the optimiza-

tion is then

min Z (Aij - 1+exp (bi +b; - Fl-FjT))2
Eb>0, 42 ®)

+ A (11615 + IEI3)



where b is the node-specific bias vector, which is similar to
the intercept terms in standard supervised learning.

Now, let us consider the influence of the neighborhoods
on the link probability between the nodes. In unsupervised
models, several link metrics are defined in the following form:

5= ) w ©)

uel(HNI(j)

where T'(i) is the set of neighbors of node i and w, is
a measurement of the topological properties of node u.
Common Neighbors Index (CN) [20] directly counts the
neighborhood overlap of the two nodes so that w, = 1.
For Adamic-Adar Index (AA) [23] and Resource Allocation
Index (RA) [24], w, is related with the node degree k, that
w, = 1/log(k,) in AA index and w, = 1/k, in RA index.
Here, we extend this form by making each node have different
influences upon the links:

Ay = Z (wui + wu]')' (10)
uel(i)nr(j)

In order to reduce the number of parameters, we factorize
the matrixw = X' Y, X, Y ¢ R™k, Then, the predicted score
of link quality can be reformulated as

2 Yo (1)

uel(i)nr(;)

A= (X + X))

Finally, we combine the previous two models and predict
the link quality by

Ay
=1—exp(bi+bj—(x-FiFjT—,B-(Fi+Fj) D YI),
uel ()nr(f)
(12)

where « and f3 are two strength coefficients. Here, we arbitrar-
ilyletX = F to reduce the number of parameters. Thus, model
parameters are learnt by solving the optimization problem
associated with

min E A;i-1
]
BBY>0; 50 <

+exp<bi+bj—oc-FiF;.r

2
-B-(E+F) Y Yj))
uel()nr(j)

+ A (1615 + I + Y1)
(13)

An optimal solution of this optimization problem can be
obtained using stochastic gradient descent method. Let the
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prediction error A;; — A ij be denoted by e;;. We loop through
all observed links in the network. For a given observed
transmission through link (4, §) in the training set, we modify
the parameters by moving in the opposite direction of the
gradient, yielding the following:

(i) by — max(0,b; +y- (1 - A;) -e;; = A-b));

(ii) bj — max(0,b; +y - ((1 - Aij) "€ = A- bj));

(iii) F;, — max(0,F; +y - (1 - Ay;) - e; - (a-F; + B
Zuer(z’)nr(;’) Y,) - A-F))

(iv) F; — max(0,F; +y- (1 -A;) -e;-(a-F+f-
Zuel"(i)ﬂr(j) Y,)-A- Fj));

(v) forall u e T(i) N I(j) : Y, « max(0,Y, +y-(B-(1-
Ay) e (F+F)=1-Y,),
where y is the learning rate.

Due to the link function, the predicted score of link
quality in our model is in the range [0, 1], which represents
the probability of successful transmission through the link.
A link with larger predicted score is more likely to complete
a packet transmission in the network. For the links in
the training set, the predicted score is approximate to the
statistical success probability of past data transmissions. The
link quality of the links without any transmission record is
predicted according to the transmission information of the
neighbor nodes combing with the topology of the underlying
network.

4. Experimental Results

4.1. Evaluation on Complex Networks. We first apply our
neighborhood-based nonnegative matrix factorization
model to several real-world networks, which are widely
used in link prediction literature. General information of
these real-world networks is shown in Tablel. We also
make comparisons with some unsupervised link prediction
models, including Common Neighbors Index (CN) [20],
Salton Index [22], Preferential Attachment Index (PA) [21],
Adamic-Adar Index (AA) [23], and Karz Index [25]. The
experiments are implemented by MATLAB 2009b running
on a PC with a 3.0 GHz processor and 3 GB memory.

To evaluate the accuracy of different models, we adopt
AUC proposed by Hanley and McNeil [33] as the basic
measure for the experiments reported in this paper. The AUC
value is defined as the probability in which a randomly chosen
high-quantity link is assigned with a higher score than a
randomly chosen low-quality link. If among n independent
comparisons, there are n; times the high-quantity link having
a higher score and 7, times the scores are equal; the AUC
value is

n; +0.5n,

AUC = (14)

n
If all the scores are randomly given, the AUC value should
be approximated to 0.5. The degree to which the AUC value
exceeds 0.5 indicates how much better the model performs
than pure chance.
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TABLE 1: General information of the real-world networks.

Network Description Node  Presentlink  Average degree
Karate Zachary’s karate club [35] 34 78 4.58
Dolphin Social network of Lusseau’s dolphins [36] 62 159 5.13
Usair US air transportation system [37] 332 2126 12.81
Email E-mail interchanges between members of the University of Rovira i Virgili [38] 1133 5451 9.62
Blog Hyperlinks between blogs on US politics [39] 1222 16174 27.36
Protein The interaction between proteins [40] 2473 6269 5.09
Powergrid The topology of the power grid of the United States [41] 4941 6594 2.67
PGP The interactions between users of pretty-good-privacy algorithm [42] 10680 24316 4.55
TaBLE 2: The AUC values of different models on real-world networks.

CN Salton PA AA Karz Basic LFM Our model
Karate 0.7035 0.6387 0.7461 0.7313 0.7877 0.8058 0.8294
Dolphin 0.7786 0.7076 0.6907 0.7851 0.8103 0.8109 0.8275
Usair 0.9368 0.8624 0.9017 0.9461 0.4136 0.9433 0.9598
Email 0.8541 0.8129 0.7814 0.8550 0.6415 0.9131 0.9105
Blog 0.9175 0.8469 0.8977 0.9205 0.4804 0.9292 0.9384
Protein 0.7624 0.6543 0.7232 0.7626 0.6322 0.8849 0.8867
Powergrid 0.5879 0.4411 0.4395 0.5878 0.6587 0.6344 0.6291
PGP 0.8371 0.6805 0.7117 0.8373 0.5245 0.8775 0.8983

For each network, the present links are partitioned into
training set (90%) and test set (10%). The performances
of different models on real-world networks are shown in
Table 2.

As is shown in Table 2, our model performs the best
among all the other models on most real-world networks
and is only inferior to basic LFM on Email network and
Karz Index on Powergrid network. For Karate network, Blog
network, and PGP network, our model shows superiority
over the unsupervised link prediction models and obvious
improvement over basic LFM.

We also find out the reason why the performance of
our model is inferior to that of Karz Index on Powergrid
network. This is due to the fact that Powergrid network is
a highly sparse network in which about 60% of the nodes
only have one or two links connecting with other nodes.
The sparsity makes many model parameters get insufficient
training, which results in the fact that our model does not
perform well on this network.

4.2. Simulation on Wireless Sensor Networks. To verify the
prediction model, we also make simulations of our model on
wireless sensor networks. Here, we use the Matlab as the sim-
ulation platform. The channel model is flat Rayleigh fading,
carrier frequency is 20 kHz, the modulation is (QAM), and
data transmission rate is set to 1000 bits/s. The packet size is
set to 1000 bits. The topology of the wireless sensor network is
randomly generated by the LFR approach [34]. An example
network topology is shown in Figure 1, where the red node
denotes the source node and the black node denotes the sink
node. The training set contains all the packet transmission
records in the wireless sensor network in a period of 1000

FIGURE 1: An example topology of wireless sensor network. The red
node denotes the source node and the black node denotes the sink
node.

seconds. The packet transmission records in the next period
of 200 seconds constitute the test set of the experiment.
Besides AUC, three other measures, known as precision,
recall, and F-score, are also adopted to evaluate the perfor-
mances of our model. For a given link, we use a threshold to
determine whether the coming packet transmission through
this link is successful or not. If the predicted link quality
exceeds the threshold, the transmission is considered to be
successful; otherwise, it is thought that the transmission
would fail. Then, there are four possible situations. If the
transmission is successful and prediction is success, it is
counted as true positive. On the other hand, if the transmis-
sion is successful and prediction fails, it is counted as true
negative. Similarly, If the transmission failed and prediction
is successful, it is counted as false positive. And if the
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FIGURE 2: The precision, recall, and F-score of our model on wireless
sensor networks with the threshold varying from 0 to 1.

transmission failed and prediction fails, it is counted as false
negative. The precision is defined as the ratio of the number of
true positives to total number of instances that are predicted
to be positive:

precision = (number of ture positives)
- (number of ture positives 15)
+ number of negative positives)_1 .

The recall is defined as the ratio of the number of
true positives to total number of instances that are actually
positive:

precision = (number of ture positives)

- (number of ture positives (16)

+ number of false negativesf1 .

F-score is an important measure of the model’s accuracy
by taking both the precision and recall into account. It can be
written in the form of harmonic mean of precision and recall:

2 - precision - recall

. 17
precision + recall 17

Figure 2 shows the precision, recall, and F-score of
our model on wireless sensor networks with the threshold
varying from 0 to 1. The two dashed lines are, respectively,
the precision curve and recall curve by pure chance. Seen
from the curves, the precision and recall of our model are
significantly higher than pure chance in most situations. The
F-score of our model reaches the highest value of 0.773 when
the threshold is equal to 0.3. We also figure out that the AUC
of our model is 0.827, which is far larger than 0.5. These
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TABLE 3: The improvements of data transmission with our model.

Without our model With our model
Successful 2289 4230
transmission number
Failed transmission 2326 1452
number
Successful 49.60% 74.45%
transmission rate
Packet number 19 43

received by sink node

measures indicate that our model is effective and promising
for link quality prediction in wireless sensor networks.

We also use our model to select the next hop for the data
transmission in the network. The neighbor node with larger
predicted score has a higher probability to become the next
hop of the packet transmission. The improvements of data
transmission with our model in a certain period of time are
shown in Table 3.

From the above experimental results, we can see that our
model is effective for link quality prediction and very suitable
for practical applications in wireless sensor networks.

5. Conclusion

In this paper, we propose a neighborhood-based nonnegative
matrix factorization model for solving the problem of link
quality prediction in wireless sensor networks. We extend
link prediction model in complex networks to wireless sensor
networks and use the supervised learning techniques to
predict the link quality in wireless sensor networks. In our
model, the quality of a link is associated with a nonnegative
strength variable, which is related with the latent features
of the nodes. The influence of the neighborhood structure
is also taken into consideration. Thus, the latent features of
each node are learnt from the overall topological structure
combing with local neighborhood structures of the under-
lying network. We test our model on several real-world
complex networks and also make simulations on wireless
sensor networks. The experimental results demonstrate the
effectiveness and efficiency of our model for link quality
prediction in wireless sensor networks.
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