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Target tracking is a typical application in wireless sensor networks. Both energy efficiency and tracking performance are important
issues that need to be considered. They are a pair of contradictions most of the time. Saving energy often sacrifices tracking
performance, while enhancing tracking performance needs to consume more energy. In this paper, an efficient sleep scheduling
algorithm is put forward to tackle the above problem in energy harvesting sensor networks. At first, we modify the probability-
based prediction and sleep scheduling (PPSS) algorithm to track the target and further use another sleep scheduling algorithm
we proposed to wake tracking nodes when the target is likely to be missed (i.e., it is unsuccessful to wake next-moment tracking
nodes). Secondly, a double-storage energy harvesting architecture is employed to increase residual energy of sensor nodes and to
extend network lifetime. Simulation results reveal that the proposed sleep scheduling algorithm can improve tracking performance
and prolong network lifetime compared with the PPSS algorithm and the proposed algorithm without energy harvesting.

1. Introduction

Earlier generations of wireless sensor networks used non-
rechargeable batteries to supply electrical power, which has
limited energy storage. When the power of the battery in
a sensor node is run out, that sensor node cannot work
anymore. Therefore, researchers have made great effort to
reduce energy consumption and to prolong network lifetime
in various application fields [1-7]. Recently, energy harvesting
technologies have been proposed [8] and various problems in
energy harvesting sensor networks have been studied [9-22].

Energy harvesting technologies can be applied in sensor
networks to enhance performance or extend network life-
time. Many excellent works have been done toward this goal.
For example, in [9] several clustering algorithms have been
presented while energy harvesting nodes serve as dedicated
relay nodes to prolong network lifetime. In [10], a funda-
mental guideline was provided to design efficient medium
access control protocols to extend network lifetime. In [11],
performance-sensitive processing and communication were

combined with efficient energy management techniques to
prolong network lifetime. The premise of it is to ensure
energy neutral operation. To achieve this goal, it is required
to balance energy consumption and harvesting capability of
each node [12]. Following this principle, in [13] an energy
flow control problem was formulated to keep the balance
between energy supplies and demands. When the nodes
need to harvest energy, they should turn into the sleep
state, because the nodes in the sleep state consume the
least energy. As the ambient energy is not sufficient for all
the operation process, sleep scheduling is one of the effec-
tive methods for energy management [14]. However, sleep
scheduling will cause working time delay, while designing an
adaptive algorithm can vary the subsequent sleep interval to
maximize the asymptotic event detection [15]. Low latency
sleep and wake-up scheduling is challenging due to dynamic
duty cycling. In [16], two dynamic duty-cycle scheduling
schemes were proposed to reduce sleep latency. The bit-
reversal permutation sequence can also be used to achieve
this aim [17]. In [18], a new framework was developed to



model the adaptive duty cycling in energy harvesting sensor
networks as a Markov Decision Process. To achieve optimal
performance, an optimal scheduling algorithm was proposed
in [19] which considered the residual energy to achieve close-
to-optimal utility. In [20], the sampling rate was adaptively
determined to maximize the overall network performance.
In [21], a new energy harvesting model was proposed for
a network simulator that implements supercapacitor energy
storage which is easily extensible. Both rechargeable battery
and supercapacitor have their merits and disadvantages.
NiMH battery and Li-based battery have high energy density
and low self-discharge rate, but they have limited recharge
cycle. On the contrary, supercapacitor has low energy density
and high self-discharge rate, but it has theoretically infinite
recharge cycle. Integrating these two devices into a battery
will take the advantages of both and avoid their shortcomings
[22].

Target tracking is a typical application in wireless sensor
networks. Many target tracking algorithms have been pro-
posed, such as Kalman filter [23], Bayesian tracking [24],
Bernoulli filter [25], probability-based prediction, and sleep
scheduling (PPSS) [26]. There are many requirements in the
tracking procedure that need to be considered and energy
efficiency is one of the key aspects [27]. Different methods
were utilized to enhance energy efficiency of target tracking.
In [28], the nodes in a spatial region surrounding a target were
employed to achieve better tracking accuracy and energy
efficiency. In the tracking area, one needs to consider the
tradeoff between energy consuming and tracking accuracy,
such as the expensive in-node computations and the impreci-
sion tolerance when selecting subsequent tracking principals
[29]. In [30], an algorithm was proposed where sensors were
dynamically selected and allocated to track a target in order
to conserve network energy and provide tracking coverage
guarantee. As mentioned previously, sleep scheduling is an
efficient way to save energy. In the tracking procedure, sleep
scheduling means that only the sensors which are near to the
target keep awake [31], while other sensors which are far away
from the target stay in the sleep mode. In [32], a sleep strategy
was proposed that each node autonomously determines the
sleeping time. It also can make one subset of nodes active
while others enter the sleep state to conserve energy and
ensure that the target is tracked [33]. Besides, in [26] a PPSS
algorithm was proposed to proactively wake tracking nodes.

Nowadays, few sleep scheduling algorithms for target
tracking in sensor networks considered energy harvesting.
In energy harvesting sensor networks, scheduling the node’s
sleep and wake-up time should consider both the target
tracking procedure and the energy harvesting status. It is
necessary to make the sleep scheduling algorithm adaptive
to the energy harvesting situation. In this paper, first we
combine the PPSS algorithm with another sleep scheduling
algorithm we proposed [34] and make some improvement
to it. Secondly, we utilize a double-storage energy harvesting
architecture [22] to simplify the sleep scheduling process.
For each sensor node, when it turns into sleep and the solar
energy is available, it immediately harvests solar energy. If
the target is about to be missed (i.e., it is unsuccessful to
wake next-moment tracking nodes), the network will wake
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FIGURE 1: Target tracking in an energy harvesting sensor network.

some nodes which are nearer to the target and have more
residual energy to keep tracking the target [34]. Compared
to the PPSS algorithm and the proposed algorithm without
energy harvesting, the proposed sleep scheduling algorithm
can improve the target tracking efficiency and increase the
nodes’ residual energy.

The rest of this paper is organized as follows. The double-
storage energy harvesting sensor network model and the
target tracking model are introduced in Section 2. In Sec-
tion 3, the PPSS algorithm and the proposed sleep scheduling
algorithm are described in detail. Simulation results are
presented in Section 4. Finally, some concluding remarks are
made in Section 5.

2. System Model

We consider a wireless sensor network which is composed
of static, uniformly distributed sensor nodes in a planar
area. The nodes are equipped with double-storage energy
harvesting components. The node’s working time is divided
into toggling periods (TP), and each TP is composed of sleep
state and awaking state. The awaking state occupying the
percentage of each TP is called a duty cycle (DC). The nodes
in the sleep state have the lowest power consumption. They
can harvest energy in the sleep state. The awaking nodes can
detect the target and transmit and receive messages. Figure 1
illustrates a part of the energy harvesting sensor network
for target tracking. White circles represent the nodes in the
default toggling period, and grey circles represent the track-
ing nodes. The box denotes a target and the curve denotes
its trajectory. The awaking nodes must be surrounding the
target to keep tracking. There will be only one target passing
through the area. When no target appears, all nodes keep in
default duty cycle. If a target appears, the awaking nodes will
detect the target and begin to track it. All nodes have sensing
radius r and communication radius R. They are assumed to
know their locations through GPS or other techniques. They
are also locally time synchronized and have the ability to
detect target’s position (as in [24]). There is no sink in the
sensor network.
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FIGURE 2: Double-storage energy harvesting architecture.

The nodes can harvest energy only in the sleep state when
the solar energy is available. The output of a solar panel E, is
expressed as [35]

T+t

T+t
E(toT)= [ ns@dt=n, [ fwdn

ty

where ¢, is the beginning of the energy harvesting time, T
is the time duration, f(f) is the statistical distribution of the
solar energy, and #, is the conversion efficiency of the solar
panel.

According to the energy storage formula in [36] and (1),
the stored energy e, (¢) can be calculated as

e,(t) =e,(t—T)+kE, (t;,T) — €, (£) - (2)

If there is no available energy, k equals 0; otherwise k equals 1.
Here e, .., (t) denotes the consumed energy at the time ¢ and
e, (t — T) denotes the stored energy at the time t — T..

Nowadays, energy harvesting process is usually assumed
to obey the Poisson distribution [37], and a single node’s
energy harvesting mechanism is comparatively mature. How-
ever, there is little research on energy harvesting mechanism
for a large number of nodes. For convenience, we assume that
energy arriving to each node in the sensor network follows an
unknown random distribution. Besides, only the amount of
energy is used in the algorithm.

The double-storage energy harvesting architecture [22] is
shown in Figure 2. In general, the software program controls
the energy usage and the recharging process of Buffer 1 and
Buffer 2. Since the Li-ion battery has the limitation of deep
charge (the battery is recharged after a complete drain-out)
times, it is best to let these batteries undergo more shallow
charge when the battery is partially discharged. Hence, having
the supercapacitor as storage, we let the batteries experience
more shallow charge when it is not fully discharged. The
double-storage capability can take the advantages of both
types of storage and avoid their disadvantages. It is an
easy way to tackle the tradeoff between the target tracking
performance and sleep scheduling.

3. Sleep Scheduling Algorithm

In this section, a sleep scheduling algorithm in the energy
harvesting sensor network is derived. It makes some improve-
ment to the PPSS algorithm and can increase target tracking
efficiency.

3.1. Implementation of the PPSS Algorithm [26]. The PPSS
algorithm selects the tracking nodes based on predicted
target movement tendency to reduce the nodes’ number and
their active time. The tracking time is divided into time
segments t,,. At first, the algorithm figures out the target state
vector state(n) on the basis of state(r— 1) and the coordinates
(x,, ¥,,). Here state(n) = (t,, X, VsV, 8)s v, = (v,,0,),
v,, is the target moving speed, 0, denotes the target moving
direction, and a,, is the acceleration. Afterwards, based on

kinematics rules, the PPSS algorithm predicts m’ and the
! !

. — —
target displacement S,,, , where S,,; = (S,;1,A,,,)- They
can be expressed as

SN AN
an+1 - an’

N NN
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N

Finally, it sets up Gaussian distribution models and a
linear model for S,,; and A, respectively, to predict the
target location at the time instant ¢, ;. However, when using
the Gaussian distribution to predict S,,;, that is, S, ~
N(us,, 1> 8%s,,,)> according to the characteristics of Gaussian
distribution, the accuracy will be approximately 68%. Using
the linear model to predict A, also has a certain amount of
error.

At the beginning of each toggling period, the nodes which
are called alarm nodes will be responsible for noticing the

tracking nodes in the next round. They will broadcast state(n),
!
ﬁ s US,i1>08,,1,and OA | to awake neighbor nodes. When

those nodes receive the messages, each node will, respectively,
choose to wake or sleep according to the current situation.
In each toggling period, some nodes are awaked. With the
predicted target movement trajectory, they have the angle
being less than V684 ,,,, and the distance d being in the range
from ps,,,; — s, to R. The nodes closer to the target have
greater chance to wake up. The nodes’ wake-up and sleep time
are calculated below:

max {[/lSn+1 B 6sn+1’ 0}

tstart = talarmed + TS >
¢ -t + d+r— (nusn+l B 85n+1) (4)
end — “alarmed >
TS
Ts = Wil

TP



3.2. Proposed Sleep Scheduling Algorithm

3.2.1. Shortcoming of the PPSS Algorithm. Although the PPSS
algorithm improved energy efficiency, it increases the target
loss rate. The reasons include the following: (1) If the target
does not appear in the predicted direction and there are no
awaking nodes around the target at that time, the target will
be missed. (2) The target's movement is according to the
predicted direction, but the speed is not in the prediction
range, so that the target will be still in the last tracking region
or will jump out of the current awake region. Both reasons
will lead to target loss.

3.2.2. Improvement to the PPSS Algorithm. With the use of
energy harvesting nodes, energy usage is no longer deficit.
So the nodes can consume more energy in every tracking
procedure. But due to the randomness of available energy
harvesting time and the limit of solar panel conversion
efficiency, the tracking procedure still needs to adapt to the
energy harvesting situation. In the target tracking process, the
first concern is to ensure the target is tracked, and the second
concern is to optimize the energy utilization. We will modify
the PPSS algorithm to solve the first problem. We combine
the PPSS algorithm with another sleep scheduling algorithm
we proposed [34], to predict the target loss situation and try
to avoid it, and use double-storage energy harvesting sensor
nodes to prolong network lifetime. In this way, it can improve
the tracking performance and solve the energy limitation
problem.

(i) Enhancing Target Tracking Performance. We used SS
algorithm to represent the sleep scheduling algorithm in
[34]. We first use PPSS algorithm to track the target, and
we also add some communication processes of alarm nodes
with their neighbor nodes. After alarm nodes send wake-
up messages to neighbor nodes, alarm nodes immediately
turn into the receiving status to wait for neighbor nodes’
replying messages. Neighbor nodes will send reply messages
about whether they decide to wake up at the next moment.
If alarm nodes receive all sleeping messages, they will think
it is unsuccessful to wake next-moment tracking nodes. The
target is likely to be missed. By that time, alarm nodes
will start using the SS algorithm to wake next tracking
nodes immediately. After that, alarm nodes send another
message to notice neighbor nodes while their distances are
shorter than D to reply their location information and energy
storage information. After receiving this information, the
alarm nodes choose and wake »n nodes which have more
residual energy and are nearer to the target to track the target.
Moreover, alarm nodes send target movement information to
tracking nodes at the same time. At this moment, we assume
that the target moves in uniform motion. So the choice of D
is expressed as follows:

D=S,,
Sy =V TP,

(5)
(T
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where S, denotes the target’s average displacement and v,
denotes the target’s average speed.

Alarm nodes will, respectively, choose #/2 nodes which
have more residual energy (N,;, i = 1,...,n/2) and are
nearer to the alarm nodes (N,;, i = 1,...,1n/2) to keep awake
in a whole default toggling period. The selecting methods
are as follows: firstly, using selective sorting method to sort
n nodes according to the stored energy from the largest to
the smallest and sorting n nodes according to the distance to
the target from the nearest to the farthest. According to the
sorting results, choosing /2 nodes with odd number to wake
and track the target can make larger tracking coverage to find
the target.

(ii) Using Double-Storage Energy Harvesting. The double-
storage energy harvesting nodes are described below. If the
supercapacitor charge is above a high threshold, it is used
to power the node. If the supercapacitor charge is above a
high threshold while the Li-ion battery level is below a high
threshold, the battery is charged from the supercapacitor. If
the solar energy is available and the supercapacitor charge
is less than a low threshold, it begins to recharge. When the
recharge opportunity is not available and the supercapacitor
charge is less than a low threshold, the nodes are powered
from the Li-ion battery until the Li-ion battery falls below a
low threshold or until the solar energy is available.

(iii) Algorithm Description. For the actual implementation, we
list flowchart of the algorithm.
Sleep scheduling algorithm is described as follows:

(1) Alarm nodes calculate target motion state and send
messages to their neighbor nodes

(2) Alarm nodes wait reply messages

(3) if (all neighbor nodes choose to sleep)

(4) Alarm nodes send another message

(5) Neighbor nodes reply their M ; (message of nodes
nearer to the alarm nodes) and M,; (message of nodes
have more residual energy)

(6) Alarm nodes find out n/2 N,; and N,;; nodes

(7) Alarm nodes send wake up messages and target
movement messages to the specific n nodes

(8) end if

Energy harvesting battery control procedure is as follows:

(1) initialize the energy thresholds V1, V2, V3, V4, V5,
V6; Let V. denote the energy level of the

super-capacitor
super-capacitor and Vi, ionatery denote the energy
level of the Li ion battery

V1)
Harvest energy and store it in the super-capacitor

(3) end if

(4) if (Vv >V2)

(5) Super-capacitor powers the node

(2) if (solar energy is available & V;

uper-capacitor <

uper-capacitor
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TaBLE 1: Energy consumption parameters. TABLE 2: Contained energy thresholds.
Status Energy consumption Contained energy Energy thresholds
Active 9.6 (m]/s) E1(V1) 0.8]
Transmit 720 (n]/bit) E2(V2) 0.3]
Receive 110 (n]/bit) E3(V3) 0.35]
Sleep 0.33 (m]/s) E4(V4) 04]
E5(V5) 0.8]
E6(Ve6) 0.1]
(6) end if
(7) while Vsuper-capacitor >V3
(8) if (VLi-ion battery <V4 & Vsuper—capacitor 2 VS)
(9) Super-capacitor charges the battery
(10) end if ‘%
(11) end while &
(12) if (solar energy is not available & V,er capacitor < V6) E:

(13) Battery powers the node
(14) end if

4. Simulation Results

According to the system model, we conduct a simulation by
using MATLAB to evaluate the performance of the proposed
algorithm. The performance metrics are target loss ratio and
remaining energy ratio. Target loss ratio is defined as the ratio
of the times of target missed detection and the times of target
detection. Remaining energy ratio is defined as the residual
energy of the network after the target moves out and the
residual energy of the network before the target enters.

4.1. Parameter Settings. The tracking region is a 150 x 150 m*
square and nodes are randomly deployed in it. The density of
nodes is changed from 1.5 nodes/100 m* to 5.5 nodes/100 m>.
The target speed is changed from 10 m/s to 30 m/s. R/r = 3,
TP = 1s,and DC = 20%. The target does curvilinear motion
to pass the area after 3600s. The nodes will not harvest
energy before the target goes into the area. The experiment is
repeated 100 times and the results are obtained by averaging.
The energy consumption parameters are borrowed from [26],
as shown in Table 1. Every communication delivers 250 bytes.
The time required for communication is ignored.

The solar panels’areais 5 cm x 5 cm. The harvested energy
is 0.1 W/cm? [38], and energy conversion efficiency is 15%. We
consider the randomness of energy harvesting and assume
that the probability of energy arrival is 50%. The initial energy
of each battery is 2 J. Each battery has 200 deep charge cycles
and has infinite shallow charge cycle. The initial energy of the
supercapacitor is 0 J. Its max capacity is 1], and it has infinite
recharge cycles.

From the energy harvesting and charging process and in
order to simplify calculation, we use the amount of contained
energy instead of voltage thresholds, as shown in Table 2.

0 1 1 1 1 1 1 1 1 1
10 12 14 16 18 20 22 24 26 28 30
N
—< 10 —— 25
—#— 15 —— 30
—— 20

FIGURE 3: Target loss ratio versus number of nodes.

4.2. Discussions of Simulation Results

4.2.1. Target Loss Ratio versus Number of Nodes. The influence
of number of nodes on the target loss ratio is shown in
Figure 3, where the nodes  density is 2 nodes/100 m. The
5 curves represent different target speeds (m/s). As we can
see, larger speed makes higher target loss ratio. But there
is no linear relation or correlation between target speed
and number of nodes. When the awaking nodes’ number
increases, it just increases the number of nodes in the same
range but does not increase the target tracking area. As a
result, the target loss ratio does not increase. Hence, in order
to accelerate the program run, we choose N to be 10 in the
following, if the number of nodes is not specified additionally.

4.2.2. Performance Comparison. Figures 4 and 5 illustrate
the remaining energy ratio versus the target speed and
node density, respectively. In Figure 4, the node density
is 2 nodes/100m?. In Figure 5, the target speed is fixed
on 15m/s. The curve Al represents the PPSS algorithm,
curve A2 represents the proposed algorithm with no energy
harvesting, and curve A3 represents the proposed algorithm
with energy harvesting. Before the target goes into the area,
the energy consumption is almost the same. As we can
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see, both figures show that, without energy harvesting, the
proposed algorithm has the least remaining energy ratio,
which means that it consumes more energy than the PPSS
algorithm. But with energy harvesting, it has the highest
remaining energy ratio; namely, the energy harvesting nodes
can increase the residual energy. In these two figures, lines are
nearly parallel to the x-axis. It means that, with the increase
of node density and target speed, the percentage of energy
consumption is similar. The increased energy consumption
has impact on target tracking loss ratio reduction.

Figures 6 and 7 illustrate the target loss ratio versus the
target speed and the node density. Both figures illustrate
that the proposed algorithm reduces the target loss ratio.
In Figure 6, the node density is 2 nodes/100 m>. As we can
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see, the proposed algorithm has lower target loss ratio than
the PPSS algorithm, and the increase of target speed can
lead to increased target loss ratio. The target loss ratio does
not change regardless of energy harvesting or no energy
harvesting. In Figure 7, the target speed is fixed on 15 m/s.
The PPSS algorithm still has the highest target loss ratio,
and the two curves’ trends for the proposed algorithm are
similar. As the increase of node density makes the increase of
tracking nodes’ number, the target loss ratio obviously drops.
Both Figures 6 and 7 illustrate that, with the increase of node
density, the tracking nodes’ number increases and the target
loss ratio decreases.
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5. Conclusions

In this paper, we improve the PPSS algorithm and combine
it with another sleep scheduling algorithm we proposed to
decrease the target loss rate in energy harvesting sensor
networks. We also utilize double-storage energy harvesting
sensor nodes to prolong the network lifetime. In the tracking
process, when the target is likely to be missed, we immediately
use another sleep scheduling algorithm we proposed to
ensure that the target is tracked. Simulation results show
that the proposed sleep scheduling algorithm can enhance
the target tracking performance, while the energy harvesting
nodes make the sensor network work longer, compared with
the PPSS algorithm and the proposed algorithm without
energy harvesting.
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