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In order to overcome the energy hole problem in some wireless sensor networks (WSNs), lifetime optimization algorithm with
mobile sink nodes for wireless sensor networks (LOA MSN) is proposed. In LOA MSN, hybrid positioning algorithm of satellite
positioning and RSSI positioning is proposed to save energy. Based on location information, movement path constraints, flow
constraint, energy consumption constraint, link transmission constraint, and other constraints are analyzed. Network optimization
model is established and decomposed into movement path selection model and lifetime optimization model with known grid
movement paths. Finally, the two models are solved by distributed method. Sink nodes gather data of sensor nodes along the
calculated paths. Sensor nodes select father nodes and transmit data to corresponding sink node according to local information.
Simulation results show that LOA MSN makes full use of node energy to prolong network lifetime. LOA MSN with multiple
sink nodes also reduces node energy consumption and data gathering latency. Under certain conditions, it outperforms MCP,
subgradient algorithm, EASR, and GRAND.

1. Introduction

In most cases all sensor nodes of WSNs are battery-powered
and located in the unattended or harsh environment. Battery
replacement is difficult or even impossible for battery replace-
ment. Once node’s energy exhausts, the node is disabled.
It will affect the network operation and even split the
network to shorten network lifetime [1, 2]. Therefore, in
WSNs, network lifetime is the important indicator of network
performance.The algorithms ofWSNs should save the energy
and maximize the network lifetime.

Some scholars research on lifetime optimization algo-
rithm with fixed nodes for WSNs and have got some
accomplishments. For example, [3] proposes an ant colony
optimization approach for maximizing the lifetime of het-
erogeneous wireless sensor networks. In the algorithm, cover
constraint, collection constraint, and routing constraint are
considered. The objective function is established and ant
colony optimization is used to obtain the lifetime optimal
scheme. Reference [4] constructs optimal clustering archi-
tecture and designs energy-aware cluster-head rotation and
routing protocol to maximize network lifetime. Reference

[5] proposes two methods to optimize the lifetime of chain-
based protocols using integer linear programming (ILP)
formulations. In those algorithms, it is inevitably to cause
unbalanced distribution of node energy consumption and
energy hole problem. The problem can be overcome by sink
nodes’movement. All nodes have the opportunity to transmit
data near sink nodes and have the same lifetime.

References [6–9] research on the network lifetime max-
imization problem, establish the network lifetime optimiza-
tion models with mobile sink node, use optimization algo-
rithms to solve the models, and obtain optimal scheme. Ref-
erence [10] theoretically discusses the relationship between
network lifetime and maximum throughout in the large
scale WSNs. However, all references [6–10] assume that the
movement path of sink node is already known and do not
consider how to determine the anchors or movement path
of sink node. Reference [11] searches guide agent nodes
and intermediate guide nodes, analyzes the TSP (traveling
salesman problem), determines movement path with node
cooperation, and proposes data gathering algorithm which
optimizes data transmission latency and energy. However,
the algorithm does not consider network lifetime. Reference
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[12] divides network into several grids, and proposes a grid-
based clustering algorithm. Reference [13] proposes range
constrained clustering (RCC). RCCdivides nodes into several
clusters. Sink node stays at the cluster centers to gather data.
The Concorde TSP solver is used to calculate the shortest
movement path of sink node through some cluster centers.
References [11–13] determine the locations of mobile sink
node. However, they do not consider the data gathering when
sink node is moving. Whether the algorithms can obtain
optimal solution still needs theoretical analysis. Reference
[14] proposes energy-aware sink relocation (EASR) algorithm
for mobile sinks. EASR uses maximum capacity path (MCP)
protocol for routing, starts to move when two relocation
conditions are met, and finds the next moving location which
has the greatest weight value. But compared with network
lifetime, the relocation conditions are met after a long time.
The protocol is not good at prolonging network lifetime.

Therefore, lifetime optimization algorithm with mobile
sink nodes for wireless sensor networks based on location
information (LOA MSN) is proposed. In LOA MSN, energy-
saving positioning algorithm of nodes is proposed and the
monitoring area is divided into several grids of the same
size. Sink node can move into each grid center to gather
data.Themovement path constraints, flow constraint, energy
consumption constraint, link transmission constraint, and
other constraints are analyzed. The network optimization
model is established. Then, the network optimization model
is decomposed into movement path selection model and
network lifetime optimization model with knownmovement
paths. The movement path selection model is solved in
sink nodes by distributed clustering method and graph
theory method. Mobile gathering and static gathering are
considered and the network lifetime optimization model is
approximately solved by distributed graph theory method.
Compared with MCP, subgradient algorithm, EASR and
GRAND (for grid random scheme), LOA MSNuses the node
energy as much as possible to prolong the network lifetime.

The remaining parts of paper are organized as follows.
In Section 2, the energy-saving positioning algorithm of
nodes is proposed. In Section 3, the algorithm assumption
and lifetime optimization model with mobile sink nodes are
proposed. In Section 4, the distributed solution of model is
proposed. In Section 5, the simulation results are presented.
In Section 6, the paper is concluded.

2. Energy-Saving Positioning Algorithm

At present,mostly outdoor positioning uses satellite position-
ing module such as GPS or Beidou. But the work current of
those modules is up to tens of milliamp. In the energy limited
WSNs, they have great energy consumption. RSSI (received
signal strength indication) positioning algorithm obtains
the signal energy through link signal and has low energy
consumption.Therefore, the hybrid positioning algorithm of
satellite positioning and RSSI positioning is proposed to save
energy. Assume that each node is equipped with Beidou or
GPS positioning module. After network starts, sensor nodes
and sink nodes periodically start the positioning module to

obtain their longitude and latitude values. Due to the loca-
tions of sensor nodes being fixed, the time interval of sensor
nodes is much longer than that of sink nodes. When there
are more than 3 sensor nodes in the 1-hop communication
range of sink node, the sink node shuts down the satellite
positioning module for some time and uses RSSI positioning
algorithm based on latest satellite positioning coordinates.
The implementation of hybrid positioning algorithm is as
follows.

Sink nodes transmit positioning query packets to nearby
sensor nodes. Sensor nodes in the 1-hop communication
range of sink nodes transmit their location information
which is obtained by satellite positioning module, node
address, and other information back to the corresponding
sink node. Sink nodes receive a packet and obtain the RSSI
value of link signal. If there are historical RSSI data of the
same link, Kalman filtering is used to reduce errors and
improve positioning accuracy [15]. Based on processed RSSI
values, link distance 𝑑

𝑖
from sensor node 𝑖 to sink node is

evaluated as follows:

𝑑
𝑖
= 10
−(RSSI𝑖+𝐴)/(10Loss), (1)

where RSSI
𝑖
represents the processed signal strength value

of link from sensor node 𝑖 to sink node. A represents the
received signal strength value when the distance between
transmitter and receiver is 1m. Its value range is 30–50.
Loss represents path loss exponent, namely, attenuation
rate of signal energy. Its value range is 1–8. Through data
communication, sink nodes obtain the location information
of multiple sensor nodes and distances to those senor nodes
and use multipoint positioning algorithm to calculate its
coordinates with the following formula:
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where (𝑥
𝑖
, 𝑦
𝑖
), 𝑖 ∈ (1, 2, . . . , 𝑁

𝑠
), represents the 𝑥- and 𝑦-

coordinates of sensor node 𝑖 which are the neighbor node
of sink node. (𝑥𝑅

𝑠
, 𝑦
𝑅

𝑠
) represents the 𝑥- and 𝑦-coordinates of

sink node with RSSI positioning algorithm.𝑁
𝑠
represents the

number of neighbor sensor nodes around the sink node.
Sink node records the elapsed time after the satellite

positioning module is shut down. According to the satellite
positioning coordinates (𝑥𝑤

𝑠
, 𝑦
𝑤

𝑠
), RSSI positioning coordi-

nates (𝑥𝑅
𝑠
, 𝑦
𝑅

𝑠
), the elapsed time 𝑡

𝐿
, and themovement speed 𝑢

of sink node, the intersection point between the circle whose
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By the energy-saving positioning algorithm, nodes calcu-
late their 𝑥- and 𝑦-coordinates with periodic start of satellite
positioning module. It reduces the energy consumption of
nodes.

3. Establishment of Optimization Model

In the paper, only 2D (two-dimensional) WSNs are consid-
ered and all nodes know their own location coordinates. The
algorithm assumption is as follows. The locations of sensor
nodes are fixed. Sink nodes can move to any grid center
based on location information. All sensor nodes continuously
transmit their sensing data to sink nodes. All sensor nodes
have the same performance (such as sensing rate, maximum
communication radius, initial energy, and energy consump-
tion parameter). Energy of all nodes is limited, but energy of
sink nodes can be renewable.

3.1. Constraints

3.1.1. Movement Path Constraints. Many references consider
that sink node stays at one node location, gathers data, and
takes its responsibilities to sense. It basically limits themobile
location selection of sink node and does not consider other
locations where sensor node never distributes. Therefore,
their algorithms obtain local optimal solutions. As is shown
in Table 1, monitoring area is divided into several grids of the
same size and each grid is numbered. The sink node can stay
at each grid center to gather data. The method enlarges the
selection range of sojourn locations for sink nodes.

The mth sink node starts at initial location and finally
moves back to the initial location. The initial location con-
straints ofmth sink node are as follows:

∑

𝑤∈𝐺𝑑

𝑝
𝑚

𝑠,𝑤
= 1, ∀𝑚,

∑

𝑤∈𝐺𝑑

𝑝
𝑚

𝑤,𝑠
= 1, ∀𝑚,

(4)

where s represents grid
𝑠
and initial location of mth sink

node, gridV represents the center of grid v, and Gd represents
the set of all grid centers. 𝑝𝑚V,𝑤 is the state indicator, which
represents whether 𝐿(gridV, grid𝑤) appears in the movement
path ofmth sink node. 𝐿(gridV, grid𝑤) represents the directed
line segment from gridV to grid

𝑤
. 𝑝𝑚V,𝑤 = 1 represents

𝐿(gridV, grid𝑤) is in the movement path ofmth sink node. As
is shown in Table 1, the grids (1, 𝑛, (𝑛 − 1)𝑛 + 1, 𝑛2) have only
2 neighbor grids and 2 line segments to neighbor grids. The

Table 1: Grids in the monitoring area.
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other boundary grids have 3 neighbor grids. Others (such as
𝑛 + 1, 2𝑛 − 1) have 4 neighbor grids.

Because each sink node cyclically moves along the path,
the sum of state indicators which represent from gridV to all
its neighbor grid centers is equal to the sum of state indicators
which represent from all neighbor grid centers to gridV. The
state indicator balance constraint is

∑

𝑤∈𝐺𝑑,𝐿(gridV ,grid𝑤)∈𝐿𝑑
𝑝
𝑚

V,𝑤

= ∑

𝑤∈𝐺𝑑,𝐿(gridV ,grid𝑤)∈𝐿𝑑

𝑝
𝑚

𝑤,V, ∀V ∈ 𝐺𝑑, ∀𝑚,
(5)

where Ld represents the set of all possible line segments.
To avoid two mutually movable grids and eliminate the

subtours, the state indicator limitation constraint is

𝑝
𝑚

V,𝑤 + 𝑝
𝑚

𝑤,V ≤ 1, ∀𝑤, V ∈ 𝐺𝑑, ∀𝑚. (6)

3.1.2. Flow Constraint. The transmission data are composed
of the sensing data and received data from neighbor nodes.
The flow constraint is

∑

𝑗∈𝑁(𝑖)
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where 𝑆
𝑖
represents the data sensing rate of node i and 𝑓𝑚

𝑖𝑗

represents the data transmission rate from node 𝑖 to node
𝑗 when the data of node 𝑖 aggregate to mth sink node. 𝑉

𝑚

represents a nonempty set of sensor nodes which are in
the gathering range of mth sink node. 𝑁(𝑖) represents the
neighbor node set of node 𝑖 in 𝑉

𝑚
.

3.1.3. Energy Consumption Constraint. During the gathering
time 𝑇

𝑚 of mth sink node, the energy consumption of
receiving data fromneighbor nodes is𝑇𝑚∑

𝑚
∑
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where 𝐸elec represents electric energy consumption of receiv-
ing or transmitting unit data. The energy consumption of
transmitting data is 𝑇𝑚∑
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represents electronic energy consumption of amplifying
unit signal. The total energy consumption is not larger than
initial energy. The energy consumption constraint is
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𝑚
, ∀𝑚,

(8)

where 𝐸initial represents the initial energy of sensor nodes.
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3.1.4. Link Transmission Constraint. Because link bandwidth
resource is limited, the total amount of link transmission data
is limited. Then the link transmission constraint is

𝑓
𝑚

𝑖𝑗
+ 𝑓
𝑚

𝑗𝑖
≤ 𝑅max, 𝐿 (𝑖, 𝑗) ∈ 𝐿

𝑚
, 𝑗 > 𝑖, ∀𝑚, (9)

where 𝑅max represents the maximum transmission rates of
nodes, 𝐿(𝑖, 𝑗) represents the link from node 𝑖 to node 𝑗, and
𝐿
𝑚
represents the set of all wireless links in all sensor nodes

of 𝑉
𝑚
.

3.2. Network OptimizationModel. When network starts, sink
node leaves from initial location to next grid center and
finally moves back to initial location. The data gatherings
of sink node are mobile gathering and static gathering. The
mobile gathering of sink node is that, during its movement,
sink node dynamically gathers data. The static gathering of
sink node is that it stays at some grid centers for some sojourn
time and statically gathers data.

The total time of𝑚th sink node movement is

𝑇
𝑚
= ∑

𝑛

∑

𝑝

𝑡
𝑛,𝑚

𝑝
+
∑
𝑛
∑V∈𝐺𝑑∑𝑤∈𝐺𝑑 𝑑V𝑤𝑝

𝑚

V,𝑤

𝑢
, (10)

where 𝑇𝑚 represents total time ofmth sink node movement.
𝑡
𝑛,𝑚

𝑝
represents the sojourn time in whichmth sink node stays

at grid
𝑝
in its 𝑛th movement. 𝑑V𝑤 represents the distance

between gridV and grid
𝑤
. 𝑢 represents the movement speed

of sink nodes.
If there is one sink node in the network, formula (10)

represents the network lifetime 𝑇net. If there are several
sink nodes, sink nodes broadcast their location information
before gathering data. Sensor nodes select the nearest sink
node to transmit data. Then the network is divided into
multiple clusters. The network lifetime 𝑇net is defined as the
average value of all 𝑇𝑚; namely, 𝑇net = ∑

𝑚
𝑇
𝑚
/𝑀, where

𝑀 represents the number of sink nodes. The optimization
problem of multiple sink nodes is transformed into multiple
optimization problems of single sink node. The lifetime
optimization model of𝑚th sink node is

max(𝑇𝑚 = ∑
𝑛

∑

𝑝

𝑡
𝑛,𝑚

𝑝
+
∑
𝑛
∑V∈𝐺𝑑∑𝑤∈𝐺𝑑 𝑑V𝑤𝑝

𝑚

V,𝑤

𝑢
) (11a)

s.t. Constraints (4)–(6)
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𝑗𝑖
≤ 𝑅max, 𝐿 (𝑖, 𝑗) ∈ 𝐿

𝑚
, 𝑗 > 𝑖, (11d)

𝑡
𝑛,𝑚

𝑝
≥ 0, ∀V, 𝑚, 𝑛, (11e)

𝑓
𝑚

𝑖𝑗
≥ 0, ∀𝑖, 𝑗 ∈ 𝑉

𝑚
, (11f)

𝑝
𝑚

V,𝑤 ∈ {0, 1} , ∀V, 𝑤 ∈ 𝐺𝑑. (11g)

4. Solution Method

Network optimization model (11a) considers movement
path selection of sink node and data routing. The model
has too many parameters and its solution is complicated.
In the model, movement path constraints mainly limit
∑
𝑛
∑V∈𝐺𝑑∑𝑤∈𝐺𝑑 𝑑V𝑤𝑝

𝑚

V,𝑤/𝑢 in target function. It means find-
ing a relatively optimal path. The flow constraint, energy
consumption constraint, and link transmission constraint
mainly limit∑

𝑛
∑
𝑝
𝑡
𝑛,𝑚

𝑝
in target function. It means searching

optimal lifetime and routing solution. In order to reduce
solving complication, the network optimization model (11a)
is divided into movement path selection model and lifetime
optimization model with known movement paths.

4.1. Movement Path Selection Model. The movement path
constraints are too loose for path selection. It does not
consider the node density and node energy. It needs a lot of
time to calculate the solution of themodel.Therefore, the path
selection of sink nodes needs to consider the node location
information and energy and determines some anchors for
sink nodes. The anchors are some locations around where
node density is high and residual energy of nodes is large.
The clusteringmethods can be used to determine the anchors
at which sink nodes stay to gather data of sensor nodes. In
the paper, modified subtractive clustering algorithm is used
to calculate the anchors [16]. The number and the set of
anchors which mth sink node needs to stay at are obtained.
The implementation steps ofmth sink node are as follows.

Step 1. The number of anchors is𝑁
𝑚
= 1. The potential value

of each grid is initialized as follows:

𝑃 (V) = 𝑥1 ∑
𝑗∈𝑁(V)

exp(−
𝛼
1
𝑑V𝑗

𝑑max
)

+ 𝑥
2
∑

𝑗∈𝑁(V)
exp(−

𝛼
2
𝐸initial

Re (𝑗)
) ,

(12)

where 𝑃(V) represents potential value of gridv. 𝑑V𝑗 represents
the distance from sensor node 𝑗 to grid center gridv. 𝑁(V)
represents the set of sensor nodes from which the distance
to grid center is no longer than maximum communication
distance 𝑑max. Re(𝑗) represents the residual energy of node j.
𝛼
1
represents distance potential factor. 𝛼

2
represents residual

energy potential factor. 𝑥
1
represents distance weight factor.

𝑥
2
represents residual energy weight factor, and 𝑥

1
+ 𝑥
2
= 1.

Step 2. Thegrid ofmaximumpotential value is found. Its grid
center as anchor point is selected. 𝑃∗

𝑁𝑚
represents its potential

value.
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Step 3. The grid center is aggregation point. Potential values
of the grids are subtracted by formula

𝑃 (V) = 𝑃 (V) − 𝑃∗
𝑁𝑚

(exp(−
𝛽𝑑V𝑎

𝑑max
)) , ∀V, (13)

where 𝛽 represents attenuation factor. 𝑑V𝑎 represents the
distance from grid center gridv to the aggregation point.

Step 4. If the following inequality holds, end the algorithm;
otherwise𝑁

𝑚
= 𝑁
𝑚
+ 1 and go to Step 2:

max
V

𝑃 (V) ≤ 𝜀𝑃∗
1
, (14)

where 𝜀 represents judgment factor.

Network environment is complicated.Themobile gather-
ing efficiency of sink nodes is far lower than static gathering
efficiency. Therefore the movement time of sink nodes is as
short as possible. Movement distance of mth sink node in
one data gathering period is∑V∈𝐺𝑑∑𝑤∈𝐺𝑑(𝑑V𝑤𝑝

𝑚

V,𝑤)/𝑢. Size of
each grid is the same.Therefore, themovement path selection
model of all sink nodes can be represented as follows when
anchors are determined:

min ∑

V∈𝐺𝑑
∑

𝑤∈𝐺𝑑

𝑝
𝑚

V,𝑤 (15a)

s.t.: ∑
𝑤∈𝐺𝑑

𝑝
𝑚

V,𝑤 = 1 ∑

𝑤∈𝐺𝑑

𝑝
𝑚

𝑤,V = 1, ∀V ∈ {𝑃𝑚, 𝑠} , ∀𝑚,

Constraints (4)–(6), (11g),
(15b)

where 𝑃𝑚 represents the set of anchors which is obtained by
the modified subtractive clustering algorithm.

Model (15a) shows that the movement path selection of
sink nodes is essentially TSP problem. It can be solved by
genetic method, graph theory, and other methods. Because
the number of anchors is not large, nearest neighbor inter-
polation algorithm is used to find the approximate solution
of shortest path [17]. The implementation steps of mth sink
node are as follows.

Step 1. The location of sink node is initialized and 𝑖 = 0. The
anchor V

0
is the starting point.The initial closed path is V

0
V
0
.

Step 2. In {𝑃𝑚, 𝑠} − {V
0
, V
1
, . . . , V

𝑖
}, anchor V

𝑖+1
is found which

has the nearest distance to any anchor in {V
0
, V
1
, . . . , V

𝑖
} set.

Step 3. The anchor V
𝑖+1

is inserted into the closed
path V

0
V
1
⋅ ⋅ ⋅ V
𝑖
V
0
. The paths V

0
V
𝑖+1

V
1
⋅ ⋅ ⋅ V
𝑖
V
0

and
V
0
V
1
V
𝑖+1

⋅ ⋅ ⋅ V
𝑖
V
0
, . . . , V

0
V
1
⋅ ⋅ ⋅ V
𝑖
V
𝑖+1

V
0
are obtained. The

shortest path is selected as the new shortest closed path.

Step 4. If 𝑖 < (𝑁
𝑚
+1), then go to Step 2; otherwise obtain the

approximate solution, and go to Step 5.

Step 5. According to the approximate solution, namely the
obtained close path, sink node moves along the directed line
segment from one anchor to its next anchor periodically. If

sink node stays at the end anchor in the path, it moves back to
initial anchor. Then all possible grids which sink node passes
through are founded in turn. The selected anchors and grid
centers constitute the solution of movement path selection
model (15a). The grid centers that the sink node stays at,
namely, the gridmovement paths of sink nodes, are obtained.

4.2. Lifetime Optimization Model. When the grid movement
paths of sink nodes are determined, according to the def-
inition of network lifetime, network lifetime optimization
model can be transformed to the models of single sink
node. Their target is to obtain the lifetime 𝑇

𝑚 and node
transmission rates 𝑓𝑚

𝑖𝑗

max 𝑇
𝑚
= ∑

𝑛

∑

𝑝

𝑡
𝑛,𝑚

𝑝
+
∑
𝑛
∑V∈𝐺𝑑∑𝑤∈𝐺𝑑 𝑑V𝑤𝑝

𝑚

V,𝑤

𝑢

s.t.: Constraints (11b)–(11f).

(16)

The mobile gathering process of sink nodes is considered
as sink nodes stay at the grid centers which are in their
grid movement paths for some sojourn time to gather data.
Therefore, the mobile gathering problem is converted into
discrete multiple static gathering problems whose sojourn
time is 𝑑V𝑤/𝑢. The lifetime is composed of sojourn times for
which sink nodes stay at the anchors and passing grid centers.

Therefore, the model is simplified.The lifetime optimiza-
tion problem is transformed to several lifetime optimization
models in which sink node stays at different grid centers.
When mth sink node stays at location 𝑃

𝑘
, the lifetime

optimization model is

max 𝑇V (17a)

s.t.: ∑
𝑗∈𝑉𝑃
𝑘

𝑓
𝑃𝑘,𝑚

𝑖𝑗
= 𝑆
𝑖
+ ∑

𝑗∈𝑉𝑃
𝑘

𝑓
𝑃𝑘,𝑚

𝑗𝑖
, ∀𝑖 ∈ 𝑉

𝑃𝑘 (17b)

( ∑

𝑗∈𝑉𝑃
𝑘

𝑓
𝑃𝑘,𝑚

𝑗𝑖
𝐸elec + ∑

𝑗∈𝑉𝑃
𝑘

𝑓
𝑃𝑘,𝑚

𝑖𝑗
(𝐸elec + 𝜀𝑓𝑠𝑑

2

𝑖𝑗
))

≤
𝐸initial
𝑇V

, ∀𝑖 ∈ 𝑉
𝑃𝑘

(17c)

𝑓
𝑃𝑘,𝑚

𝑖𝑗
+ 𝑓
𝑃𝑘,𝑚

𝑗𝑖
≤ 𝑅max, 𝐿 (𝑖, 𝑗) ∈ 𝐿

𝑚
, 𝑗 > 𝑖 (17d)

𝑓
𝑃𝑘,𝑚

𝑗𝑖
≥ 0, ∀𝑖, 𝑗 ∈ 𝑉

𝑃𝑘
, (17e)

where𝑇V represents the network lifetimewhenmth sink node
stays at location 𝑃

𝑘
, 𝑓𝑃𝑘,𝑚
𝑖𝑗

represents the data transmission
rate from node 𝑖 to node 𝑗 when the data of node 𝑖 aggregate
to mth sink node andmth sink node stays at location 𝑃

𝑘
. 𝑉
𝑃𝑘

represents the set of sensor nodes whose data aggregate to
mth sink node. If node 𝑗 is not the neighbor node of node
i, 𝑓𝑃𝑘,𝑚
𝑖𝑗

= 0. The lifetime optimization model (17a) can be
solved by optimization methods such as distributed subgra-
dient method [18] and approximately solved by distributed
graph methods [19].
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In the paper, in order to reduce the time complexity of
the algorithm, the model (17a) is approximately solved by the
distributed asynchronous Bellman-Ford algorithm. Namely,
when sink node starts to gather data, it transmits data query
packets from time to time.Then, the implementation steps of
sensor node 𝑖 are as follows.

Step 1. If sensor node 𝑖 receives the routing information
packet of its sink node, the address and shortest path weight
𝐷
𝑠
(𝑡) = 0 of sink node are added to the information table of

neighbor nodes. The link weight 𝑤
𝑖𝑠
from sensor node 𝑖 to its

sink node is calculated as follows:

𝑤
𝑖𝑠
= (𝑔
𝑖𝑠
𝐸elec + 𝑔𝑖𝑠𝜀𝑓𝑠 (𝑑

𝑠

𝑖
)
2
)
𝑦1

(
1

Re (𝑗)
)

𝑦2

, (18)

where 𝑠 represents sink node. 𝑑𝑠
𝑖
represents the distance from

sensor node 𝑖 to its sink node. 𝑔
𝑖𝑠
represents the amount

of data which sensor node 𝑖 needs to transmit. 𝑦
1
is energy

consumption factor. 𝑦
2
is residual energy factor of neighbor

node.

Step 2. If the shortest path weight 𝐷
𝑖
(𝑡) of sensor node 𝑖 is

not infinite, it broadcasts routing information packet from
time to time. The packet includes the address of sensor node
𝑖, 𝐷
𝑖
(𝑡), and data transmission hop to sink node. If sensor

node 𝑖 doesn’t receive any routing information packet before,
it lets 𝐷

𝑖
(𝑡) = ∞, caches its data, broadcasts routing failure

packet and waits until the routing information packets of
other nodes are received. If sensor node 𝑖 receives the routing
information packet of neighbor node 𝑗, it obtains the𝐷

𝑗
(𝑡) of

neighbor node 𝑗. Then go to Step 3.

Step 3. The link weight 𝑤
𝑖𝑗
from sensor node 𝑖 to sensor

node 𝑗 is calculated.The information table of neighbor nodes
updates

𝑤
𝑖𝑗
= (2𝑔

𝑖𝑗
𝐸elec + 𝑔𝑖𝑗𝜀𝑓𝑠 (𝑑

𝑗

𝑖
)
2

)

𝑦1

(
1

Re (𝑗)
)

𝑦2

, (19)

where 𝑑𝑗
𝑖
represents the distance from sensor node 𝑖 to sensor

node j. 𝑔
𝑖𝑗
represents the amount of data which sensor node 𝑖

transmits to sensor node j.

Step 4. According to the information table of neighbor nodes,
the father node is selected through the following formula:

𝐷
𝑖 (𝑡) = min

𝑗

(𝑤
𝑖𝑗
+ 𝐷
𝑗 (𝑡)) . (20)

Step 5. Sensor node 𝑖 transmits the date through its father
node to sink node.

In the data gathering process of sink node, if sensor node
does not receive the latest routing information packet or
feedback packet of neighbor node, it considers that the link
is failure and deletes the information of the neighbor node in
the information table.

Network starts

Broadcasts positioning
query packets

Receives and processes
RSSI values

Broadcasts information
query packets

Receives information of
coverage nodes

Determines the anchors

Selects the grid
movement path and

moves along the path

Broadcasts routing
information packet

Gathers the data of
sensor nodes

Calculates the x- and y-
coordinates

Figure 1: The work flowchart of sink nodes.

4.3. Distributed Realization. LOA MSN is a distributed algo-
rithm. Sensor nodes and sink nodes separately implement
their own program.

As shown in Figure 1, when network starts, the specific
steps of sink nodes are as follows.

Step 1. Each sink node broadcasts information query packets
to sensor nodes in flooding way. The packets include its
location information and node address. It gets information of
coverage sensor nodes and establishes the information table.

Step 2. When the satellite positioning module is shut down,
the sink node broadcasts positioning query packets and
receives and processes RSSI values. Then it calculates the 𝑥-
and 𝑦-coordinates of its own through formulae (1)–(3).

Step 3. Sink node determines some anchors based on node
location information and energy with clustering method,
solves the TSP problem to find the solution of optimal
movement paths, and obtains the grid movement scheme.
Sink node moves along the grid movement path; namely, it
repeatedly stays at one anchor for some sojourn time or one
passing grid center for 𝑑V𝑤/𝑢 time and moves to next grid
center. It broadcasts routing information packet and gathers
the data of sensor nodes.

As shown in Figure 2, when network starts, each sensor
node is in listening state. If sensor node receives the informa-
tion query packets of sink nodes, it analyzes the content of
the packets. If it has not received the packet before, it adds
the information (location coordinates, node address, etc.) of
packet to the information table of sink nodes and forwards
the packet, else it discards the packet. According to the
information table of sink nodes, each sensor node selects the
nearest sink node as its aggregation node. Then it transmits
the information of its own back to its aggregation node in
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Network starts

Receives information
query packets

Selects the nearest sink
node as its aggregation

node

Transmits the
information to sink node

Receives positioning
query packet

Transmits the
information to sink node

Receives routing
information packet

Calculates the link
weight and shortest path

weight

Selects the father node

Senses the data

Transmits the data
to father node

Broadcasts the routing
information packet if

necessary

Figure 2: The work flowchart of sensor nodes.

the same path. If the sensor node receives the positioning
query packet, it transmits its node address, coordinates, and
other information back to the corresponding sink node. If
the sensor node receives the routing information packet, it
calculates the link weight and shortest path weight, selects
the father node, transmits sensing data to corresponding
sink node, and consumes energy. If the routing information
of sensor node changes or it is already after a period of
time, it broadcasts the routing information packet to inform
other nodes. If the sensor node needs to transmit the data, it
transmits the data to sink node through father node.

5. Simulation Realization and Analysis

5.1. Simulation Parameters. In the simulation, only energy
consumption of data wireless communication is consid-
ered. Number of grids is 30 ∗ 30. 𝐸elec is 50 nJ/bit. 𝜀

𝑓𝑠
is

100 pJ/bit/m2. 𝑑max is 200m. Edge length of simulation area
is 1000m. 𝐸initial is 1000 J. Sensing rate of sensor node 𝑆

𝑖
is

1Mbit/h. Link maximum transmission rate 𝑅max is 5Mbit/h.
Movement speed of sink nodes 𝑢 is 5.5m/s. Distance weight-
ing factor 𝑥

1
is 0.5. Residual energy weighting factor 𝑥

2
is 0.5.

Distance potential factor 𝛼
1
is 2. Residual energy potential

factor 𝛼
2
is 2. Attenuation factor 𝛽 is 1. Judgment factor 𝜀

is 0.3. Energy consumption factor 𝑦
1
is 0.7. Residual energy

factor 𝑦
2
of neighbor node is 1. Simulation and comparison

of the two MCP [14] and subgradient [18] algorithms when
sink node are fixed in the center of simulation area, and the
three EASR [14], GRAND (for grid random scheme), and
LOA MSN algorithms when sink node is mobile are realized.
In GRAND, sink node randomly periodically selects the next
movement location among neighbor grid centers and uses
MCP protocol to gather data when sink node stays at one grid
center. Then the algorithm performance indicators are given
as follows.

One data gathering cycle (DGC) is the working time
(does not include the sleep time) that all sensor nodes suc-
cessfully transmit 1Mbit data to sink node. The network
lifetime is defined as the average numbers of DGC in which
sink nodes complete in the time when network starts to run
until one node runs out of energy.

Average node energy consumption = total energy con-
sumption of all sensor nodes/(number of senor nodes ∗
network lifetime).
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Figure 3: Grid movement path of single sink node in the WSNs of
uniformly distributed nodes.

Average node residual energy = total residual energy of
all sensor nodes/number of senor nodes.

Data gathering latency = total number of hops for data
transmission of sensor nodes/(number of senor nodes ∗
network lifetime).

5.2. Simulation Result Analysis

5.2.1. WSNs of Uniformly Distributed Nodes. Firstly, the
movement paths of single sink node and two sink nodes
are analyzed when sensor nodes are uniformly distributed.
As is shown in Figure 3, the locations of 100 sensor nodes
(open circles) are generated randomly and uniformly. The
1000m ∗ 1000m simulation area is divided into 900 number
of grids. Sink node gathers the location information of sensor
nodes and uses modified subtractive clustering algorithm to
obtain six anchors (five-pointed stars). Sink node statically
and dynamically gathers data of sensor nodes along the
grid movement path. As is shown in Figure 4, there are
two clusters. Each cluster has three anchors. Each sink node
statically and dynamically gathers data along its grid move-
ment path.
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Figure 4: Grid movement paths of two sink nodes in the WSNs of
uniformly distributed nodes.
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Figure 5: Network lifetime comparison in the WSNs of uniformly
distributed nodes.

In summary, LOA MSM finds the paths which are
approximate solution of movement path selection model
(15a).

Secondly, in order to verify the effectiveness, MCP, sub-
gradient algorithm, EASR, GRAND, LOA MSN with single
sink node (SSN), and two sink nodes (TSN) are compared.
The location coordinates of 80, 100, 120, 140, 160, 180, and
200 sensor nodes are uniformly generated in the area. For
each fixed number of sensor nodes, 10 different network
topologies are generated. The network lifetime, average node
energy consumption, average node residual energy, and data
gathering latency are calculated. The mean values are the
simulation result to evaluate the algorithm’s performance.

Figure 5 compares the network lifetime when sensor
nodes distribute uniformly. LOA MSN (TSN) uses two sink
nodes to gather data. Each sink node only moves to gather
data of some sensor nodes. And LOA MSN comprehensively
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Figure 6: Average node energy consumption comparison.

uses modified subtractive clustering algorithm to obtain
the anchors and uses distributed synchronous Bellman-
Ford algorithm to prolong network lifetime and obtain data
transmission scheme. EASR and GRAND are not suitable for
the WSNs of uniformly distributed nodes, but they consider
mobile sink nodes. MCP and subgradient algorithm whose
sink node is fixed have energy hole problem. Therefore, as is
shown in Figure 5, network lifetime of LOA MSN (TSN) is
longest and network lifetime of LOA MSN (SSN) is second.
Network lifetime of EASR and GRAND is lower than that
of LOA MSN but longer than that of MCP and subgradient
algorithms. Network lifetime of MCP is shortest.

Figure 6 compares the average node energy consumption.
LOA MSN (TSN) divides sensor nodes into two clusters
according to location information. Each sink node only
moves to some grid centers around which sensor nodes
densely distribute. It reduces communication distance and
the node energy consumption and has the lowest average
node energy consumption. LOA MSN (SSN) only has one
sink node. In order to prolong network lifetime, sink node
moves to some anchors distributed around the simulation
area. It increases communication distances of some nodes
and the energy consumption of relay nodes.Then LOA MSN
(SSN) has a little larger average node energy consumption.
Therefore, as is shown in Figure 6, LOA MSN (TSN) has
the lowest average node energy consumption. subgradient
algorithm has the largest. Average node energy consumption
in MCP, EASR, GRAND, and LOA MSN (SSN) has a little
difference.

Figure 7 compares average node residual energy when
one sensor node runs out of energy. In LOA MSN, all sensor
nodes have the opportunity to transmit data near and far from
the corresponding sink node. Itmakes full use of node energy.
But, in other algorithms, only hub sensor nodes consume
a lot of energy. Other sensor nodes have much residual
energy. Therefore, as shown in Figure 7, LOA MSN (TSN)
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Figure 7: Average node residual energy comparison.
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Figure 8: Data gathering latency comparison.

and LOA MSN (SSN) have the lower average node residual
energy than other algorithms. MCP has the largest average
node residual energy.

Subgradient algorithm uses the optimization algorithm
to solve the model (17a) and obtain data routing scheme. It
cannot calculate the number of hops of each sensor node.
Therefore, Figure 8 compares the data gathering latency of
MCP, EASR, GRAND, LOA MSN (SSN), and LOA MSN
(TSN). LOA MSN (TSN) reduces the communication dis-
tance with two mobile sink nodes. LOA MSN (SSN) stays at
some anchors surrounding the simulation area and increases
the number of hops of sensor nodes which are far from sink
node. In MCP, fixed sink node gathers data in the center
of simulation area. In EASR and GRAND, sink node moves
around the center of simulation area and uses MCP to gather
data when sink node stays at one grid center. Therefore,
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Figure 9: Grid movement paths of two sink nodes when sensor
nodes distribute nonuniformly.

LOA MSN (TSN) has the lowest data gathering latency. Data
gathering latency in MCP, EASR, and GRAND has little
difference. LOA MSN (SSN) has the largest data gathering
latency.

In summary, in theWSNs of uniformly distributed nodes,
and LOA MSN makes full use of node energy to prolong
network lifetime.When LOA MSN uses multiple sink nodes,
it also reduces node energy consumption and data gathering
latency.

5.2.2. WSNs of Nonuniformly Distributed Nodes. In the
simulation, 3–5 numbers of points around the center of
simulation area are generated as the mean parameters of
Poisson distribution. The locations of 100 sensor nodes are
Poisson randomly generated around the mean parameters.
As is shown in Figure 9, in the 1000m ∗ 1000m simulation
area there are four mean points. 100 sensor nodes Poisson
distribute around the four points. Namely, the nodes densely
distribute around the four points. They sparsely distribute,
even no node distributes in the regions which are far away
from the four points. According to the node location infor-
mation, LOA MSNfinds the centers of dense subregions, and
obtains the five anchors (five-pointed stars).When sink nodes
stay at those anchors, all sensor nodes have the opportunity
to transmit data near their corresponding sink node.

Figure 10 compares the network lifetime when sensor
nodes distribute nonuniformly. In the network of nonuni-
form node distribution, sensor nodes concentrate in several
subregions. LOA MSN successfully finds the center of each
dense subregion and uses distributed synchronous Bellman-
Ford algorithm to obtain the data transmission scheme
which prolongs network lifetime. Network lifetime of other
algorithms is affected by the network topology.Thehubnodes
in dense subregions forward a lot of data and are disable
quickly. Therefore, as shown in Figure 10, LOA MSN (TSN)
has the longest network lifetime. LOA MSN (SSN) has the
second. Network lifetime of LOA MSN has not been affected
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Figure 10: Network lifetime comparison in the WSNs of nonuni-
formly distributed nodes.

by the node locations and even increases compared with the
network lifetime in theWSNs of uniformly distributed nodes.
Other algorithms have low network lifetime.

In the WSNs of nonuniformly distributed nodes, the
simulation results of average node energy consumption,
average residual energy, and data gathering latency are similar
to the simulation results in theWSNs of uniformly distributed
nodes. Therefore, the results are not elaborated.

In summary, in the WSNs of nonuniformly distributed
nodes, LOA MSN makes full use of node energy to prolong
network lifetime.

6. Conclusion

In the paper, lifetime optimization algorithm with mobile
sink nodes for wireless sensor networks based on loca-
tion information (LOA MSN) is proposed. In the proposed
scheme, satellite positioning and RSSI positioning algorithms
are used to obtain the location information of all nodes.Then,
the constraints are analyzed and movement path selection
model and lifetime optimization model with known move-
ment paths are established. Sink nodes gather the location
information of sensor nodes and use the clustering method
and graph theory method to find the movement paths. They
stay at the grid centers which are in the movement path for
some time, and gather data of sensor nodes with distributed
method. Finally, the performances of MCP, subgradient
algorithm, EASR, GRAND, and LOA MSN are compared. It
has been shown through various experiments that sink nodes
find the appropriate paths. LOA MSNmakes full use of node
energy to prolong network lifetime. When LOA MSN uses
multiple sink nodes, it also reduces node energy consumption
and data gathering latency.
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