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Time synchronization is a crucial component in wireless sensor networks (WSN), especially for location-aware applications.
The precision of time-based localization algorithms is closely related to the accuracy of synchronization. The estimation of
synchronization errors in most of the existing time synchronization algorithms is based on some statistical distribution models.
However, these models may not be able to accurately describe the synchronization errors due to the uncertainties in clock drift and
message delivery delay in synchronization. Considering that the synchronization errors are highly temporally correlated (short-
term correlation), in this paper, we present an adaptive linear prediction synchronization (ALPS) scheme for WSN. By applying
linear prediction on synchronization errors and adaptively adjusting prediction coefficients based on the difference between the
estimated values and the real values, ALPS enhances synchronization accuracy at a relatively low cost. ALPS has been implemented
on the Tmote-sky platform. As experiment results demonstrate, compared with RBS and TPSN, ALPS cuts synchronization cost by
almost 50% while achieving the same accuracy; compared with DMTS and PulseSync, ALPS reduces the MSE (mean square error)
of synchronization errors by 41% and 24%, respectively, with the same cost.

1. Introduction

Time synchronization is one of the key middle-ware compo-
nents in wireless sensor networks (WSN) [1]. Accurate time
synchronization is critical to many tasks in various WSN
applications including duty cycling scheduling, data fusion
and tracking, and transmission scheduling. Localization is
another important application of time synchronization. The
accuracy of time synchronization directly influences the
precision of localization [2].

Among the existing localization algorithms [3–6], the
most accurate localization approaches are ranged-based
methods. These methods usually use the time-of-arrival
(TOA) [7], time-difference-of-arrival (TDOA) [8, 9], angle-
of-arrival (AOA) [10], and received signal strength (RSS)
[6] to compute the distances between nodes and anchors
and then obtain the location information. Among the above
four methods, TOA and TDOA are time-based localization
algorithms, which are promising ranging methods due to
their high accuracy and low cost. The simulation results [2]

demonstrate that the accuracy of the time synchronization is
a central issue in time-based localization approaches. There-
fore, time synchronization plays a critical role in localization
algorithms.

Many time synchronization algorithms have been pro-
posed in recent years. The early time synchronization algo-
rithms, such as RBS [11], TPSN [12], DMTS [13], and
FTSP [14], are all based on timestamp exchanges, which
are intended to offset the uncertainties of message delivery
delay to enhance the synchronization accuracy. On-demand
synchronization (ODS) [15] adaptively adjusts the synchro-
nization interval for customized accuracy with minimized
communication overhead. Lenzen et al. propose PulseSync
[16] which distributes information on clock values as fast as
possible and achieves a higher synchronization accuracy than
FTSP. Leng andWu present a synchronization scheme under
unknown Gaussian distribution aiming at achieving both
low computational complexity and high performance [17].
Leng and Wu also model the WSN synchronization under
exponential delays as a linear programming problem and
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solve it with a novel low-complexity estimator [18]. In [19],
a Kalman filter is used to estimate both clock offset and skew.
An improvement on [19] by adopting an adaptivemultimodel
mechanism is presented in [20]. Zheng and Wu present a
unified framework to jointly solve time synchronization and
localization problems at the same time [2]. Jin et al. study
how voltage influences the clock skew and proposes a novel
voltage-aware time synchronization (VATS) scheme [21].

Most of existing synchronization schemes assume that
the distribution of clock skew and the delivery delay of
synchronization packets follow some statistical models (such
as Gaussian distribution model in [15, 17, 20, 21], exponential
distribution model in [18, 22, 23], and gamma distribution
model in [1]). However, the clock drift and message delivery
delay are essentially very random and easily affected by
some environment factors (such as temperature and voltage).
Therefore, it is not easy to describe them accurately through
any predeterminedmodel [1, 24]. Moreover, some algorithms
need to calibrate the clock skew frequently (such as [11,
14, 20, 22]). However, as [15] demonstrates, frequent clock
skew calibration will not only increase the computation
and communication overhead, but also may increase the
synchronization errors due to the miscalculation of the
message delivery delay.

Linear prediction is a mathematical operation where
future values of a discrete-time signal are estimated as a linear
function of previous samples. In digital signal processing, lin-
ear prediction is often called linear predictive coding (LPC)
and is widely used in speech coding, digital filter, andwireless
channel estimation. Considering that synchronization errors
are highly temporally correlated (as Figure 3 shows), in this
paper, an adaptive linear predication synchronization (ALPS)
scheme for WSN is proposed. To the best of our knowledge,
this is the first work which applies linear prediction to the
time synchronization in WSN.

ALPS predicts clock offset based on its historical values.
ALPSdoes not assume the clock offset to follow any particular
statistical distribution or need frequent clock skew calibra-
tion. As experimental results demonstrate, ALPS has a better
performance than DMTS and PulseSync without increasing
synchronization cost; ALPS reduces synchronization cost
compared to RBS and TPSN while maintaining the same
synchronization accuracy.

2. Motivation

In WSN, each node has an independent local clock. Ideally,
the clock should satisfy the equation 𝐶(𝑡) = 𝑡, where 𝑡 stands
for the ideal or reference time. However, due to the influence
of voltage, temperature, and other environmental factors, the
clock will drift away from the ideal time. The clock model is
illustrated in Figure 1. In general, the clock function of node
𝑖 can be modelled as

𝐶
𝑖 (𝑡) = 𝜃 + 𝑓 ⋅ 𝑡, (1)

where 𝜃 and 𝑓 are clock offset and clock skew, respectively.
In WSN, offsets exist between clocks of different nodes

due to the difference in clock skew and the initial phase.
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Figure 1: Clock model of sensor nodes.
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Figure 2: Synchronization model.

Consider the time synchronization process between node 𝐴
and node 𝐵, where 𝐵 is the reference node and 𝐴 is the node
to be synchronized, as illustrated in Figure 2. Suppose node
𝐵 sends a message to node 𝐴 about its clock reading 𝑇

𝐵,𝑘
at

node𝐵’s local time𝑇
𝐵,𝑘

and node𝐴 receives node𝐵’s message
at 𝐴’s local time 𝑇

𝐴,𝑘
. Then 𝑇

𝐴,𝑘
and 𝑇

𝐵,𝑘
satisfy the following

expression:

𝑇
𝐴,𝑘
= 𝑓 ⋅ 𝑇

𝐵,𝑘
+ 𝜃 + 𝜏, (2)

where 𝜃 and 𝑓 are the relative clock offset and skew between
node 𝐴 and node 𝐵, respectively. 𝜏 is the delay of message
transmitted from node 𝐵 to node 𝐴.

The goal of time synchronization is to make the clocks
of node 𝐴 and node 𝐵 the same. In (2), there are three
parameters, 𝑓, 𝜃, and 𝜏 to be estimated. For 𝑓 and 𝜏, most of
the synchronization schemes first assume that they follow a
particular statistical distribution and then estimate them by
some statistical means. For example, the least squares (LS)
estimator is applied in [14, 24]. In [18, 23], the parameters are
estimated using the maximum likelihood estimator (MLE)
andminimum variance unbiased estimator (MVUE), respec-
tively.

However, the delay of themessage for synchronization (𝜏)
consists of many components, including send/receive time,
access time, transmission/reception time, interrupt time,
and encoding/decoding time. Among them, the send/receive
time, access time, and interrupt time are nondeterministic.
Although the nondeterminacy of the synchronization delay
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can be reduced by inserting the timestamp into the appro-
priate place in the packet at the lower layers [13, 14], it can
not be eliminated completely. On the other hand, clock skew
(𝑓), affected by voltage, temperature, and other environment
factors [21], exhibits great randomness and is difficult to be
described by any particular statistical model. Moreover, since
the randomness of clock skew and synchronization delay are
not independent of each other, inappropriate estimation not
only can not eliminate the errors, but also introduce new
errors [15]. Therefore, there are limitations when using a spe-
cific statistical distribution model in time synchronization.
Linear prediction, however, as a widely used method in the
field of random signal estimation, is independent of any spe-
cial statistical distribution model. Considering that the clock
skew changes slowly and the synchronization error samples
exhibit high short-term temporal correlation and periodicity,
we adopt adaptive linear prediction as the estimator of the
synchronization errors in our synchronization scheme.

3. Algorithm

3.1. Linear Prediction Model. The key idea of linear predic-
tion is that if there is temporal correlation between signal
samples, we can use past sample values to predict current
and future sample values. The sample to be predicted can be
closely approximated as a linear combination of past samples.
The prediction coefficients are determined by minimizing a
certain function of differences between sample values and
predicted values.

In the time synchronization model, if we consider the
clock offset caused by both clock skew and the synchroniza-
tion delay as a single variable Δ𝑇

𝑘
, 𝑇
𝐴,𝑘

, and 𝑇
𝐵,𝑘

satisfy the
following expression:

𝑇
𝐴,𝑘
= 𝑇
𝐵,𝑘
+ Δ𝑇
𝑘
, (3)

whereΔ𝑇
𝑘
is the sum of clock offset caused by clock skew and

transmission delay at the𝐾th synchronization.
In order to examine how the synchronization errors

change with time, we implemented several experiments
(lasting 24 hours, with synchronization interval 2 s, 3 groups)
on the Tmote-sky platform. In these experiments, we com-
pensated the clock offset with a fixed value Δ𝑇

𝑘
and recorded

all synchronization errors during the testing time. The syn-
chronization errors over time are shown in Figure 3, which
is similar to [15]. As Figure 3 demonstrates, in short term
(within 30–50 samples), synchronization errors do not vary
much (short-term correlation), due to the relatively stable
clock skew, where small fluctuations result from rounding
in calculation. In long term (interval more than 100–120
samples), synchronization errors become periodical (long-
term correlation), due to the effect of varied clock skew.
These experiment results demonstrate that the synchro-
nization errors are highly temporally correlated. Therefore,
linear prediction, as a simple and widely used prediction
method, can be utilized to estimate Δ𝑇

𝑘
. Also, the prediction

coefficients can be adaptively assigned to minimize the MSE
of synchronization errors.

The basic idea of linear prediction is that Δ𝑇
𝑘
can

be approximated by its historical values (Δ𝑇
𝑘−1
, Δ𝑇
𝑘−2
, . . .).
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Figure 3: Synchronization errors over time using a fixed compen-
sation value.

We define two symbols: (i) Δ̂𝑇
𝑘
, which is the predicted value

of Δ𝑇
𝑘
and (ii) 𝑒

𝑘
, which is the prediction error, that is, the

difference between the real valueΔ𝑇
𝑘
and the predicted value

Δ̂𝑇
𝑘
. Δ𝑇
𝑘
is the real time difference between the master node

(node𝐵) and the slave node (node𝐴), where the former value
is read in the synchronization packet, and the latter is the
local time of the slave node when the synchronization packet
arrives. Then, Δ̂𝑇

𝑘
and 𝑒
𝑘
can be expressed as

Δ̂𝑇
𝑘
= 𝑎
1
Δ𝑇
𝑘−1
+ ⋅ ⋅ ⋅ + 𝑎

𝑝
Δ𝑇
𝑘−𝑝
=

𝑝

∑

𝑖=1

𝑎
𝑖
Δ𝑇
𝑘−𝑖
, (4)

𝑒
𝑘
= Δ𝑇
𝑘
− Δ̂𝑇
𝑘
= Δ𝑇
𝑘
−

𝑝

∑

𝑖=1

𝑎
𝑖
Δ𝑇
𝑘−𝑖
, (5)

where 𝑎
𝑖
(𝑖 = 1, 2, . . . , 𝑝) are the prediction coefficients and 𝑝

is the prediction order.

3.2. Calculation of the Prediction Coefficient 𝑎
𝑖
. We use the

synchronization mean square error (MSE) to evaluate the
synchronization performance. Smaller MSE indicates higher
synchronization accuracy [22]. The 𝐸

𝑛
, which is based on

MSE, is defined as follows:

𝐸
𝑛
= ∑

𝑛

𝑒
2

𝑘
= ∑

𝑛

(Δ𝑇
𝑘
− Δ̂𝑇
𝑘
)
2

= ∑

𝑛

(Δ𝑇
𝑘
−

𝑝

∑

𝑖=1

𝑎
𝑖
Δ𝑇
𝑘−𝑖
)

2

.

(6)

To minimize 𝐸
𝑛
, set the partial derivative of 𝐸

𝑛
to 𝑎
𝑖
(𝑖 =

1, 2, . . . , 𝑝) be zero; that is, 𝜕𝐸
𝑛
/𝜕𝑎
𝑗
= 0. Consider

2∑

𝑛

Δ𝑇
𝑘
Δ𝑇
𝑘−𝑗
− 2

𝑝

∑

𝑖=1

𝑎
𝑖
∑

𝑛

Δ𝑇
𝑘−𝑖
Δ𝑇
𝑘−𝑗
= 0, (7)

where 𝑗 = 1, 2, . . . , 𝑝.
Equation (7) can be further reduced to the following

equation:

∑

𝑛

Δ𝑇
𝑘
Δ𝑇
𝑘−𝑗
=

𝑝

∑

𝑖=1

𝑎
𝑖
∑

𝑛

Δ𝑇
𝑘−𝑖
Δ𝑇
𝑘−𝑗
. (8)
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Calculate Δ̂𝑇
𝑘

Inputs: Δ𝑇
𝑘−1
, Δ𝑇
𝑘−2
, . . . , Δ𝑇

𝑘−𝑝

Output: Δ̂𝑇
𝑘

(1) Φ(𝑖, 𝑗) = 𝑓
1
(Δ𝑇
𝑘−1
, Δ𝑇
𝑘−2
, . . . , Δ𝑇

𝑘−𝑝
)

(2) 𝑅(𝑗) = 𝑓
2
(Δ𝑇
𝑘−1
, Δ𝑇
𝑘−2
, . . . , Δ𝑇

𝑘−𝑝
)

(3) 𝑌 −𝑊(𝑃) = 𝑓
3
(𝑅(𝑗) , Φ(𝑖, 𝑗))

(4) 𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑝
= 𝑓
4
(𝐿 − 𝐷(𝑝))

(5) Δ̂𝑇
𝑘
= 𝑓
5
(Δ𝑇
𝑘−1
, Δ𝑇
𝑘−2
, . . . , Δ𝑇

𝑘−𝑝
, 𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑝
)

Algorithm 1: The way to calculate Δ̂𝑇
𝑘
.

Apparently, by solving this equation set, we can obtain all
the prediction coefficients 𝑎

𝑖
(𝑖 = 1, 2, . . . , 𝑝) which minimize

𝐸
𝑛
.
Define Φ(𝑖, 𝑗) and 𝑅(𝑗) as follows:

Φ(𝑖, 𝑗) = ∑

𝑛

Δ𝑇
𝑘−𝑖
Δ𝑇
𝑘−𝑗
, (𝑖, 𝑗 = 1, 2, . . . , 𝑝) ,

𝑅 (𝑗) = ∑

𝑛

Δ𝑇
𝑘
Δ𝑇
𝑘−𝑗
, (𝑗 = 1, 2, . . . , 𝑝) ,

(9)

where 𝑅(𝑗) is the autocorrelation function of Δ𝑇
𝑘
.

Combining (8) and (9) and the properties of the autocor-
relation function, we will have

𝑝

∑

𝑖=1

𝑎
𝑖
𝑅 (
󵄨󵄨󵄨󵄨𝑖 − 𝑗

󵄨󵄨󵄨󵄨) = 𝑅 (𝑗) , (𝑗 = 1, 2, . . . , 𝑝) (10)

expressed in matrix form as follows:

[
[
[
[
[
[

[

𝑅 (0) 𝑅 (1) ⋅ ⋅ ⋅ 𝑅 (𝑝 − 1)

𝑅 (1) 𝑅 (0) ⋅ ⋅ ⋅ 𝑅 (𝑝 − 2)

.

.

.
.
.
.

.

.

.
.
.
.

𝑅 (𝑝 − 1) 𝑅 (𝑝 − 2) ⋅ ⋅ ⋅ 𝑅 (0)

]
]
]
]
]
]

]

[
[
[
[
[
[
[

[

𝑎
1

𝑎
2

.

.

.

𝑎
𝑝

]
]
]
]
]
]
]

]

=

[
[
[
[
[
[

[

𝑅 (1)

𝑅 (2)

.

.

.

𝑅 (𝑝)

]
]
]
]
]
]

]

.

(11)

The above is called Yule-Walker equations, where the
coefficient matrix is a 𝑝 × 𝑝 Toeplitz matrix in which each
descending diagonal from left to right is constant.

We can use Levinson-Durbin recursion algorithm to
solve Yule-Walker equations.The Levinson-Durbin recursion
algorithm is given as follows [25].

(1) 𝐸
0
= 𝑅(0), when 𝑖 = 0.

(2) Perform recursive calculation with the following for-
mulas:

𝑘
𝑖
=

𝑅 (𝑖) − ∑
𝑖−1

𝑗=1
𝑎
𝑖−1

𝑗
𝑅 (𝑖 − 𝑗)

𝐸
𝑖−1

, 1 ≤ 𝑖 ≤ 𝑝,

𝑎
(𝑖)

𝑖
= 𝑘
𝑖
,

𝑎
(𝑖)

𝑗
= 𝑎
𝑖−1

𝑗
− 𝑘
𝑖
𝑎
(𝑖−1)

𝑖−𝑗
, 1 ≤ 𝑗 ≤ 𝑖 − 1,

𝐸
𝑖
= (1 − 𝑘

2

𝑖
) 𝐸
𝑖−1
.

(12)

(3) 𝑖 = 𝑖 + 1. If 𝑖 > 𝑝, then go to (4), or return to (2).
(4) The final solution is given as follows:

𝑎
𝑗
= 𝑎
(𝑝)

𝑗
, 1 ≤ 𝑗 ≤ 𝑝. (13)

3.3. Algorithm Description. ALPS is given as follows. First,
a routing tree is established in the network initialization
stage, where SINK node acts as its root. SINK node peri-
odically broadcasts synchronization packets, which include
timestamp, to the lower levels of the tree. When a child
node receives the packet, it extracts the timestamp and
calculates the difference (clock offset, which is used as the
input of ALPS) between the local clock and the timestamp
and rebroadcasts the synchronization packet only with its
own local timestamp. Then, the child node calculates the
prediction coefficients 𝑎

𝑖
according to previous clock offset

samples Δ𝑇
𝑘−1
, Δ𝑇
𝑘−2
, . . . , Δ𝑇

𝑘−𝑝
, as Section 3.2 describes.

ALPS distributively runs on every node independently. Each
node calculates its prediction coefficients based on the mea-
surements of its own clock errors and calibrates its clock
independently. For the first 𝑝 samples, when estimating Δ𝑇

𝑘

(𝑘 = 𝑝 + 1), we just set 𝑎
𝑖
= 1 for 𝑖 = 1 and 𝑎

𝑖
= 0 for

𝑖 = 2, . . . , 𝑘 − 1. Finally, we substitute 𝑎
𝑖
(𝑖 = 1, 2, . . . , 𝑝) and

Δ𝑇
𝑘−1
, Δ𝑇
𝑘−2
, . . . , Δ𝑇

𝑘−𝑝
into (4) to predict Δ𝑇

𝑘
. Δ̂𝑇
𝑘
is used

to calibrate the child node’s local clock, in order to make the
clocks between the parent node and the child node relatively
synchronized right before the next synchronization cycle.

The method to calculate Δ̂𝑇
𝑘
at 𝐾th synchronization is

given in Algorithm 1.
ALPS is described as follows.

(1) The child node maintains a FIFO queue which
consists of 𝑝 registers. The previous 𝑝 clock offset
samples are put into the registers by the order of
Δ𝑇
𝑘−𝑝
, . . . , Δ𝑇

𝑘−2
, Δ𝑇
𝑘−1

.
(2) With (9), Φ(𝑖, 𝑗) and the autocorrelation function
𝑅(𝑗) of clock offsets can be calculated.

(3) With Φ(𝑖, 𝑗) and 𝑅(𝑗), Yule-Walker equations can be
created.

(4) Using Levinson-Durbin iterative algorithm, calculate
the prediction coefficients 𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑝
.

(5) Calculate the next clock offset Δ̂𝑇
𝑘
by (4).
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Figure 4: Indoor testbed.

(6) Use Δ̂𝑇
𝑘
for local clock calibration.

(7) When the next synchronization packet arrives, calcu-
late Δ𝑇

𝑘
by (3) according to the node’s local time and

the timestamp which is extracted from the synchro-
nization packet.

(8) Insert Δ𝑇
𝑘
at the end of FIFO queue, and go back to

step (2).

The complexity of ALPS algorithm is analyzed as follows.
The most complex part of ALPS is the Levinson-Durbin
algorithm. Within the Levinson-Durbin algorithm, the most
complicated calculation is resolving the 𝑘

𝑖
, which requires a

nested loop with complexity𝑂(𝑝2), where 𝑝 is the prediction
order. Therefore, the complexity of the whole ALPS is 𝑂(𝑝2).

4. Performance Evaluation

To evaluate the performance of ALPS, we implemented it
in a real testbed, as shown in Figure 4. In our experiments,
we adopt CTP (collection tree protocol, commonly used in
WSN), as the routing algorithm on the nodes. Each node
looks for a parent node to be synchronized and transfers
data packets to the SINK node hop by hop through this
data collection tree, thus forming a tree-based topology.
The target hardware platform is Tmote-sky node, and the
software platform is Contiki, an open source lightweight
embedded operating systemwidely used inWSN.TheTmote-
sky node features an MSP430 MCU and a CC2420 radio
transceiver, and the clock frequency is 32768Hz. In the
following experiments, we synchronize the local time gener-
ated by the 32768Hz clock. Thus, one clock tick is equal to
1/32768 s. The Tmote-sky supports complicated calculations
and has the ability to store plenty of external data. These
advantages of Tmote-sky facilitate the ALPS implementation.

In order to obtain the clock readings of parent nodes
and their children nodes at the same time, a pulse signal
was sent periodically to these nodes.The nodes recorded and
output their clock readings upon receiving the pulse signal.
In this way, we can periodically sample the clocks of the
synchronization nodes to be tested.
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Figure 5: Relationship between MSE of synchronization errors 𝐸
𝑛

and prediction order 𝑝.

Table 1: Experimental configuration.

Synchronization model Master-slave
Number of tests 10
Duration 24 hrs
Prediction order 3
Number of node pairs 40
Largest hops 7
Synchronization interval 2 s
Skew range ±30 ppm
Synchronization packet length 20 bytes

The experimental scenario is a multihop wireless sensor
network. The default experiment configuration parameters
are given in Table 1.

The experiment is based on tree topology network. Since
we are more concerned with the synchronization errors
between parent nodes and children nodes, we have only
analyzed synchronization performance among parent nodes
and their children nodes.The analysis of the synchronization
errors for the whole network will be in our future work.

4.1. Prediction Order 𝑃. From analysis in Section 3.1, we
know that synchronization accuracy is highly related to the
prediction order 𝑝. So we explore the relationship between
theMSE 𝐸

𝑛
and 𝑝 by experiment. For every value of 𝑝within

range 1–7, we determine 𝐸
𝑛
with each test lasting 24 hours

and identify the relationship between 𝐸
𝑛
and 𝑝 as shown in

Figure 5.
As Figure 5 demonstrates, 𝐸

𝑛
declines quickly as 𝑝

increases when 𝑝 is small. When 𝑝 ≥ 3, the decrease of 𝐸
𝑛

becomes slow with the increase of 𝑝 and gradually becomes
trivial. Considering the limited computing capability of
nodes, we have to strike for a balance between the prediction
error and the computational complexity. Since 𝐸

𝑛
changes

slightly as𝑝 increases when𝑝 is bigger than 3 and the compu-
tational complexity is proportional to the square of𝑝, we set𝑝
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Figure 6: Histogram of synchronization errors.

as 3. When 𝑝 is 3, the number of calculations and operations
of ALPS is quite limited. Moreover, our hardware platform
T-more sky supports complicated calculations and has an
external flash with a capacity of 1024KB for external data
storage. Therefore, the ALPS is applicable in our hardware
platform.

4.2. Comparison with DMTS and PulseSync. Delaymeasure-
ment time synchronization (DMTS) [13] is based on the esti-
mation of all delays involved in time synchronizationmessage
transfer path, and the delay is calculated by the length and
the transmission rate of synchronization packet. PulseSync
[16] is presented to reduce the global synchronization errors
by making the synchronization messages disseminated as
fast as possible. And the clock skew is estimated by least-
squares linear regression (LSLR) on eight data points (8LR).
In our experiments, we evaluateDMTS, PulseSync, andALPS
algorithms on the same platform, the Tmote-sky platform.

To compare ALPS with DMTS and PulseSync, we imple-
mented these algorithms into the testbed in three experiments.

Table 2: Statistics of synchronization errors.

DMTS PulseSync ALPS
Average error (𝜇s) 31.34 25.26 19.33
Mean square error (𝜇s) 40.22 31.37 23.76
Percentage of time error less than
or equal to average error 45 52 63

In each experiment, the SINK node periodically broadcasts
synchronization messages to the whole network, and the
other nodes receive the synchronization messages and run
DMTS, PulseSync, and ALPS, respectively, and calibrate
their clocks to be synchronized with the SINK.

Figure 6 plots the histogramof the synchronization errors
of the DMTS, PulseSync, and ALPS algorithms, and the
results are also summarized in Table 2. As shown in Table 2,
the MSE of ALPS declines by 41% and 24%, respectively,
compared with DMTS and PulseSync.This is because DMTS
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Figure 7: Synchronization errors of PulseSync and ALPS over time.

compensates the random synchronization delay with a fixed
value, while PulseSync and ALPS use the historical data
points to estimate the current synchronization error.The dif-
ference between PulseSync and ALPS is analyzed as follows.
PulseSync uses eight data points (8LR) where the weights
of all sample points are equal for estimation. Therefore, the
degree of freedom (DOF) of PulseSync is only two (clock
offset and skew) although it has eight data points. On the
other hand, the prediction coefficients in ALPS are not equal
and adaptively change with time (as shown in Section 3.2), so
the DOF of ALPS is equal to the prediction order 𝑝. In this
experiment, 𝑝 is 3.

In short, PulseSync uses eight samples with the DOF as
two. However, although ALPS only uses three data points,
its DOF is three. Apparently, the efficiency of ALPS is higher
than PulseSync.

Figure 7 depicts the synchronization errors of PulseSync
and ALPS along the timeline for 1000 samples (2 s per
sample). Compared with Figure 3 (without prediction), we
can find that in ALPS the variance of errors is smaller, and
the outliers are less and are more stable.

Through analysis on data of synchronization errors, we
can get error distribution falling in different ranges. As
demonstrated by Figure 8, the error distribution of ALPS is
more concentrated than DMTS and PulseSync; hence the
MSE of ALPS is also smaller than DMTS and PulseSync.
85% and 75% of the errors in ALPS and PulseSync fall in ±1
clocktick, respectively, whereas almost 100% of the errors in
APLS fall in ±3 clocktick. This indicates that the distribution
of synchronization errors in ALPS is more concentrated and
falls in a smaller range (±1 clocktick) with a larger probability.

4.3. Synchronization Cost. Since the synchronization cost
is highly correlated with the amount of the synchroniza-
tion packets (assume the transceiver is turned off when
no message is sent or received), we take the number of
synchronization packets to represent the synchronization
cost.

Considering the scenario where one reference node and
𝑛 nodes to be synchronized are within a single broadcast
domain, the synchronization cost of different schemes is
given in Table 3. In RBS, 𝐾 denotes the number of reference
broadcasts. As 𝐾 increases, the synchronization error goes
down while the energy consumption goes up. According to [12],
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Figure 8: Probability of synchronization errors falling into different
ranges.

Table 3: Comparison of synchronization cost.

ALPS PulseSync DMTS RBS TPSN
Times of sending 𝑛 𝑛 𝑛 𝐾(𝑛 + 1) 2𝑛

Times of receiving 𝑛 𝑛 𝑛 𝐾(𝑛 + 1) 2𝑛

the average synchronization errors of RBS and TPSN are
29.13 𝜇s and 16.9 𝜇s, respectively.The average synchronization
error of ALPS is 19.33 𝜇s. As Table 3 demonstrates, ALPS has a
big advantage in synchronization cost, which is at least half of
both RBS and TPSN. Although ALPS, PulseSync, and DMTS
share the same synchronization cost, as shown in Table 2,
ALPS has a better performance than PulseSync and DMTS
in terms of both average and MSE of synchronization errors.

We also compare PulseSync and ALPS in resource con-
sumption. PulseSync uses LSLR to estimate the clock skew,
and a typical LSLR needs a single loop with complexity 𝑂(𝑙),
where 𝑙 is the number of historical data points used in LSLR.
However, as Section 3.3 analyzed, the complexity of ALPS is
𝑂(𝑝
2
), where 𝑝 is the prediction order. In our scheme, 𝑙 and 𝑝

are equal to 8 and 3, respectively. Compared with PulseSync,
ALPS needs a little more computational complexity. This
is the price ALPS has to pay for a higher performance.
However, we think the tradeoff is definitely acceptable since
the complexity only increases by 12.5%.

In summary, ALPS performs the same as RBS and TPSN
in synchronization accuracy with a less cost and performs
better than PulseSync and DMTS at a similar expense.
Therefore, when both performance and cost are taken into
consideration, APLS performs better than the other four
synchronization schemes.
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5. Conclusion

Considering the high temporal correlation of time synchro-
nization errors, this paper proposes ALPS, a synchronization
scheme based on adaptive linear prediction. Through linear
prediction on the clock offset and adaptively adjusting predic-
tion coefficients, ALPS improves synchronization accuracy
without increasing synchronization costs. Experiments on
the Tmote-sky platform indicate that ALPS cuts synchroniza-
tion cost by at least half compared with RBS and TPSN with-
out sacrificing accuracy and performs better than DMTS and
PulseSync with the same cost. The MSE of synchronization
errors in ALPS declines by 41% and 24% compared to DMTS
and PulseSync, respectively.
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