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This paper proposes different low-level microarchitectural designs and frameworks for real-time monitoring and efficient control
of on-chip sensor network for field programmable gate arrays (FPGAs). The main goals are to design low power, low-cost, and
highly accurate monitoring and control mechanism using autonomous sensor agents and to dynamically reconfigure control of on-
chip sensor networks by FPGAs. By collecting dynamic and real-time monitoring parameters such as voltage and temperature, the
system becomes self-aware and is able to improve the utilization of FPGA resources and power consumption. The FPGA synthesis,
place and route, and implementation were performed for the proposed design. The results after synthesis and implementation show
a significant low usage of FPGA logic resources and efficient power consumption of all on-chip sensor components compared with
previous approaches. Furthermore, the experimental results from the FPGA-measured on-chip sensor readings show high precision
and accuracy in the measured voltage and temperature. Setting the dynamic reconfiguration refresh time at 1000 ms produces highly
accurate FPGA-measured on-chip sensor readings compared with those at 100 and 500 ms. The proposed design technique and
framework will assist network engineers and system designers by providing flexible and efficient real-time monitoring and control

design of large and complex on-chip sensor networks and remote-sensing applications.

1. Introduction

The complexity imposed by on-chip sensor network moni-
toring and control increases with the scalability of the on-
chip sensor network. Therefore, there is the need to have
an intelligent and reliable low-level design of intelligent
monitoring and control systems using autonomous sensor
agents. Because different runtime physical parameters must
be monitored, the need for accurate and efficient sensor com-
munication mechanisms is very essential to ensure reliable
monitoring and control of complex on-chip sensor network
environment. This process also entails the design of low
power and high-speed circuits for efficient and reliable net-
work monitoring and control. The use of field programmable
gate arrays (FPGAs) for autonomous sensor network moni-
toring and control is an interesting research domain in which

low FPGA logic utilization, low power consumption, and
accurate sensor readings are the major metrics for evaluation
[1-5]. An autonomous sensor network is a special application
for system monitoring, which is composed of several compo-
nents such as a transducer, conditioning circuits, processing
units, and data communication. The major functions of a
sensor network are monitoring, collecting runtime ambient
parameters, environmental adaptation, and making informed
decisions about the observed control parameters [6-10].

As the flexibility and reliability of FPGAs increase,
autonomous sensor agents can be embedded in FPGA to
measure different runtime parameters. However, designing a
sensor network on FPGA is a very difficult task to achieve
in a short time because designers are limited to do beyond
the FPGA manufacturer design specification. Similarly, the
degree of complexity as well as sophistication of design



automation contained in the FPGA makes it difficult for
designers to tweak the FPGA circuitry to design and imple-
ment sensor networks [4, 5].

The on-chip sensor network runtime parameters such as
voltage, current, and cross talk noise are used in controlling
and monitoring information from the on-chip sensor net-
work environment. Therefore, as the signals are transmitted
within the logic blocks, they encounter delays. This delay
component of the logic circuit should be minimized. Hence,
the use of FPGA to implement sensor networks will be an
efficient solution for a reliable on-chip sensor network packet
transmission and retransmission scheme because logic and
critical-path delays in FPGAs are minimal. Several methods
to overcome these limitations include the use of feedback
control system [5, 6, 11-14].

Chu et al. [1] proposed a multiplexing scheme that is
simple enough to synchronize the sampling in a multichannel
acquisition system with different sampling rates and many
combined analog inputs as well as an improved sampling con-
trol to enhance system performance. FPGA was used in their
design implementation. They used a sampling lookup table
(LUT) to design a rule-based synchronous sampling frame to
reduce the internal wiring and enhance resource utilization.
The results of their experiments demonstrated the benefit
of their approach. The proposed scheme can be employed
in other related applications. Perera et al. [2] presented the
design of low-cost, reconfigurable, and programmable smart
sensor node using ZigBee. Their design was implemented
using FPGA that incorporated the basic functionalities of the
IEEE 1451 standard. The design of the sensor nodes comprised
a processing unit and transducers with control capabilities
in a single core to ensure reliable processing speed-up as
a result of interprocess communication within a die. The
experimental results on the basis of the measured pH value
and temperature of water samples demonstrated the benefit
of their approach.

Campos et al. [15] proposed a distributed autonomic
inference machine. This machine could allow the sensor
nodes to self-manage and to contextualize the tasks based
on fuzzy logic. The results of their experiments demonstrated
that the proposed machine is energy efficient by minimizing
the number of messages to 48.8% and achieving 19.5%
reduction in the energy consumed by the network. The review
paper by Portocarrero et al. [16] provided an overview of the
recent wireless sensor network (WSN) middleware systems
that addressed the autonomic properties. Their aims were
determining the best autonomic computing method that will
provide a self-management feature of WSNs for middleware
systems and studying the various interactions and behavior
in WSN components. Their conclusions were summarized
as follows: first, they addressed the major concerns about
self-configuration, self-healing, self-optimization, and self-
protection properties of the autonomous systems. Second,
their investigation used diverse methods to manage the
dynamic behavior of middleware systems for WSN, which
included policy-based reasoning, context-based reasoning,
feedback control loops, mobile agents, model transforma-
tions, and code generation. Finally, they identified the lack
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of complete system architecture design that provides full
autonomy to the sensor network.

Designing an intelligent monitoring and control system
requires the use of smart or intelligent and reliable sensors.
The recent work by Echanobe et al. [3] has proposed a
system-on-chip-based intelligent multiprocessor embedded
system to control ambient environmental parameters. They
achieved intelligent capability of their proposed approach
by employing the concept of neurofuzzy system, which
can reason and adapt to situational environmental changes.
The authors Huijsing et al. [12] and Kirianaki et al. [17]
proposed the concept of intelligent sensors. These are sensors
with embedded intelligence and control system that can
perform diverse functionality for environmental monitoring,
self-adaptation, runtime observability, and network packet
monitoring. Approaches to provide a smart interface for
application-specific integrated circuits and FPGAs are pro-
vided by the authors of [18-25].

Other approaches to intelligent sensor system moni-
toring are presented in [26-29]. These approaches focused
on the functionalities and communication protocols using
transducers to make network communication possible. Ring
and delay sensors have been used to study temperature
and variations in FPGA [4, 5]. In Franco et al. [5], a ring
oscillator was proposed to monitor the temperature in FPGA.
This work considered a quadratic frequency in relation to
a temperature sensor transfer function and examined how
voltage variations affect the sensitivity of a sensor in relation
to the number of stages in the oscillator. The authors found
that, for larger oscillating chains, the voltage variations can
be easily analyzed. Xi et al. [18] used ring oscillators to
measure variability and temperature within the processor die.
They also measured the power consumption when the system
processor die is operating and idle.

The use of sensor networks to measure diverse run-
time parameters like cross talk noise, on-chip interconnect
temperature, switching activity, clock duty cycle, and other
parameters is given in [26-32]. Petrescu et al. [30] proposed
a signal integrity and efficient architecture to monitor diverse
network-on-chip physical parameters, particularly tempera-
ture and voltage. Similarly, McGowen et al. [31] described the
control system of a 90 nm Itanium processor, which utilizes
on-chip sensors to measure power and temperature and
modulates voltage and frequency to optimize the system per-
formance. Sohn et al. [32] proposed a sensor-based solution
for static random access memory to mitigate the uncertainties
and fluctuation that exist among different device parameters.
Their work shows that the information gathered by the on-
chip sensors can be used to efficiently enhance reliability and
performance of different functional system units.

A small number of methods have been proposed to collect
useful information at runtime for on-chip sensor networks.
For instance, Chan et al. [33] proposed an approach to use
system management bus for communication among IP cores
and a thermal-aware power management IP for low-level
power management functions. Furthermore, Alexander et al.
[26] proposed a hierarchical architecture to collect runtime
parameters using network on-chip. Another approach was
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proposed by Ciordas et al. [27], which was a monitoring ser-
vice framework, to support runtime observability of network-
on-chip (NoC) behaviors, and application debugging was
proposed.

As the complexity and scalability of on-chip sensor
network continue to increase, a reliable and efficient low-
level design that not only detects runtime ambient parameters
but also offers better network performance, scalability, and
flexibility of on-chip sensor network design using FPGAs
is required. Hence, the use of FPGA for sensor network
monitoring and control is very important. The authors in [34,
35] proposed a design of a web server for remote monitoring
and control using FPGA. They provided a procedure for the
implementation and application of their approach to remote
monitoring of sensor networks on FPGA. Gomez Osuna et
al. [35] proposed a monitoring infrastructure for FPGA self-
awareness and dynamic adaptation. They employed sensor
networks to provide dynamic adaptation and obtain data
from the FPGA with reduced cost and easy implementation.
They showed the significant benefit of their approach. Finally,
the authors Kornaros and Pnevmatikatos [13] and Garcia
et al. [14] provided a detailed survey of the taxonomy of
network-on-chip monitoring and control as well as FPGA-
based design of sensor systems. However, the limitations
of the previous approaches are as follows: (1) they did
not provide real-time monitoring and a control mechanism
for accurate measurement of the on-chip sensor network
runtime parameters and (2) they did not provide efficient
and convenient interface between the user and the FPGA to
dynamically tune the operating ranges and reconfiguration
refresh time to measure different on-chip sensor values.

In the current paper, we propose a low-level microarchi-
tectural design infrastructure for real-time monitoring and
control of on-chip sensor network-based systems for FPGA.
We develop the design and implementation for efficient and
reliable high-speed circuit technique of the on-chip sensor
network runtime parameter monitoring and control, which
use autonomous sensors that reside at the network interface
(NI), to be dynamically configured and to communicate
the runtime ambient parameters to the network monitor
controller hardware. We provide detailed low-level design
methodology and procedure and a user application for
efficient and reliable on-chip sensor network monitoring and
control for FPGAs. We also provide a webpage interface for
the user to dynamically reconfigure the FPGA to conduct
on-chip sensor readings and adjust the sensor ranges and
reconfiguration refresh time. The proposed approach will
provide engineers and system designers with a flexible and
efficient real-time monitoring and control scheme for large
and complex FPGA-based on-chip sensor networks. The
prototype was implemented in FPGAs and the technology is
applicable for ASIC as well.

The salient contributions of this work are as follows:

(i) We propose a low-level microarchitectural design
and infrastructure for real-time intelligent network
monitoring and control for reconfigurable on-chip
sensor network for FPGA. The intelligent sensor
agents collect runtime ambient parameters such as

voltage and temperature for efficient monitoring and
control of on-chip sensor networks.

(ii) We propose a real-time triggered protocol for efficient
communication between the sensors and the moni-
toring and control unit.

(iii) We provide a detailed low-level design procedure and
implementation of the on-chip sensor network, sen-
sor NI, and monitoring and control unit using both
Synopsys and Xilinx design tools. We implemented
the proposed design as a case study using Xilinx
Vivado 2013.3 integrated design environment and
Zynq 7000 FPGA device. The results after synthesis
and implementation, including the device resource
utilization, showed low FPGA logic resource con-
sumption and eflicient power utilization by the on-
chip sensor components.

(iv) We performed experiments using FPGA to measure
and control the on-chip sensors. The experimental
results from the FPGA-measured and controlled on-
chip sensor readings show high precision and accu-
racy in the voltage and temperature readings. We
found that setting the dynamic refresh time at 1000 ms
produced accurate FPGA-measured on-chip sensor
readings compared with those at 100 and 500 ms.

The rest of this paper is organized as follows: Section 2
presents the basic background; Section 3 discusses the design
methodology; Section 4 discusses the simulation environ-
ment and simulation results; Section 5 presents the experi-
mental setup, case study, and FPGA resource utilization and
comparison with previous approaches; Section 6 presents the
experimental results and discussions; and Section 7 provides
the concluding remarks.

2. Background

The IEEE 1451 standard provides fast, efficient, and reli-
able means of converting transducer components into an
intelligent sensor interface for efficient communication and
transmission of sensor data to various NIs. A transducer is
an electronic device that converts electrical signals from one
form of energy to another. Therefore, a sensor is a special
type of transducer that produces analog or digital electrical
signals that represent the sensed physical, biological, or other
environmental parameters. On the other hand, an actuator
is a transducer that uses an electrical signal as an input and
performs the required physical functionality [7-10].

An intelligent or smart sensor is a combination of
both analog and digital transducer components, a central
processing unit, and a network communication interface
such as controller area network (CAN), interintegrated cir-
cuit (I2C), local interconnect network (LIN), and universal
asynchronous receiver and transmitter (UART). It is also
composed of hardware or software and conditioning circuits
for sensor diagnostics and calibration, in addition to the
communication mechanism and interface. Figure 1 shows the
IEEE 1451 standard for a smart transducer interface (TI).
The architecture comprises four subsystems: transducers
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consisting of sensors and actuators, signal conditioning cir-
cuit, data conversion subsystems, and application processor
and network communication. The sensor output signal is
conditioned by the conditioning circuit and is multiplied
and converted into a digital signal using an analog-to-digital
converter (ADC). The digital signal from the sensor is pro-
cessed by a microprocessor with the help of a monitoring and
control algorithm. The sensed parameters can be transmitted
to the monitoring and control system using the network
communication algorithm [7-9].

As defined by the IEEE 1451 standard, a smart transducer
is an intelligent system that provides enhanced capability
beyond sensing and provides a mechanism for control of
the sensed information. This feature provides a means of
combining transducers for different applications in a con-
trolled network environment with a high level of efficiency
and reliability. Furthermore, the IEEE 1451 architecture pro-
vides functionalities such as self-diagnosis, self-description,
self-identification, self-calibration, data processing, location
awareness, and time awareness. The various components of
the IEEE 1451 smart transducer architecture are shown in
Figure 1. The network capable application processor (NCAP)
subsystem provides the functionality for application process-
ing and network communication mechanism between the
sensors and actuators. The TI module subsystem is composed
of a transducer signal conditioning and data conversion,
which consists of a number of sensors and actuators. The
TI provides communication methods and algorithms for
efficient transmission of sensed data. Finally, the NI provides
a means of communication between the NCAP and the
outside devices or networks [7-10].

2.1. On-Chip Sensor Network Monitoring and Control System.
The on-chip sensor environment is a very complex and
dynamic system. Monitoring of the on-chip sensor as a
dynamic system demands communication of the sensed data
to a controller and the basic information regarding the
controller input parameters to the actuators. Therefore, the
structure, topology, switching, and arbitration of the on-chip
sensor network solely depend on the monitoring, control,
and communication mechanism or protocol used by the
system. Hence, two major challenges need to be addressed:
provision of efficient and reliable communication mechanism
used by the network and provision of central and distributed
control system that ensures real-time sensing, monitoring,
and eflicient processing of the on-chip sensory information.

Therefore, an autonomous monitoring and control system for
on-chip sensor network must consider the communication
protocol and the constraints in relation to the clock time,
network topology, switching, and arbitration [36-38].

On-chip sensor network monitoring and control can
be regarded as a closed-loop system, which means that
controllers are provided to connect to a feedback system, and
sensors and actuators are installed to determine the overall
function of the whole system. The on-chip sensor network
must consider and address the following fundamental issues
in a controlled loop system [20-25, 36-39]:

(i) Suitability of the on-chip sensor network communi-
cation topology for a particular application.

(ii) Addressing the constraints imposed by the commu-
nication mechanism, such as packet loss, network
latency, delay, routing, and switching.

(iii) Determining the monitoring and control goals that
must be observed to facilitate proper coordination of
each component in the whole network monitoring
and control system.

To address these issues, there is the need to have an efficient
and reliable monitoring and control infrastructure that will
provide all the needed design methodology and framework
to achieve the stated goals and objectives.

Figure 2 shows an intelligent monitoring and control
system for on-chip sensor network using autonomous sensor
agents. It shows the data transfer among different nodes in
the system, that is, from the sensors to the controller and
from the controller to the actuators. The on-chip sensor signal
K, (7) is different from the on-chip network controller input
signal K,(7), and the monitored controller output L, (1) is
different from the actuator input L, (7). This information
implies that signals K,,(t) and L, () are the original network
signals K, (7) and L,,(7), respectively, which are transmitted
through the communication links for the sensors, actuators,
and controller. Signals R and K, are disturbances or noise
that must be controlled both in the input and in the output
to obtain the desired results. Figure 2 shows single-headed
arrow lines representing continuous time signals, whereas the
dashed arrow lines represent the data transmission links at a
given transmission time, for example, 1;,, for b = 0,1,2,....
During the transmission of the sensor data, the process
produces a time delay that must be controlled and monitored.
Similarly, time is another issue that needs to be considered:
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FIGURE 2: On-chip sensor network monitoring and control system using autonomous sensor agents.

for example, at what time interval the communication is
needed and required. The transmission of the sensor data
is constrained to a small number of bit rates, which implies
that the values of signals K, () and L,,(7) transmitted over
the on-chip sensor network are constrained to a fixed bit
length. Therefore, the monitoring and control system should
ensure reliable and efficient communication at different time
instances [36-38]. On the basis of these limitations, FPGA-
based design and implementation of an intelligent on-chip
sensor network monitoring and control are essential. Hence,
our proposed design methodology provides a better solution
for on-chip sensor network monitoring and control using
autonomous sensor agents.

3. Design Methodology

This section presents the design methodology of the pro-
posed on-chip sensor network monitoring and control sys-
tem with dynamic reconfigurable capabilities [26-49]. The
proposed design detects runtime ambient parameters and
communicates the sensed data to the monitoring and control

hardware unit. Figure 3 shows the architectural design of the
proposed monitoring and control system using autonomous
sensor agents that reside in the NI to sense and report
various parameter values to the hardware controller for
onward analysis and processing. The architecture is a mesh
network that is well suited for on-chip sensor die structure
(13, 14, 47, 49]. It consists of 12 nodes (gateway) and IP
cores. The NI provides a means of communication among
the sensors and actuators, network nodes, and hardware
monitor controllers. At each NI, three intelligent sensors are
installed, namely, voltage, thermal, and temperature sensors.
These sensors continuously sense and transmit the sensed
data to the hardware controller that then processes the data
and provides the necessary actions to keep the system in a
smooth and healthy condition. The sensors communicate the
sensed data via a standard protocol. This protocol is shown in
Figure 4.

The temperature sensors measure the temperature varia-
tions to ensure that the system temperature does not exceed
a certain threshold. The sensed data from the sensors are
aggregated between four or more temperature sensors in
different NIs. These temperature sensors form a cluster of
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FIGURE 3: Proposed on-chip sensor network monitoring and control system using autonomous sensor agents on 4 x 3 mesh architecture.

sensors, and a cluster head (subcontroller) among them is set ~ transmits the aggregated sensed data to the on-chip monitor

to collect and aggregate the sensed data from all sensors in the
cluster and transmit them to the hardware monitoring and
control system for further processing.

The thermal sensors measure the amount of heat dis-
sipation resulting from the on-chip sensor cross talk noise
and the data transmission and retransmission operations. For
the thermal sensor operation, the procedure is similar to
that of the temperature sensors where four or more thermal
sensors form a cluster, and the cluster head (subcontroller)

controller hardware. The voltage sensors measure the voltage
variations resulting from the current and resistance on
the on-chip logic and the analog circuits. These sensors
determine any transient and variation in the voltage drops
across different components in the on-chip sensor network.
Here, four or more voltage sensors in different NIs can
form a cluster, and their sensed voltage input data are
then combined for transmission to the monitoring and
control unit. This process will ensure smooth and reliable
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monitoring and control of the entire on-chip sensor network
[1-6, 11, 15-23].

Figure 3 shows that the intelligent monitoring and control
system is composed of smart sensors and actuators that
represent the autonomous agents, subcontrollers, main con-
trol unit, system monitor module, high-speed transceiver,
and CAN controller. The monitoring and control system
performs both central and distributed monitoring. Each
sensor can communicate with its own cluster members
and can perform data aggregation and forwarding to the
main monitoring and control unit. Therefore, a distributed
monitoring and control system is well established between
the autonomous sensor agents and the main controller
unit.

Figure 4 shows the real-time triggered protocol [6, 29,
48]. This protocol is deadlock and contention-free. The sensor
nodes in each cluster are provided with real-time slots in
which they receive sensed data from other nodes to commu-
nicate with the cluster head (subcontroller) or to transmit
its own sensed data to the subcontroller. Communication
among the sensors is synchronized in real-time to avoid
delay and loss of sensor data. The subcontroller will trigger
a message to all its cluster members to query if sensed data
are available for transmission. The members will trigger a
real-time message in form of response to the cluster if they
have data to transmit, and a real-time frame will be allocated
and synchronized in real-time for each member to avoid
communication delays and loss of sensor information. The
explanation of the variables used in the proposed protocol
shown in Figure 4 is presented below:

SYN: it defines the real-time synchronization period
between the cluster head (subcontroller) and cluster
members.

INST: it defines the real-time interval between the
transmission and reception of the sensor data.

BDCA: it determines the real-time in which sensory
data are transmitted by the cluster head to the cluster
members.

Ty..., Ty: they define the real-time slot during which
the cluster members listen to triggered real-time
message from the cluster head.

FREE: it is defined as a real-time slot in which the
cluster head (subcontroller) receives data from the
cluster members; the cluster head uses the free slot in
real-time to communicate with the on-chip monitor
controller hardware on the status of the network.

Bi>- .. By they define the real-time interval in which
the cluster members transmit data to the cluster head.

3.1. On-Chip Sensor Network Monitoring and Controller Inter-
face Design. Figure5 shows the logic design of the main
on-chip sensor network monitoring and controller unit.
The design consists of several components that form the
controller unit and interface to the different sensor networks.
The main monitoring and controller design include the fol-
lowing: three bang-bang (on/off) controllers, a time domain
system analyzer implemented as the main monitoring unit,
8:1 multiplexer (MUX) interface, ADC, smart sensors, actu-
ators, a high-speed CAN transceiver, autonomous voltage
sources, CAN engine controller, clock sources, and voltage-
monitoring circuits.

The reference voltage source supplies the required voltage
to power the controllers and all the associated components of
the monitoring and control system. The source is configured
to generate different output sources such as a step and a
periodic pulse. The initial pulse parameter and the amplitude
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FIGURE 5: On-chip sensor network monitoring and controller hardware interface design.

values are set to 0.0 and 0.5V, respectively. The 8:1 MUX
interface provides the input from the output of the different
sensors to the main controller system. It also acts as a
conditioning circuit. Different sensor signals are conditioned
(aggregated) to form a single strong analog signal, which is
then amplified or buffered, as shown in the logic design. The
use of a buffer is beneficial for interfacing with the sensors. It
buffers the voltage to be fed into the ADC input. The output of
the MUX is then fed into the ADC, which converts the analog
signal into a digital form.

Two clock sources are connected to the ADC to provide a
clocking mechanism for data conversion and transmission.
The clock sources of the ADC are configured with the
following settings: (on-time = 10.0 us, off-time = 10.0 us,
initial time = 0 ps, and delay = 0.0 us). Similarly, the clock
source connected to the start pin of the ADC is configured
with the following settings: on-time = 50 us, off-time =
20 s, initial time = 1us, and delay = 1us. These parameter
values can be tuned to control both the input and output
of the ADC. The output of the ADC is fed into AMIS-3660
high-speed CAN transceiver, which serves as an interface
between the ADC and the CAN engine. The eoc pin of
the ADC is connected to s pin of the CAN transceiver.
The 8-bit digital output of the ADC is connected to the
receiver (Rxd) input of the CAN controller. The Vcc input

is connected to the Vcc source, and the ground pin is
connected to the earth (ground). The transmitter (Tx) pin
of the CAN transceiver is connected to the Tx pin of the
CAN engine. The receiver (Rx) pin of the transceiver is
connected to the Rx pin of the CAN engine, which provides
a means of transmission and retransmission of sensor data
and direct monitoring and control of sensor information
[21, 40, 41, 50].

The CAN engine, together with the transceiver, provides
a communication interface to the entire system and serves
as NCAP, as defined by the IEEE 1451 smart TI standard
[7-10]. The voltage-monitoring module block measures the
voltages from the sensor input to the control unit. We set
a limit for the upper and lower voltages. If the voltage falls
below a certain level (0-5V), it is reported to the control
system, and appropriate actions are taken. Smart voltage
transducers are attached to the controller input and output
pins to monitor the variation in the input and output voltages
from the sensors and actuators to observe and control the
transmitted information.

The time domain system analyzer is the main monitoring
interface that provides voltage analysis of the converted
signals from sensor NI. The voltage can be swept within
a given frequency range while performing both transient
and time domain analysis of the monitored control system.
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(3) Var Positive_Threshold_value = 5.0 V;
(4) Var Constant_output_value = 1.0 V;

(9) If Controller_Input <= Negative_Threshold
(10) Then

(13) Then

(14) Controller_output = 0;
(15) End if

(16) End if

(17) End if

(18) End

(1) Pseudocode for the bang-bang controller module operation
(2) //#% % % % % % % % %k sk sk k k k ok ok kK ok ok kR k ok ok k Kk Kk Kk Rk R R R Rk ok k ok k k% % xk//

(5) Begin {

(6) If Controller_Input >= Positive_threshold

(7)  Then

(8) Controller_Output = Positive_Constant_value;

(11) Controller_Output = Negative_Constant_Value;
(12) Else if Controller_Input is between Positive_Threshold and Negative_Threshold

Pseupocopk 1: Pseudocode of the bang-bang (on/off) controller module operation.

The controller compares the converted digital input signals
from the CAN transceiver and the output signal from the
CAN engine. It then calculates the phase and gain responses
of the voltage frequencies during the sweeping process. This
information is fed into the simulator, and waveform plots
of the signals are displayed in the waveform window of the
simulator for further analysis. Figure 5 shows two actuators
attached to the system analyzer input and output ports to
measure the actual transmitted sensor signals. This process
will ensure that exact sensory information is transmitted
and received at both input and output of the monitored and
control system.

The bang-bang (on/off) controllers were used to con-
trol and monitor the sensor information between the
sensor interface and the main hardware controller unit.
We set the positive_threshold voltage to 5.0V and the
constant_output_value to 1.0 V in order to control the output
voltages from the sensors, actuators, and main control unit
[40-44]. The pseudocode for the bang-bang controller is
shown in Pseudocode 1.

3.2. On-Chip Temperature Sensor NI Design. Figure 6 shows
the on-chip temperature sensor NI design. The design con-
sists of several components: an autonomous temperature
source, four smart transducers (temperature sensors), four
smart T1Is to the temperature sensors, four operational ampli-
fiers, 4-1 MUX, ADC, and two clock sources.

The temperature source is the main source of thermal
energy for the sensors and the TI, which generates a tem-
perature difference across its input ports in a form of a
pulse or a pulse train. The generated temperature is not
related to the amount of heat that flows through the source,
but it depends on the differential voltage across the input
terminals of the source. Furthermore, the positive polarity
of the source defines the temperature differential between

the highest (Tempy,;,) and lowest (Temp,,,) values of the
port of the temperature source [8-10, 40-44]. The temper-
ature differential is expressed by the following equation:

Tempg;; = Temp (Temphigh) - Temp (Temp,,), (1)

where Tempy; is the temperature difference and
Temp(Tempy,;,,) is the temperature in degree Celsius at
the port (Tempy,y,). Temp(Tempy,,,) is the temperature at
the port (Temp, ). The two parameters of the temperature
source are set at the following conditions: initial voltage =
0.0 V and pulse = 5.0 V. This condition provides a continuous
temperature source for the four smart temperature sensors
and the TI. The control sensor senses the temperature signals
from the source and converts them into a variable signal. The
temperature model is expressed by the following equation:

OUtputtemp =Rx (Temp (Temphigh)) (2)
— Temp (Tempy,, ) »

where the two pins (Tempy,,;,) and (Temp,,, ) are terminal
pins. The difference in the two temperature values defines
the input signal. Parameter R is the gain, which can take
any arbitrary values. Here, we set the default value of R to
be one. The output parameter has no specific signal value.
Therefore, we need TI to convert the output signal into an
electrical signal. To achieve this, we interface the output
of the temperature sensor with the transducer (control to
voltage interface) to convert the temperature into electrical
signals. The TI is based on the characteristics expressed by
the following equation:

Inputgenger,,,, = R * (Volt (B) - Volt (), 3)

where the difference Volt(8) — Volt(«) is the differential
voltage from the sensor output and R is the gain that is set to
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FIGURE 6: On-chip temperature sensor NI design.

one. The TI output is converted into a voltage and amplified
using an operational amplifier. The converted output voltage
from the TI (InputSensorSig ) is used as an input to the

!

operational amplifier because the operational amplifier is
suitable for interfacing the sensor data and buffering the input
voltage for maximum gain. The amplified voltages from the
four operational amplifiers are used as input to the 4-1 MUX,
which serves as a conditioning circuit for the sensor interface.
The four inputs are multiplexed to form a single output that
is fed into the ADC for conversion into digital signals. The
4-1 MUX has four data inputs, namely, d, to d;, and two
address input pins a, and a,, as shown in Figure 6. The 4-1
MUX functions as follows: one of the four inputs is chosen
to drive the output state y. The selection is based on which
among the four possible input combinations are available [1-
7,11, 15, 16, 40-44].

The output of the 4-1 MUX (y) is used as an input to
the ADC. The ADC converts the analog sensor data into a
digital form. However, the output (y) from the 4-1 MUX
can be sent to the main controller representing one cluster
of the four sensors” data. In this case, the conversion from
analog to digital is performed by the ADC on the main
monitor controller unit. To ensure timely and accurate data
conversion by the sensors, two clock sources are connected
to the start and clock pins of the ADC. The clkl source is
configured with the following parameter configurations: on-
time = 10.0 ps, oft-time = 10.0 ys, initial time = 0.0 us, and
delay = 0.0 ys. The start clock source is configured with

the following settings: on-time = 50 us, off-time = 20 us,
initial time =1 ys, and delay =1 ps.

3.3. On-Chip Voltage Sensor NI Design. Figure7 shows
the design of a voltage sensor NI. The design consists of
autonomous voltage source, smart voltage sensors, four TIs,
four operational amplifiers, one MUX, ADC, and two clock
sources. The autonomous voltage source is used as the main
source for power supply to the voltage sensors and TIs. The
two parameters of the voltage source are configured to supply
continuous voltage to all the components in the system. The
values of the parameters are as follows: initial voltage =
0.0 V and amplitude = 5.0 V. The characteristic equations for
the voltage sensors (voltage to control interface) and the TI
(control to voltage) are similar to (1)-(3). The output of the
T1is fed to the operational amplifiers, which is then amplified
and sent to d,, to d; input pins of the 4-1 MUX [8-10, 40-44].

3.4. On-Chip Thermal Sensor NI Design. Figure 8 shows the
smart thermal sensor NI of the main controller unit. The
interface consists of several components similar to the two
interfaces for the temperature and voltage sensors described
in Sections 3.2 and 3.3. A thermal power source is used to
power-on the four sensors and the TI. The two parameters for
the thermal power source are configured with the following
settings: amplitude = 5.0 V and frequency = 25 Hz. The source
generates a sinusoidal heat at its input ports. The thermal
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sensors (thermal to power control) sense and transmit the
sensor data to the smart TI. The characteristic equation for
the thermal sensor model is expressed as

Ol‘ltputSensordata

(4)
=K * (ﬂux (Thermalhig}1 - Thermallow)) ,

where Thermaly;;, and Thermaly,,, parameters are the ther-
mal pins that measure the temperature across the two input
pins and flux is the thermal power which is expressed in
degree Celsius. The input signal to the sensor is expressed
by the function flux(Thermalyy, — Thermaly,,,). Parameter
K is the gain constant. We set K = 1 during the simulation.
The sensor output is then sent to the input port of the
TI (control to voltage), which converts the sensed data
into electrical voltage and then amplifies them using the
operational amplifiers used as input by the 4-1 MUX [40-
44, 50].

4. Simulation Environment

This section explains the detailed simulation procedure
carried out to verify the proposed design. The design and
implementation of the register transfer level (RTL) modules,
models, and schematics of the proposed intelligent net-
work monitoring and control system presented in Section 3
were performed using the Synopsys integrated design envi-
ronment and tools [40, 41]. The Synopsys SaberRD pro-
vides hardware programming environment, design tools,
and model libraries for designing low-cost and high-speed
circuits and simulation environment. The tools are used to
verify the functionality and efficiency of the circuit design
under test. The different parameter values can be changed
to verify the design functionality to ensure reliable and
efficient network monitoring and control. We verified the
functionality of the proposed design specification in the time
domain using transient analysis to determine the variation in
the sensor NI voltage signals and that in the monitoring and
control unit over time. The simulation was run by setting the
following parameter configurations:

Simulation time (end time) = 10,000 ms (10 s).
Time step = 10 ns.

Start time = default = 0.

Threshold voltage = 0-5 V.

ADC clock signal setting (on-time = 10 us, off-time =
10 s, initial time = 0 s, and delay = 0 us).

ADC start signal setting (on-time = 50 s, off-time =
20 ps, initial time =1 s, and delay =1 ps).

The simulation time (end time) defines the time in which
the simulator finishes the transient analysis. Meanwhile, the
time step is the period in which the simulator finds an
initial solution point during the simulation to project the
next solution point in the simulation process. In addition
to the end time of the simulation process, the simulator
also outputs the execution time. Four RTL gate-level netlist
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files for the entire design are provided with a simulator
during the compilation and simulation process. Three netlist
files are provided: one for each NI and the other one for
the monitoring and control unit. The simulation results in
waveforms are shown in Figures 9 and 10.

4.1. Simulation Results. Here, we provide the simulation
results in waveforms using the Synopsys integrated design
environment and tools [40]. Figures 9 and 10 show the
transient analysis results in the time domain of the variation
in sensor voltages over time for the different parts of the
monitoring and control unit.

Figures 9(a)-9(c) show the transient time domain anal-
ysis for the three on-chip sensor NI designs. Figure 9(a)
shows the simulation results of the voltage sensor NI and
the voltage signal variation at different time instances. We
observed that the sensor signals are alternating with an
amplitude of 0-5V corresponding to the reference voltage
of 5V. The four sensor signals are combined (multiplexed
and amplified) to form an aggregated signal. As expected,
the aggregated sensor signals are measured to be 5.0 V, which
shows a high accuracy in the measurement of the combined
sensor signals with a very negligible error in the sensor
measurement.

Figure 9(b) shows the variation in the sensor voltage
at different time instances for the thermal sensor NI As
observed, no difference exists between the reference temper-
ature source (voltage) and the measured voltage of the four
aggregated sensors. As expected, the reference voltage and
the measured sensor voltages are the same (i.e., 5.0 V), which
shows accurate precision in the sensor measurement of the NI
and the efficiency of the intelligent thermal sensor network
design.

Figures 10(a) and 10(b) show the simulation results for
the variation in the sensor signals (voltage) over time for the
main monitoring and control unit. Figure 10(a) shows the
measured analog signals at different time instances of the
various components of the monitor controller unit compared
with the input sensor measured signals from the sensor NIs.
The figure shows that the bang-bang_1 output signal oscillates
between 0 and 5V (maximum), which indicates the same
measured input sensor signals of 5 V.

The transceiver_txd signal remains stable and is mea-
sured to be 5V at different time intervals. This indicates
a continuous conversion of signals and a high accuracy in
the sensor signal conversion from analog to digital by the
ADC. The output signals for both the high-speed transceiver
and the CAN controller engine are controlled and regulated
by the bang-bang 2 and bang-bang 3 controllers. We can
observe that the controlled voltage measurement of the bang-
bang_2 controller is 5V measured at different time intervals.
The bang-bang_3 controller voltage connected to the system
monitor unit to control the monitor input and output is also
measured to be 5V, which shows that the input sensor signal
from the NI is well monitored and performs control without
losing sensor precision and accuracy.

Figure 10(b) shows the digital signal output of the con-
verted sensor signals by the monitoring and control unit.
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The different digital bits of the converted sensor analog
signals are output through the digital bits (0-7) of the ADC
output. The transceiver signal was observed to be stable and
high at different time instances.

In conclusion, the simulation results verified the func-
tionality of the various design components of the sensor NTs
and the monitoring and control unit. The actual application of
this proposed approach is implemented using FPGA as a case
study. The details of the case study and FPGA implementation
are presented in Section 5.

5. Experimental Setup

This section explains the experimental procedure used to
design, implement, and verify the proposed on-chip sensor
network monitoring and control system using FPGA. To

validate the proposed approach through a real-life scenario,
we implemented a case study for on-chip sensor network
monitoring and control using FPGA. We used the Xilinx
Vivado 2013.3 integrated design environment and the Zynq
7000 XC72020 CLG484-1 AP SoC FPGA device for synthesis,
placement, routing, and implementation of the proposed
system. Figure 11 shows the on-chip sensor network mon-
itoring and control unit implemented using Xilinx ADC
(XADC) and SYSMON IP cores [43, 44]. The XADC and
SYSMON IP cores provide an interface for designing on-
chip sensors and user-defined external sensors to the main
monitoring and control unit. The system provides capabilities
for self-awareness and adaptation to dynamically tune the
different parameter values at runtime to measure ambient
parameters such as temperature, voltage, and thermal energy
variations. It is based on a highly precise analog measurement
system consisting of a 12-bit ADC and other circuit elements.
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The ADC has a least significant bit with a size equivalent to
1 mV. Several input and output pins are provided to achieve
high performance and accurate measurements from the on-
chip sensors and the remote sensors connected to the system
interface [26-35, 42-46].

Six different sections are present in the monitoring and
control unit, as shown in Figure 11. The dynamic reconfig-
uration ports (DRPs) allow the system to be reconfigured
according to certain values of input and output signals to
the monitoring and control unit. The control section pins
provide three signals that enable the conversion of the
sensor analog signals to digital signals. These are the reset,
conversion, and clock signals. The input to these signals
allows the sensor data to be converted to digital signals. In
addition to the on-chip sensors, remote sensors can also
be interfaced to the main controller unit via the auxiliary
input; up to 16 remote analog inputs can be connected to the
system.

The DRP, advanced extended interface (AXI4), AXI4-
stream, and 12C interfaces provide a dedicated communi-
cation mechanism for the system to allow interfacing with

remote devices (external sensors). The monitor and controller
unit provides the necessary monitoring and control of the
variations in temperature, heat, and voltage of the on-chip
sensors. The system is also configured to generate an alarm
when a threshold value is exceeded. Figure 12 shows the RTL
netlist schematic after synthesis, placement, and routing of
the implemented monitoring and control system on Zynq
7000 XC7z020 CLG484-1 FPGA board using the Xilinx
Vivado 13.3 integrated design environment.

The architecture shown in Figure 11 consists of the XADC
and SYSMON IP interface that are present in all Xilinx 7
series FPGA devices, including the Zynq 7000 families [43,
44]. The central processing unit is based on ARM Cortex-
A9 processing system and is used to monitor and control
the on-chip sensor variation in the measured temperature,
voltage, and power supply. Similarly, the remote sensors
connected to the main unit can also be monitored and
controlled. Furthermore, the system will set an alarm when
over temperature, over voltage, and under voltage, and so
forth, occur. This feature will ensure smooth running and
proper functioning of the whole system.
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5.1. Case Study. This subsection provides the detailed expla-
nation of the proposed case study using the Zynq 7000 FPGA
board [43-47]. This case study uses a central processing unit
(ARM Cortex-A9 core) to monitor and control the variation
in temperature and voltage of the on-chip sensor and remote
sensors connected to the FPGA fabric. The Xilinx Zynq
7000 is flexible and efficient architecture based on all pro-
grammable system-on-chip architecture. The device consists
of a dual-core ARM Cortex-A9 MP Core processing system
and enhanced Xilinx programmable logic in one integrated
FPGA fabric. In the proposed design, the processing system is
the main monitoring unit that provides basic functionalities
with the Cortex-A9 MP Core central processing unit. The
XADC acts as the control unit, which works together with
the processing system. The other components installed in
the processing system include the on-chip memory, on-chip
sensors, input and output devices, auxiliary memory, and
interface to the remote-sensing devices.

The monitoring and control system provides communi-
cation using different interfaces such as I2C, DRP, and JTAG.
The control system uses another form of communication
interface, which is the industrial input and output (IIO)
framework-based Linux driver [44-46]. This driver works
as a device driver for an application that uses a control
system and the AXI and DRP communication interfaces. An
interesting functionality of this driver is its ability to configure
the control system to be used in different functionalities,
for example, receiving data from the control system and

providing information for different parameter states and
configurations in the user space provided in the intended
application. In this case study, we demonstrate how the
I10-based Linux driver is used for on-chip sensor network
monitoring and control application. We show how the control
system can be used to provide a hardware design in the
programming logic, which creates a dedicated communica-
tion between the control and monitoring system using the
DRP and AXI port communication interfaces. To make the
application more user friendly, a web server-based design is
provided for the user to interact with the monitoring and
control system. The results of the dynamic monitoring and
control system are displayed on a webpage for the users to
see and change the configuration parameters to observe the
variations in the measured on-chip temperature and voltage
parameters, as shown in Figures 13 and 14.

The architecture of the hardware monitoring and control
system as well as the connectivity between the control system
in the programming logic and the processing system is
shown in Figures 13 and 14. The DRP is used for reading
and writing the sensor data into the control system DRP
address register. The control system then translates the AXI4
transactions into the DRP address, which are used by the
monitoring and control unit. An AXI interrupt controller
is then instantiated, which translates the alarm output from
the control system into various interrupt events for exe-
cution by the ARM core processing system. The control
system interface to the monitoring system is set to control
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the user-specified configuration executed in the context of
the user application layer. Here, an instruction can be issued
through the instruction interface to read and write the
sensor values. For instance, a 32-bit instruction next to a no-
operation instruction is written to first-in-first-out (FIFO)
buffers. These instructions are transmitted to the control
system using the communication interfaces, that is, DRP
and AXI4. In this manner, any word that moves into the
instruction FIFO buffer moves a similar word into the data
FIFO buffer. This scenario also applies to the DRP. As data
are moved out of the instruction FIFO bufter, the old values
stored in the control unit dynamic reconfiguration register
also move out. At the end of the specified time interval, the
result of the current DRP read operation will be output at the
control unit register for further processing by the monitoring
and control system [3-14, 17-20, 43-47].

The web server or user application in this case study
employs the IIO framework device driver, as mentioned ear-
lier. This is a standard means of providing support for ADCs.
It provides two basic functionalities: file system interface for
communication with various devices (sensors) connected to
the system and character driver interface to receive event

information from the subsystems to the user application
space in the monitoring and control system [43-47]. The
basic sections of the on-chip sensor network monitoring and
control user application are briefly explained as follows:

(i) On-chip sensor network monitoring and control: this
subsystem provides a means of communication with
the IIO system Linux device driver for functionalities
like retrieving data from sensors, hardware configura-
tion, synchronous/asynchronous event handling, and
control mechanism.

(ii) Web server subsystem: this subsystem of the monitor-
ing and control unit addresses the connection request
from remote web users. The users can acquire sensor
data and other information through the web server
interface. Sensory information and event notification
and updates are provided to the server through the
monitoring and control unit.

(iii) Web interface subsystem: this subsystem provides the
basic connection and interface for the web server
and the monitoring and control system. The interface
provides the functionality to set the threshold values
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of the different alarms and communicates these values
to and from the web server interface for efficient
monitoring and control.

(iv) Web client subsystem: this subsystem provides func-
tionality to users to tune the different parameter
values of the temperature and voltage thresholds.
The web client operates in a web browser and
provides communication to the web server using a
communication port. A graphical user interface is
provided to obtain the sensed data from the sensors
and the possibility of tuning the threshold values
and dynamic reconfiguration refresh time. Figure 12
shows the implemented monitoring and control user
application and web interfaces.

5.2. FPGA Resource Utilization. This subsection provides the
results of the FPGA logic resource utilization of the postsyn-
thesis and implementation (i.e., placement and routing) on
the Xilinx Zynq evaluation kit ZC702 XC7Z020 CLG484-1,
Zynq 7000 AP SoC FPGA device. Tables 1-4 list the resource
usage at different design implementation stages. Tables 1
and 2 list the FPGA implementation results of the logic
components for the on-chip sensor network monitoring and
control system. We observe that the implemented design uses
very small amounts of FPGA logic resources, that is, 2823 out
of 482901, which is equivalent to 0.585%, compared with the

TaBLE 1: FPGA postsynthesis (device placement) resource utiliza-
tion implemented on Xilinx Zynq evaluation kit ZC702, XC7Z020
CLG484-1Zynq 7000 AP SoC FPGA device.

Resource type Used Available Percentage utilization

Slice LUTs 641 53200 1.20%
LUTs as logic 571 53200 1.07%
LUTs as memory 70 17400 0.40%
LUT as shift register 70 — —
Slice registers 770 106400 0.72%
Registers as flip-flops 770 106400 0.72%
Registers as latch 0 106400 0.0%
F7 Muxes 8 26600 0.03%
F8 Muxes 0 13300 0.00%
XADC 1 1 100%
Total 2901 482901 0.601%

results presented in [1-4, 23, 34, 35] as provided in Table 5.
This result indicates low-cost utilization of the logic resources
when implemented in a medium-sized seven-series FPGA
device. This result validates our stated objective of achieving
a low-cost intelligent monitoring and control system. After
the design synthesis, we optimize the design using the Xilinx
Vivado tool to efficiently route the design into the target
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TAaBLE 2: FPGA postimplementation (device routing) resource utilization implemented on Xilinx Zynq evaluation kit ZC702, XC7Z020

CLG484-1Zynq 7000 AP SoC FPGA device.

Resource type Used Available Percentage utilization (%)
Slice LUTs 607 53200 114
LUTs: as logic 545 53200 1.02
LUTs as memory 62 17400 0.35
LUT as shift register 62 — —
Slice registers 769 106400 0.72
Registers as flip-flops 769 106400 0.72
Registers as latch 0 106400 0.00
F7 Muxes 8 26600 0.03
F8 Muxes 0 13300 0.00
XADC 1 1 100%
Total 2823 482901 0.585%

TaBLE 3: FPGA low-level primitive resource utilization implemented on Xilinx Zynq evaluation kit ZC702, XC7Z020 CLG484-1 Zynq 7000

AP SoC FPGA device.

Name FDRE LUT3 LUT6 LUT5 BIBUF FDSE LUT4 LUT2 SRLC32E SRLIGE CARRY4 MUXF7 LUTI XADC PS7 BUFG

Used 677 216 206 131 130 92 77 65

47 23 18 8 8 1 1 1

TaBLE 4: FPGA on-chip sensor component after placement and routing power resource utilization implemented on Xilinx Zynq evaluation

kit ZC702, XC7Z020 CLG484-1 Zynq 7000 AP SoC FPGA device.

Resource type Used Available Power (W) Percentage utilization (%)
Clocks 1 — 0.001 —
Slice logic 1757 — 0.001 —
LUTs: as logic 545 53200 0.001 1.02
Register 769 106400 0.001 0.72
CARRY4 18 13300 0.001 0.14
F7/F8 Muxes 8 53200 0.001 0.02
LUT as shift register 62 17400 0.001 0.36
Others 189 — 0.001 —
Signals 1225 — 0.001 —
XADC 1 1 0.001 —
PS7 1 1 0.001 —
Static power — — 0.118 —
Total 0.129 watts 2.26%

architecture. In Table 2, we can observe that because of the
optimization done to route the design, a slight reduction in
the amount of logic consumption occurs. Table 3 lists the low-
level primitives used by the implemented design and their
utilization numbers.

Table 4 lists the power distribution and utilization of the
various on-chip sensor components after placement and rout-
ing. This distribution consisted of both dynamic and static
power consumptions. We can see from the table that all on-
chip sensor components show very low power consumption.
We achieved 0.118 W (118 mW) of static power and 0.011 W
(11mW) of dynamic power consumption, a total of 0.129 W
(129 mW), which represents a 2.26% of both dynamic and
static power consumption, for all on-chip sensor components

as compared with the results presented in [2, 3]. This result
also agrees with our stated objective of achieving low power
consumption in medium-sized seven-series FPGA device.

5.3. FPGA Resource Utilization Comparison with Previous
Works. Table 5 shows the FPGA utilization results compar-
ison with previous works [1-4, 23, 34, 35]. The comparison
with the state of the art seems to be difficult due to the
fact that there are a lot of differences in terms of the FPGA
implementation architectures, sensors, and sensor networks
and some of the proposed approaches did not provide FPGA
power utilization result. Furthermore, the types of logic
resources provided by the previous approaches are different
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TABLE 5: FPGA resource utilization comparison with previous works.

Chu et al. [1]
Flip-flops (%) 4-input Slices (%) Block RAM (%) Power Implementation
LUTs (%) utilization architecture
Logic control method
XILINX
19% 35% 41% 25% Not provided g‘éi{f\ii
(3XC35400).
Lookup table method
XILINX
12% 29% 31% 37% Not provided sgéiﬁiii
(3XC35400).
Perera et al. [2]
Slice registers 4-input . . Power Implementation
O d sl % Bonded IOBs (%
(%) LUTSs (%) ccupied slices (%) onde s (%) utilization architecture
ftj‘:;f) e XILINX
50% 52% 97% 8% Dynamic s;;zg ﬁiﬁf
power =
P (XC3S250E).
Echanobe et al. [3]
FFs (%) LUTs (%) BRAM (%) DSPs (%) Power Implementation
utilization architecture
Static power XILINX
=3.071mW VIRTEX-5
41% 529 50% 83% Dynamic EPGA device
power =
610 W (XCVSX50T).
Osuna et al. [4]
LQT + LATCH Loop count Actual delay (ns) LUT + D-FF pairs (¥) Pf)we_r Implementation
pairs (#) #) utilization architecture
XILINX
SPARTAN-3E
180, 11 i
80 1024 80,000 0 Not provided FPGA device
(XC3S100E).
Kornaros and Pnevmatikatos [23]

. . P, Impl tati
ot Sl MAMBG0 PO e ileon
CAM Plugin (16
x 192) Control 1364 18 211
Monitor

XILINX
nager ig?i:?) 3872 1 216 Not provided VIRTEX-4
> ) FPGA device.
Monitor (32-bit)
with FSL 432 3 418
Interface
Magdaleno et al. [34]

CYCLONII

Implemented prototype uses 2065 LEs of a total of 7% logic utilization. Not provided ALTEIRA, FPGA

evice

(EP2C35).
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TaBLE 5: Continued.
Gomez Osuna et al. [35]
Loop Measured Total area Power Implementation
Del %
Delay stages (#) counter (#) delay (ns) slices (#) elay area (%) utilization architecture
10 2,560 124.170 34 29%
oy Not provided XILINX SPARTAN-3E
20 1,280 117,500 43 o P FPGA device (XC3S100E).
30 853 116,340 50 60%
XILINX VIRTEX-5
29% i
4 4,096 92,370 14 0 Not provided FPGA device (LX50T).
Proposed approach
LUT as . Registers as .
. LUT as Slice ¢ Power Implementation
0, _ 0,
Slice LUTs (%) logic (%) me(ror/lg)ry registers (%) flip-flops F7 Muxes (%) utilization architecture
0
Static power
=018 W
(118 mW) XILINX ZYNQ FPGA-7
1.14% 1.02% 0.35% 0.72% 0.72% 0.03% Dynamic device ZC702 (XC7Z020
power = CLG484-1).
0.01W
11 mW)

Total logic utilization (implemented design) = 0.585%

%: percentage of logic resource utilization.
#: number of logic resource.
Not provided: the authors did not provide the power utilization result.

from one implementation to another. However, the utilization
results shown in Table 5 help to acknowledge the efficiency
and flexibility of the proposed approach compared with the
state of the art.

6. Experimental Results and Discussion

This section provides the results of the experiments to
monitor and control the FPGA on-chip sensor readings.
The essential metric for evaluating the FPGA on-chip sensor
readings is its accuracy; that is, how accurate does the FPGA
report the sensed on-chip voltage and temperature readings?
Although the FPGA on-chip sensors are specified in terms
of accuracy based on the manufacturer datasheet, the real
significance is the on-chip sensor error. For instance, the
temperature sensor specification for accuracy is +4% full
scale (FS) within the range —40°C to +100°C, which means
that the on-chip sensor error will not exceed +4% of its
ES within its calibrated range. Therefore, the evaluation of
the FPGA on-chip sensor accuracy represents the process of
determining its maximum error [43, 44, 50].

We conducted several experiments using five different
sensors, namely, Sensors #1-#5. Sensor #4 is a temperature
sensor that measured the FPGA on-chip die temperature in
degree Celsius and operates within a set threshold limit. The
remaining four sensors are power sensors, which measure
the on-chip voltage variations in millivolts within monitored
and control threshold value. Tables 6-21 list the FPGA-
measured on-chip sensor readings. Each table represents
the four experiments we conducted, taking 10 readings in
each experiment for a total of 40 measured readings from
the FPGA on-chip sensors. The readings were averaged to

remove the gross and systematic errors from the observed
readings. The FS percentage error or accuracy was calculated
for each observation and averaged across the 40 readings.
We varied the dynamic reconfiguration refresh time to
query the FPGA on-chip sensor readings from the webpage
at 100, 500, and 1000 ms to determine the effect of the
reconfiguration time with respect to the sensor accuracy. The
details of the experimental results are presented in the next
subsection.

6.1. Effect of Dynamic Reconfiguration Refresh Time on an
FPGA-Measured On-Chip Sensor Reading Accuracy. Tables
6-10 list the FPGA-measured on-chip sensor readings with
the dynamic reconfiguration refresh time set at 1000 ms.
The range of operation and the ideal output of each sensor
are specified and listed in the tables. The averaged FS
percentage errors of the five sensors are as follows: Sensor
#1 = =0.7% FS, Sensor #2 = —0.1% FS, Sensor #3 = 0.8%
ES, Sensor #4 = 0.1% FS, and Sensor #5 = 0.4% FS. This
result indicates that the accuracy of the measured sensor
values is influenced by the reconfiguration refresh time,
which shows an accuracy range between —0.7% FS and +0.8%
FS.

Tables 11-15 list the FPGA-measured on-chip sensor
readings with the dynamic reconfiguration refresh time set
at 500 ms. Here, the averaged FS percentage errors for the
five sensors are as follows: Sensor #1 = —0.6% FS, Sensor
#2 = —0.6% FS, Sensor #3 = +0.2% FS, Sensor #4 = +1.1%
ES, and Sensor #5 = 0.3% FS. The averaged FS accuracy lies
between —0.6% FS and +1.1% FS, which illustrates a better
accuracy compared with reconfiguration refresh time of
100 ms.
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TABLE 6: FPGA-measured on-chip Sensor #1 reading with dynamic reconfiguration refresh time of 1000 ms.

Expt. 1 Expt. 2 Expt. 3 Expt. 4 Average Range Ideal Error Full scale
S/number Sensor #1  Sensor #1 ~ Sensor #1 ~ Sensor #1 Measured '
measured measured measured measured . High Low Output
- . . - reading Values % error
reading reading reading reading (mV) (mV) (mV) (mV)
(mV) (mV) (mV) (mV)
(1) 988.77 984.38 990.23 986.57 987.49 1030.00 970.00 987 0.49 0.8
2 982.91 985.84 988.77 986.57 986.02 1030.00 970.00 987 -0.98 -1.6
(3) 98730 988.04 988.04 986.30 987.42 1030.00 970.00 987 0.42 0.7
(4) 985.84 985.11 986.57 987.30 986.21 1030.00 970.00 987 -0.80 -1.3
(5) 988.04 988.77 986.57 988.04 987.86 1030.00 970.00 987 0.86 1.4
(6) 987.30 985.11 986.57 990.23 987.30 1030.00 970.00 987 0.30 0.5
(7) 985.84 985.84 987.30 988.77 986.94 1030.00 970.00 987 -0.06 -0.1
(8) 985.84 983.64 985.84 986.57 985.47 1030.00 970.00 987 -1.53 -2.5
%) 985.84 984.38 984.38 986.64 985.31 1030.00 970.00 987 -1.69 -2.8
(10) 985.11 985.84 985.84 985.84 985.66 1030.00 970.00 987 -1.34 -2.2
Average -0.43 -0.7
TABLE 7: FPGA-measured on-chip Sensor #2 reading with dynamic reconfiguration refresh time of 1000 ms.
Expt. 1 Expt. 2 Expt. 3 Expt. 4 Average Range Ideal Error Full scale
S/number Sensor #2 Sensor #2  Sensor #2  Sensor #2 Measured .
measured measured measured measured . High Low Output
- . : - reading Values % error
reading reading reading reading (mV) (mV) (mV) (mV)
(mV) (mV) (mV) (mV)
(1) 1788.57 1791.50 1795.17 1792.24 1791.87 1890.00 1750.00 1793 -1.13 -0.8
(2) 1789.31 1794.43 1794.43 1792.24 1792.60 1890.00 1750.00 1793 -0.40 -0.3
(3) 1795.17 1791.50 1796.63 1792.24 1793.89 1890.00 1750.00 1793 0.88 0.6
(4) 1792.24 1792.24 1797.36 1788.57 1792.60 1890.00 1750.00 1793 -0.40 -0.3
(5) 1788.57 1792.24 1795.90 1791.50 1792.05 1890.00 1750.00 1793 -0.95 -0.7
(6) 1792.24 1795.90 1792.97 1792.97 1793.52 1890.00 1750.00 1793 0.52 0.4
(7) 1790.04 1792.97 1801.03 1792.97 1794.25 1890.00 1750.00 1793 1.25 0.9
)] 1785.64 1795.17 1793.70 1793.70 1792.05 1890.00 1750.00 1793 -0.95 -0.7
9 1793.70 1792.24 1791.50 1790.04 1791.87 1890.00 1750.00 1793 -1.13 -0.8
(10) 1794.43 1792.97 1795.90 1793.70 1794.25 1890.00 1750.00 1793 1.25 0.9
Average -0.10 -0.1
TABLE 8: FPGA-measured on-chip Sensor #3 reading with dynamic reconfiguration refresh time of 1000 ms.
Expt. 1 Expt. 2 Expt. 3 Expt. 4 Average Range Ideal Error Full scale
S/number Sensor #3  Sensor #3  Sensor #3  Sensor #3 Measured '
measured measured measured measured . High Low Output
- . . - reading Values % error
reading reading reading reading (mV) (mV) (mV) (mV)
(mV) (mV) (mV) (mV)
(1) 986.57 986.57 987.30 987.30 986.94 1030.00 970.00 986 0.93 1.6
) 985.11 987.30 985.11 985.84 985.84 1030.00 970.00 986 -0.16 -0.3
(3) 983.64 987.30 986.57 989.50 986.75 1030.00 970.00 986 0.75 1.3
(4) 986.57 987.30 988.04 985.84 986.94 1030.00 970.00 986 0.94 1.6
(5) 985.11 984.38 988.04 986.57 986.03 1030.00 970.00 986 0.02 0.04
(6) 985.84 985.84 987.30 988.77 986.94 1030.00 970.00 986 0.94 1.6
(7) 989.50 986.57 986.57 986.57 987.30 1030.00 970.00 986 1.30 2.2
(8) 983.64 988.77 985.84 986.57 986.21 1030.00 970.00 986 0.21 0.3
9 984.38 987.30 985.11 987.30 986.02 1030.00 970.00 986 0.02 0.04
(10) 985.84 984.38 988.04 985.11 985.84 1030.00 970.00 986 -0.16 -0.3
Average 0.48 0.8
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TABLE 9: FPGA-measured on-chip Sensor #4 reading with dynamic reconfiguration refresh time of 1000 ms.
Expt. 1 Expt. 2 Expt. 3 Expt. 4 Average Range Ideal Error Full scale
S/number Sensor #4  Sensor #4  Sensor #4  Sensor #4 Measured '
measured measured measured measured . High Low Output 0
reading reading reading reading re(a%l;lg °C) °C) °C) Values % error
49 €9 O 49
(1) 55.12 47.49 47.62 47.25 49.37 100.00 40.00 50.00 -0.63 -1.1
) 54.26 48.36 4749 48.23 49.59 100.00 40.00 50.00 -0.41 -0.7
(3) 55.49 48.23 4774 4774 49.80 100.00 40.00 50.00 -0.20 -0.3
4) 55.12 48.85 47.74 49.09 50.20 100.00 40.00 50.00 0.20 0.3
(5) 55.00 49.09 48.23 48.23 50.14 100.00 40.00 50.00 0.14 0.2
(6) 55.37 4922 4774 48.48 50.20 100.00 40.00 50.00 0.20 0.3
(7) 55.12 49.09 4799 48.48 50.17 100.00 40.00 50.00 0.17 0.3
(8) 54.88 50.20 47.86 48.48 50.36 100.00 40.00 50.00 0.35 0.6
9 55.49 50.08 4799 48.60 50.54 100.00 40.00 50.00 0.54 0.9
(10) 55.25 49.83 48.23 48.72 50.51 100.00 40.00 50.00 0.51 0.8
Average 0.09 0.1
TaBLE 10: FPGA-measured on-chip Sensor #5 reading with dynamic reconfiguration refresh time of 1000 ms.
Expt.1 Expt. 2 Expt. 3 Expt. 4 Average Range Ideal Error Full scale
S/number Sensor #5  Sensor #5  Sensor #5  Sensor #5 Measured .
measured measured measured measured . High Low Output
: . . . reading Values % error
reading reading reading reading (mV) (mV) (mV) (mV)
(mV) (mV) (mV) (mV)
(1) 13.43 13.18 13.43 13.43 13.37 100.00 10.00 13.00 0.37 0.4
(2) 13.43 13.18 13.43 13.43 13.37 100.00 10.00 13.00 0.37 0.4
(3) 13.43 12.94 13.18 13.43 13.25 100.00 10.00 13.00 0.24 0.3
(4) 13.43 13.43 13.18 13.43 13.37 100.00 10.00 13.00 0.37 0.4
(5) 13.67 13.18 12.70 13.43 13.25 100.00 10.00 13.00 0.24 0.3
(6) 13.67 13.43 12.94 12.94 13.25 100.00 10.00 13.00 0.24 0.3
(7) 13.67 13.43 13.18 13.67 13.49 100.00 10.00 13.00 0.49 0.5
) 13.43 13.18 13.43 13.18 13.31 100.00 10.00 13.00 0.31 0.3
9 13.43 13.43 13.18 13.18 13.31 100.00 10.00 13.00 0.31 0.3
(10) 13.92 13.43 12.70 13.67 13.43 100.00 10.00 13.00 0.43 0.5
Average 0.34 0.4
TaBLE 11: FPGA-measured on-chip Sensor #1 reading with dynamic reconfiguration refresh time of 500 ms.
Expt. 1 Expt. 2 Expt. 3 Expt. 4 Average Range Ideal Error Full scale
S/number Sensor #1  Sensor #1  Sensor #1 ~ Sensor #1 Measured .
measured measured measured measured . High Low Output
. . : - reading Values % error
reading reading reading reading (mV) (mV) (mV) (mV)
(mV) (mV) (mV) (mV)
(1) 986.57 983.64 988.77 987.30 986.57 1030.00 970.00 987 -0.43 -0.7
(2) 985.11 985.84 986.57 987.30 986.21 1030.00 970.00 987 -0.80 -1.3
(3) 985.84 987.30 988.77 986.57 98712 1030.00 970.00 987 0.12 0.2
4) 985.11 985.84 985.11 988.77 986.21 1030.00 970.00 987 -0.79 -1.3
(5) 985.84 986.57 985.84 986.57 986.21 1030.00 970.00 987 -0.79 -1.3
(6) 986.57 986.57 988.77 987.30 987.30 1030.00 970.00 987 0.30 0.5
(7) 988.77 988.04 988.04 985.11 987.49 1030.00 970.00 987 0.49 0.8
8) 987.30 985.11 985.11 988.04 986.39 1030.00 970.00 987 -0.61 -1.0
) 985.84 985.11 988.04 987.30 986.57 1030.00 970.00 987 —-0.43 -0.7
(10) 988.04 985.84 984.33 988.04 986.56 1030.00 970.00 987 -0.44 -0.7
Average —-0.34 —-0.6
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TABLE 12: FPGA-measured on-chip Sensor #2 reading with dynamic reconfiguration refresh time of 500 ms.

Expt. 1 Expt. 2 Expt. 3 Expt. 4 Average Range Ideal Error Full scale
S/number Sensor #2  Sensor #2  Sensor #2  Sensor #2 Measured '
measured measured measured measured . High Low Output
- . . - reading Values % error
reading reading reading reading (mV) (mV) (mV) (mV)
(mV) (mV) (mV) (mV)
(1) 1790.04 1792.97 1797.36 1792.97 1793.34 1890.00 1750.00 1793 0.34 0.2
) 1792.97 1792.97 1793.7 1794.43 1793.52 1890.00 1750.00 1793 0.52 0.4
(3) 1793.70 1792.24 1790.77 1792.97 1792.42 1890.00 1750.00 1793 -0.58 -0.4
4) 1793.70 1795.90 1794.43 1795.90 1794.98 1890.00 1750.00 1793 1.98 1.4
(5 1793.70 1796.63 1792.97 1795.17 1794.62 1890.00 1750.00 1793 1.62 1.2
(6) 1795.90 1792.24 1791.5 1795.90 1793.89 1890.00 1750.00 1793 0.89 0.6
(7) 1794.43 1792.97 1795.17 1790.77 1793.34 1890.00 1750.00 1793 0.34 0.2
(8) 1791.50 1792.97 1793.7 1792.97 1792.79 1890.00 1750.00 1793 -0.21 -0.2
)] 1791.50 1792.24 1792.97 1795.17 1792.97 1890.00 1750.00 1793 -0.03 0.0
(10) 1792.97 1790.77 1792.24 1791.50 1791.87 1890.00 1750.00 1793 -1.13 -0.8
Average —-0.34 -0.6
TaBLE 13: FPGA-measured on-chip Sensor #3 reading with dynamic reconfiguration refresh time of 500 ms.
Expt.1 Expt. 2 Expt. 3 Expt. 4 Average Range Ideal Error Full scale
S/number Sensor #3  Sensor #3  Sensor #3  Sensor #3 Measured .
measured measured measured measured . High Low Output
: . . . reading Values % error
reading reading reading reading (mV) (mV) (mV) (mV)
(mV) (mV) (mV) (mV)
(1) 986.57 987.30 986.57 983.64 986.02 1030.00 970.00 986 0.02 0.03
(2) 985.11 985.11 986.57 986.57 985.84 1030.00 970.00 986 -0.16 -0.3
(3) 984.38 987.30 983.64 985.11 985.11 1030.00 970.00 986 -0.89 -1.5
(4) 987.30 987.30 986.57 986.57 986.94 1030.00 970.00 986 0.94 1.6
(5) 985.11 986.57 985.84 987.30 986.21 1030.00 970.00 986 0.20 0.3
(6) 984.38 982.18 987.3 985.84 984.93 1030.00 970.00 986 -1.08 -1.8
(7) 986.57 984.38 988.77 985.11 986.21 1030.00 970.00 986 0.21 0.3
(8 985.84 987.30 985.84 988.77 986.94 1030.00 970.00 986 0.94 1.6
9 989.50 988.04 986.57 987.30 987.85 1030.00 970.00 986 1.85 3.1
(10) 983.64 986.57 985.11 984.38 984.93 1030.00 970.00 986 -1.07 -1.8
Average 0.10 0.2
TABLE 14: FPGA-measured on-chip Sensor #4 reading with dynamic reconfiguration refresh time of 500 ms.
Expt. 1 Expt. 2 Expt. 3 Expt. 4 Average Range Ideal Error Full scale
S/number Sensor #4  Sensor #4  Sensor #4  Sensor #4 Measured .
measured measured measured measured . High Low Output 0
reading reading reading reading re(aacél?g °C) °C) () Values % error
49 49 (O 49
(1) 54.75 50.20 48.23 48.72 50.48 100.00 40.00 50.00 0.48 0.8
(2) 55.37 50.32 48.48 48.36 50.63 100.00 40.00 50.00 0.63 1.1
(3) 55.49 49.83 48.36 48.97 50.66 100.00 40.00 50.00 0.66 1.1
4) 55.98 50.32 48.11 48.67 50.77 100.00 40.00 50.00 0.77 1.3
(5) 55.86 49.71 48.36 48.48 50.60 100.00 40.00 50.00 0.60 1.0
(6) 55.61 50.57 47.86 48.72 50.69 100.00 40.00 50.00 0.69 1.2
(7) 55.61 50.20 48.29 48.60 50.68 100.00 40.00 50.00 0.67 11
®) 55.37 50.20 47.86 48.60 50.51 100.00 40.00 50.00 0.51 0.8
) 55.61 50.08 47.62 48.85 50.54 100.00 40.00 50.00 0.54 0.9
(10) 56.48 50.57 4799 49.22 51.07 100.00 40.00 50.00 1.07 1.8

Average 0.66 11
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TaBLE 15: FPGA-measured on-chip Sensor #5 reading with dynamic reconfiguration refresh time of 500 ms.
Expt. 1 Expt. 2 Expt. 3 Expt. 4 Average Range Ideal Error Full scale
Sensor #5  Sensor #5  Sensor #5  Sensor #5
S/number Measured .
measured measured measured measured . High Low Output
- . . - reading Values % error
reading reading reading reading (mV) (mV) (mV) (mV)
(mV) (mV) (mV) (mV)
(1) 13.43 13.43 13.18 13.18 13.31 100.00 10.00 13.00 0.31 0.3
(2) 12.94 12.70 13.43 13.43 13.13 100.00 10.00 13.00 0.13 0.1
(3) 13.43 12.94 12.70 12.70 12.94 100.00 10.00 13.00 —-0.06 -0.1
(4) 13.67 13.43 13.18 13.18 13.37 100.00 10.00 13.00 0.37 0.4
(5) 13.67 13.43 13.18 12.94 13.31 100.00 10.00 13.00 0.31 0.3
(6) 13.67 13.43 12.94 13.43 13.37 100.00 10.00 13.00 0.37 0.4
7) 13.67 12.94 12.94 13.43 13.25 100.00 10.00 13.00 0.24 0.3
(8) 13.92 13.18 13.43 12.94 13.37 100.00 10.00 13.00 0.37 0.4
9) 13.67 13.18 12.94 12.94 13.18 100.00 10.00 13.00 0.18 0.2
(10) 13.43 13.18 13.18 13.18 13.24 100.00 10.00 13.00 0.24 0.3
Average 0.24 0.3
TABLE 16: FPGA-measured on-chip Sensor #1 reading with dynamic reconfiguration refresh time of 100 ms.
Expt. 1 Expt. 2 Expt. 3 Expt. 4 Average Range Ideal Error Full scale
Sensor #1  Sensor #1  Sensor #1 ~ Sensor #1
S/number Measured .
measured measured measured measured . High Low Output
. . . - reading Values % error
reading reading reading reading (mV) (mV) (mV) (mV)
(mV) (mV) (mV) (mV)
(1) 985.11 985.11 990.23 986.57 986.76 1030.00 970.00 987 -0.25 -0.4
(2) 987.30 987.30 986.57 986.57 986.94 1030.00 970.00 987 -0.06 -0.1
(3) 986.57 986.57 985.11 988.77 986.76 1030.00 970.00 987 -0.25 -0.4
(4) 987.30 988.04 988.04 985.84 987.31 1030.00 970.00 987 0.31 0.5
(5) 986.57 986.57 986.57 985.11 986.21 1030.00 970.00 987 -0.79 -1.3
(6) 987.30 986.57 987.30 985.11 986.57 1030.00 970.00 987 -0.43 -0.7
(7) 986.57 987.30 986.57 986.57 986.75 1030.00 970.00 987 -0.25 -0.4
(8) 982.91 987.30 986.57 988.04 986.21 1030.00 970.00 987 -0.79 -1.3
9) 986.57 987.30 989.50 985.11 987.12 1030.00 970.00 987 0.12 0.2
(10) 984.38 985.84 987.30 985.11 985.66 1030.00 970.00 987 -1.34 -2.2
Average -0.37 -0.6

Tables 16-20 show the FPGA-measured and controlled
on-chip sensors readings with the dynamic reconfiguration
refresh time set at 100 ms. The averaged percentage accuracy
of Sensor #1 FS is —0.6% FS, Sensor #2 = —0.3% FS, Sensor
#3 = —0.024% FS, Sensor #4 = 1.3% FS, and Sensor #5 =
0.4% FS. From Tables 16-20, we can observe that the FS
percentage accuracy lies from —0.6% FS to +1.3% FS. This
result shows a low accuracy at FS as compared with the
dynamic reconfiguration refresh times of 500 and 1000 ms.
Table 21 shows the comparison results of the sensor reading
accuracy versus the dynamic reconfiguration refresh time.
We can observe that the FS percentage error with dynamic
refresh time of 100 ms is between —0.6% FS and +1.3% FS,

that of 500 ms is between —0.6% FS and +1.1% FS, and that of
1000 ms is between —0.7% FS and +0.8% FS. This result shows
that the lower FS percentage error range is almost the same
(i.e.,—0.6% FSand —0.7% FS) for all sensors irrespective of the
dynamic refresh time. However, at higher FS percentage error
rate, a significant difference in accuracy exists with different
dynamic refresh time, that is, +0.8% FS, +1.1% FS, and +1.3%
ES. Therefore, the dynamic reconfiguration refresh time of
1000 ms produces highly accurate FPGA-measured on-chip
sensor readings.

In conclusion, the dynamic reconfiguration refresh time
affects the accuracy of the FPGA-measured on-chip sensor
readings. We determined that the dynamic reconfiguration
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TaBLE 17: FPGA-measured on-chip Sensor #2 reading with dynamic reconfiguration refresh time of 100 ms.

Expt. 1 Expt. 2 Expt. 3 Expt. 4 Average Range Ideal Error Full scale
Sensor #2  Sensor #2  Sensor #2  Sensor #2
S/number Measured .
measured measured measured measured . High Low Output
- . . - reading Values % error
reading reading reading reading (mV) (mV) (mV) (mV)
(mV) (mV) (mV) (mV)
(1) 1793.70 1791.50 1789.31 1794.43 1792.24 1890.00 1750.00 1794 -1.76 -1.3
2 1791.50 1796.63 1794.43 1792.97 1793.88 1890.00 1750.00 1794 -0.12 -0.1
(3) 1791.50 1791.50 1792.24 1792.97 1792.05 1890.00 1750.00 1794 -1.95 -1.4
(4) 1792.24 1795.17 1795.17 1795.90 1794.62 1890.00 1750.00 1794 0.62 0.4
(5) 1793.70 1793.70 1794.43 1795.17 1794.25 1890.00 1750.00 1794 0.25 0.2
(6) 1789.31 1795.90 1794.43 1795.17 1793.70 1890.00 1750.00 1794 -0.30 -0.2
(7) 1795.17 1790.04 1792.97 1792.97 1792.79 1890.00 1750.00 1794 -1.21 -0.9
(8) 1793.70 1793.70 1797.36 1792.97 1794.43 1890.00 1750.00 1794 0.43 0.3
9 1794.43 1792.97 1791.50 1794.43 1793.33 1890.00 1750.00 1794 -0.67 -0.5
(10) 1796.63 1795.90 1794.43 1792.24 1794.80 1890.00 1750.00 1794 0.80 0.6
Average -0.39 -0.3
TaBLE 18: FPGA-measured on-chip Sensor #3 reading with dynamic reconfiguration refresh time of 100 ms.
Expt. 1 Expt. 2 Expt. 3 Expt. 4 Average Range Ideal Error Full scale
Sensor #3  Sensor #3  Sensor #3  Sensor #3
S/number Measured .
measured measured measured measured . High Low Output
. . . - reading Values % error
reading reading reading reading (mV) (mV) (mV) (mV)
(mV) (mV) (mV) (mV)
(1) 985.84 985.84 985.84 984.38 985.48 1030.00 970.00 986 -0.52 -0.9
) 985.11 986.57 985.84 987.30 986.21 1030.00 970.00 986 0.20 0.3
(3) 984.38 986.57 986.57 987.30 986.21 1030.00 970.00 986 0.20 0.3
(4) 986.57 984.38 986.57 986.57 986.02 1030.00 970.00 986 0.02 0.04
(5) 988.04 987.30 987.30 986.57 987.30 1030.00 970.00 986 1.30 2.2
(6 985.84 983.64 982.18 986.57 984.56 1030.00 970.00 986 -1.44 -2.4
(7) 985.84 988.04 985.11 986.57 986.39 1030.00 970.00 986 0.39 0.7
(8) 986.57 986.57 987.30 987.30 986.94 1030.00 970.00 986 0.93 1.6
)] 985.84 983.64 985.84 986.57 985.47 1030.00 970.00 986 -0.53 -0.9
(10) 985.84 986.57 984.38 984.38 985.29 1030.00 970.00 986 -0.71 -1.2
Average —-0.01 —0.024

refresh time of 1000 ms provides highly accurate FPGA-
measured and controlled on-chip sensor readings across the
five different on-chip sensors.

7. Conclusions

In this research paper, we have proposed the design of
efficient and high-speed circuit for real-time monitoring and
control of on-chip sensor network for FPGAs. We developed
the autonomous sensor agents implemented in the FPGA-
based NI to be dynamically configured and to communicate
the dynamic ambient parameter changes to the monitoring
and control hardware unit. The ultimate goal of this research
is to design low-cost, low power, and high accuracy real-time
monitoring mechanism using autonomous sensor agents as
well as a dynamic reconfiguration control of on-chip sensor

network environment using FPGAs. We presented a detailed
design procedure and a case study to demonstrate the applica-
bility of the proposed approach. We showed that the proposed
approach uses low FPGA logic resources and low power
consumption compared with previous approaches, validating
its suitability in real-system development. Furthermore, we
demonstrated that, by collecting the dynamic and real-time
monitoring parameters in terms of temperature and voltage
variations, the system can adapt and improve the utilization of
FPGA logic resources and power consumption. Experimental
results from the FPGA-measured on-chip sensor readings
showed high precision and accuracy in the measured voltage
and temperature. We found that a dynamic refresh time of
1000 ms produces the best FPGA-measured and controlled
on-chip monitored sensor readings as compared with the 100
and 500 ms refresh time. The proposed design techniques,
framework, and protocol will assist network engineers and
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TABLE 19: FPGA-measured on-chip Sensor #4 reading with dynamic reconfiguration refresh time of 100 ms.
Expt. 1 Expt. 2 Expt. 3 Expt. 4 Average Range Ideal Error Full scale
S/number Sensor #4  Sensor #4  Sensor #4  Sensor #4 Measured '
measured measured measured measured . High Low Output 0
reading reading reading reading re?,dcl;lg (°C) (°C) (°C) Values Vo error
49 4§ (O 49
(1 55.49 50.45 4799 48.85 50.70 100.00 40.00 50.00 0.70 1.2
() 55.98 50.20 48.23 48.72 50.78 100.00 40.00 50.00 0.78 1.3
(3) 56.23 50.08 47.49 49.46 50.82 100.00 40.00 50.00 0.82 1.4
(4) 56.61 49.96 48.60 48.48 50.91 100.00 40.00 50.00 0.91 1.5
(5) 55.49 50.45 48.23 48.48 50.66 100.00 40.00 50.00 0.66 11
(6) 55.74 50.57 48.36 48.60 50.82 100.00 40.00 50.00 0.82 1.4
7) 55.74 50.57 4737 48.97 50.66 100.00 40.00 50.00 0.66 11
(8) 55.74 50.69 47.62 48.72 50.69 100.00 40.00 50.00 0.69 1.2
9 55.37 50.20 48.23 48.48 50.57 100.00 40.00 50.00 0.57 0.9
(10) 55.74 50.32 48.23 49.34 50.91 100.00 40.00 50.00 0.91 1.5
Average 0.75 1.3
TABLE 20: FPGA-measured on-chip Sensor #5 reading with dynamic reconfiguration refresh time of 100 ms.
Expt. 1 Expt. 2 Expt. 3 Expt. 4 Average Range Ideal Error Full scale
S/number Sensor #5  Sensor #5  Sensor #5  Sensor #5 Measured .
meast_lred meast.lred measgred meast_lred reading High Low Output Values % error
reading reading reading reading (mV) (mV) (mV) (mV)
(mV) (mV) (mV) (mV)
(1) 12.94 13.18 12.94 13.18 13.06 100.00 10.00 13.00 0.06 0.1
(2) 13.92 13.18 13.43 13.43 13.49 100.00 10.00 13.00 0.49 0.5
(3) 13.67 13.18 13.18 12.94 13.24 100.00 10.00 13.00 0.24 0.3
(4) 13.67 13.43 13.43 13.18 13.43 100.00 10.00 13.00 0.43 0.5
(5) 13.67 12.94 13.18 13.43 13.31 100.00 10.00 13.00 0.31 0.3
(6) 13.18 13.67 13.18 13.18 13.30 100.00 10.00 13.00 0.30 0.3
(7) 13.67 13.67 12.94 13.18 13.37 100.00 10.00 13.00 0.37 0.4
(8) 13.43 13.18 13.43 13.43 13.37 100.00 10.00 13.00 0.37 0.4
) 13.43 13.43 13.67 13.18 13.43 100.00 10.00 13.00 0.43 0.5
(10) 13.43 13.43 12.94 12.94 13.19 100.00 10.00 13.00 0.18 0.2
Average 0.32 0.4
TaBLE 21: Comparison results of the sensor reading accuracy versus dynamic reconfiguration refresh time.
Sensor #1 Sensor #2 Sensor #3 Sensor #4 Sensor #5
Sensors’ (mV) (mV) (mV) q©) (mV)
accuracy/precision Range Range Range Range Range
970-1030 1750-1890 970-1030 40-100 10-100
(mV) (mV) (mV) (0 (mV)
Dynamic reconfiguration refresh time = 1000 milliseconds (ms)
Full-scale % error -0.7 -0.1 +0.8 +0.1 +0.4
Error values —-0.43 -0.10 +0.48 +0.09 +0.34
Dynamic reconfiguration refresh time = 500 milliseconds (ms)
Full-scale % error -0.6 -0.6 +0.2 +1.1 +0.3
Error values —-0.34 —-0.34 +0.10 +0.66 +0.24
Dynamic reconfiguration refresh time = 100 milliseconds (ms)
Full-scale % error -0.6 -0.3 —-0.024 +1.3 +0.4
Error values -0.37 -0.39 -0.01 +0.75 +0.32
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system designers with a flexible and efficient real-time moni-
toring and control scheme for large and complex FPGA-based
on-chip sensor networks and other related remote-sensing
applications.
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