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It is a great challenge for wireless sensor network to provide enough information for targets localization due to the limits on
application environment and its nature, such as energy, communication, and sensing precision. In this paper, a multiple targets
localization algorithm with sparse information (MTLSI) was proposed using compressive sensing theory, which can provide targets
position with incomplete or sparse localization information. It does not depend on extra hardware measurements. Only targets
number detected by sensors is needed in the algorithm. The monitoring region was divided into a plurality of small grids. Sensors
and targets are randomly dropped in grids. Targets position information is defined as a sparse vector; the number of targets detected
by sensor nodes is expressed as the product of measurement matrix, sparse matrix, and sparse vector in compressive sensing theory.
Targets are localized with the sparse signal reconstruction. In order to investigate MTLSI performance, BP and OMP are applied
to recover targets localization. Simulation results show that MTLSI can provide satisfied targets localization in wireless sensor
networks application with less data bits transmission compared to multiple targets localization using compressive sensing based on

received signal strengths (MTLCS-RSS), which has the same computation complexity as MTLIS.

1. Introduction

Dramatic advances in wireless communication and micro-
electromechanical-system fabrication technology have
enabled the use of wireless sensor networks (WSNs).
There are a large number of sensor nodes in WSNs. The
sensor nodes collect the properties of interest of their local
environment and communicate and share information with
their neighbors to improve their limited measurement or
decision capabilities. WSNs have been considered for various
monitoring and control applications, such as target detection,
recognition, localization [1], and environmental monitoring
[2].

Localization plays a vital role in wireless sensor networks
design and application. It limits the development of research
and application of wireless sensor network to a large extent,
especially in unattended cases. Additionally, due to the
constraints of energy and hardware, low-communication
and computation localization becomes popular research
area for wireless sensor networks. In particular, limited by
environmental factors, information extraction technology,

and uncertainly communication networks, the physical infor-
mation for localization presents strong incompleteness [3],
which brings great challenge for wireless sensor networks
design.

In this paper, we consider the problem of multiple
targets localization in WSNs, which is one of the key tasks
in applications of WSNs. Various algorithms depending
on device measurement have been proposed for targets
localization, such as received signal strength (RSS), time-of-
arrival (TOA), angle-of-arrival (AOA), and time difference
of arrival (TDOA). Also, focusing on low-cost and low
capability sensor networks, device-free localization (DFL) is
another popular localization direction [4]. Different from the
traditional localization technique, DFL realizes localization
without hardware equipment. For example, [5] presented a
signal dynamic model and adopted the geometric method
and the dynamic cluster-based probabilistic cover algorithm
to solve the DFL problem. Wilson and Patwari formulated
the DFL as a radio tomography imaging problem and solved
the problem with regularization method [6, 7]. The above
works require that there should be sufficient number of



wireless links to guarantee the localization performance,
and these techniques will be infeasible when few wireless
links are available. Considering the limit of the energy of
wireless sensor network and information incompleteness,
novel targets localization method using sparse information
becomes one of hot topics in WSNs. Owing to the recent
advances in sparse signal reconstruction for compressive
sensing (CS), in this study, we consider the target locations as
a sparse signal and reconstruct the signal using the CS tech-
nique. Considering binary-detected model, a multiple target
localization algorithm with sparse information (MTLSI) is
proposed using compressive sensing theory. MTLSI uses tar-
gets number detected by sensor node localizing targets. The
targets position is defined as a sparse vector in the discrete
space and the number of detected targets by sensor nodes
is expressed as the product of measurement matrix, sparse
matrix, and sparse vector in compressive sensing theory. We
recovered the target location with Basis Pursuit (BP) [8]
and Orthogonal Matching Pursuit (OMP) [9], respectively.
Localization performance is analyzed with different sensing
radius, nodes quantity, targets quantity, and measurement
noise. Simulation results show the validity and superiority of
MTLSI in targets localization.

The organization of the paper is as follows. In Section 2,
related works on localization using compressive sensing
is concluded and analyzed. In Section 3, network model
and parameters are described. Multiple targets localization
using compressive sensing algorithm is proposed. Simulation
results are shown in Section 5 and the performance of MTLSI
is analyzed in detail. Conclusion is drawn and future work is
discussed in Section 6.

2. Related Works

In wireless sensor networks, limited by environmental fac-
tors, information extraction technology, and uncertain com-
munication networks, the physical information for localiza-
tion presents strong incompleteness. Localization in wire-
less sensor networks should be adaptive with the sparse
information. Furthermore, it will be a good choice that
the method has a lower computation, data transmission,
and energy consumption, especially without extra hardware
equipment for the sensor. Sometime, localization algorithm
needs to balance the precision and all these limits. Recently,
compressive sensing theory has shown great potential applied
value in the field of sparse signal image processing. Applying
appropriate reconstruction algorithm, compressive sensing
theory can recover complicated image information from less
measurements [10-12]. Considering that CS has excellent
performance in signal reconstruction, it has been applied
to realize traditional localization problem recently. In [13],
wireless sensor network monitoring region was divided into
N discrete grids, and target positions are modeled as a N-
dimensional vector of K-sparse. The rationality of CS theory
applying in the localization is demonstrated theoretically.
A sparse recovery algorithm called greedy matching pur-
suit (GMP) is also proposed for target localization with
good performance. The work achieves better performance
in solving the traditional localization problem. However, the
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accurate measurement matrices need to be known a priori,
which incurs plenty of measuring works. For the limited
wireless sensor networks, it is a great challenge to provide the
accurate measurements in many applications. For multiple
targets in the network monitoring area, Chen et al. [14]
proposed a localization method using compressive sensing
theory, where received signal strengths is needed that lead to
extra hardware function and energy consumption. Motivated
by the observation that the location information of the target
is not only sparse but changes slowly and continuously over
time as well, [15] merged the Bayesian theory into the CS
theory and proposed a novel RCS algorithm to reconstruct
the gradually changed sparse signal. The RCS algorithm
makes use of the space-domain and time-domain features of
the signal. However, there is large communication and com-
putation load. An optimal recovery mechanism is proposed
n [16]; however, network has to transmit a large amount
of iterative information among sensor nodes, which also
causes more energy consumption. On the other hand, mobile
device assistant is applied to CS-based localization. Aiming
at an accurate indoor localization scheme, [17] applied the
theory of Multitask Bayesian Compressive Sensing (MBCS)
to indoor localization. The proposed scheme assembles the
strength measurements of signals from the mobile devices
(MDs) to distinct access points (APs) and jointly utilizes
them at a central unit or a specific AP to achieve localization.
It can alleviate the burden of MDs while simultaneously
giving a precise estimation of the locations. Energy is a vital
issue in wireless sensor networks design, and simultaneously
reducing the communication cost of network in sparse infor-
mation is also an important job in localization mechanism
design. In paper [18], we proposed a CS-based localization
method, where targets localization information is provided
by the binary-detected model without hardware equipment.
The initial measurements are not very accurate. But there is
less data transmission and lower energy consumption. In this
paper, the performance of the CS-based localization method
MTLSI using binary-detected model is further analyzed and
compared with multiple targets localization using compres-
sive sensing based on received signal strengths (MTLCS-
RSS) [14]. Simulation results show that algorithm MTLSI
has equivalent localization precision with MTLCS-RSS while
MTLCS-RSS depends on RSS measure and transmission.

3. Network Model and Parameter Definition

3.1. Network Model. Sensor nodes are randomly deployed in
the network. Each node is static and location-aware; targets
are also in static state. For the convenience of study, the
monitoring region is defined as the square area of n x n, it
is divided into N (N = # x n) grids. M (M < N) sensor
nodes with position information are randomly deployed
within some grids. Considering the effectiveness of network
coverage (the monitored area is covered by a minimum
number of sensors), we assume that there is at most one node
for each grid. K (K < M < N) targets are scattered in
different grids, and there is no more than one target in each
grid. Moreover, the real targets’ position is assumed as the
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FIGURE 1: The diagram of network.

corresponding grid center. The diagram of the network is
shown in Figure 1.

3.2. Binary-Detected Model. We apply the binary-detected
model in the localization algorithm. If target T; is within the
sensor node SN.’s sensing radius r, then the target can be
detected by SN ; the SN /’s detecting result y;; for T; is 1, else
ji is 0. It is formulated as follows:

1 dj<r "
)/.1. = 1
! 0 dj>r

is the Euclidean distance between target T; and sensor

d i
node SNj.

3.3. Parameter Definition. The multitargets localization will
be constructed as a compressive sensing sparse signal
reconstruction problem, and the relative parameters matrix
involved in the problem is defined as follows.

(1) Sparse Vector of Target Position Information s. K monitored
targets coordinate the center of relative grids, respectively.
The information vector of target position is defined as s, s =
{se, kK =1,2,... ,N1T, and s is an N x 1 vector. If there is a
target in k grid, s;, = 1, otherwise s, = 0. Because there are K
targets in the monitored area, only K elements of the vector s
are 1 and the rest are all 0.

(2) Sparse Matrix ¥. We define ¥ as an N x N sparse matrix.
If a target in the j (1 < j < N) grid is detected by the sensor
nodelocatedinthei (1 <i < N) grid, then¥;; = 1, otherwise
W;; = 0. So, the matrix W can be presented as in the following
formula:

Taking X = {x;,x,..., xN}T, then formula (3) shows the
targets number sensed by each node, which we place at every
grid at the all monitored area. Consider

X = Ws. 3)
(3) Measurement Matrix ®. If M (M = O(Klog(N/K) &

M < N)) sensor nodes are randomly deployed in N grid, the
measurement matrix @ is shown in the following formula:

0 - 1 0 +ov =+
0 010

D= (4)
0 «v .- 01 0

MxN

If sensor node i (1 < i < M) islocated in the j (1 <i <
N) grid, @;; = 1, otherwise ®;; = 0. According to the network
model, only one element is 1 in each row of the matrix ®
and the rest are 0. So there are M nonzero values in ®@. After
deployment, sensor node positions are determined, and the
measurement matrix is also determined.

(4) Measurement Vector y.y = {y;, ¥s>... ,yM}T is measure-
ment vector. When the i sensor node detected that there were
k targets within its sensing range, y; = k (k < K). The
measurement vector y can be used to record the detected
target information of M sensor nodes.

(5) Sensing Matrix A. According to definitions and physical
meaning of each matrix above, the measurement vector y
satisfies the following equation:

y = ®X = OWs = As. (5)

The equation builds a relationship between the measure-
ment vector and the target position information vector, then
A, is defined as sensing matrix.

Considering the measurement noise, the above formula

Y= {¥1» ¥2>---> ¥} " should be expressed as follows:

y=O¥s +¢, (6)
where & = {e,,¢,,...,&,}" is the additive Gaussian white
noise.

4, Multiple Target Localization Using
Compressive Sensing Theory

4.1. Algorithm Description. According to compressive sens-
ing theory [19], if recovering signals are sparse or com-
pressible under a certain basis, we can acquire the sparse
signal or its unique sparse representation with fewer noisy
measurements through a recovery algorithm. Targets number
sensed by each sensor node can easily be obtained. Consid-
ering the static wireless sensor monitoring network, there
are only K nonzero values in the target position information
vector s, so s is a sparse vector by the definition of sparsity



[20]. Furthermore, the vector can be recovered by taking a
recovery algorithm.

According to above statement, we can obtain the network
localization information without the matrix X by placing a
sensor node at each grid. Only through X multiplied by the
matrix @, the measurement vector y detected by M sensor
nodes can be obtained. Then the sparse vector s representing
targets position information can be recovered by using the
recovery algorithm. In the centralized localization, M nodes
will deliver the compressive measurements vector y and
sensing matrix A to the sink node, and the sparse vector s
can be reconstructed through the compressive sensing theory.
Eventually multitarget localization is finished.

4.2. Orthogonalization of Sensing Matrix. As stated in CS
theory, the successful recovery of a signal by CS has a great
relativity with the characteristics of measurement matrix and
sparse matrix. The matrix A = ®¥ obeys RIP (Restricted
Isometry Property) with parameters (K,6) for § € (0, 1); if
function (7) holds for all K-sparse vector x, then the sparse
signal can be recovered with high precision. Consider

2
[ AxI3

1-6<——=<1+4. (7)

ll[l3
By the definition in Section 3, the sparse matrix ¥ and the
measurement matrix @ are obtained according to the sensor
network topology structure. They are coherent in spatial
domain; namely, A = ®¥ does not satisfy the RIP, and the
CS theory cannot be directly applied. To solve this problem,
a data preprocessing on measurement vector y is introduced.
Considering the sensing matrix A = ®¥, T = orth(A”)"
where T is an orthogonal basis for the range of A, and A"
returns the generalized inverse of matrix A. Then,

Y =TA'y = TA"As = Ts. (8)
In the case of noise,
Y=TA'y=TA*As+ TA'n=Ts +n’. )

This procedure has the same effect as orthogonalizing the
two matrices [14]. Since T is an orthogonal matrix, s can be
well recovered from Y via recovery algorithm based on the CS
theory after the above process is performed at the sink node.

4.3. Localization Recovery Algorithm. According to the above
analysis, multitargets localization in WSN can be properly
solved by the sparse vector recovery algorithm of the CS.
Among the existing recovery algorithms, ¢, minimization
and greedy algorithm are two major approaches. ¢, min-
imization methods, such as Basis Pursuit (BP), solve a
convex minimization problem instead of the combinatorial
problem. The methods work correctly for all sparse signals
and provide theoretical performance guarantees. Most ¢,
minimization methods are sensitive to noise and often suffer
from heavy computational complexity. Greedy algorithms,
such as Orthogonal Matching Pursuit (OMP), iteratively
identify the supports of the targets signal and construct an
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(1) Sensors detect targets
(2) ConstructY
(3) Initializery «— Y, A « [Jand t « 1.
(4) Fort«— 1toK
set A =[A,T(;,A,)] and T, =0
§ «— argmin|Y — A3|,
(5) Calculate new residual r, < Y — AS
(6) t=t+1
(7) End for
(8) Return(s)

ArLGoriTHM I: Pseudocode of localization recovery algorithm.

approximation on the set of the chosen supports, until a
halting condition is met. They can solve large-scale recovery
problems more efficiently. The computational complexity
of greedy algorithms is significantly lower than that of ¢,
minimization. In this paper, we applied both BP and OMP
to derive nonzero elements in the unknown sparse vector s,
which exactly indicate the targets position. The performance
of the two recovery algorithms is analyzed, respectively.

In the localization recovery algorithm, the input matrices
are Y and T, and the targets estimation position is ultimately
obtained with K times iterating. The detailed procedure is as
follows. Firstly, network constructs the measurement matrix
with the detected target information. Secondly, the algorithm
selects a column of the orthogonal matrix T, which has
the maximum correlation with the redundant vector r, (the
initial redundant vector is Y), and then all elements of this
column are placed as zero to update the matrix T. Thirdly,
the matrix Y subtracts the relevant portion and continues to
iterate. The iteration is forced to stop until the number of
iterations reaches the sparsity of K. 5 obtained by OMP or BP
is the recovery of the sparse vector s, so the positions of target
are determined. The proposed localization algorithm has low
computational complexity and less time consuming. And it
can satisfy the localization requirement. The pseudocode is
shown in Algorithm 1.

5. Simulation Results and
Performance Evaluation

Simulation is done to evaluate the performance of the
algorithm proposed in the paper. The monitored network is
divided into N (N = n x n) grids. K (K < M) targets
without position information are randomly placed in K grids.
There is no more than one target in each grid. Detected
targets number is collected at M (M < N) arbitrary sensor
nodes, but there is no more than one sensor node in each
grid. In addition, if MTLSI reports a target at a grid, the
center of the grid is used as the estimated position of the
reported target. The node’s sensing radius is r. When the
distance between nodes and target is shorter than r, the
sensor nodes can detect the target. Considering the reliability
and robustness of the proposed method, we intentionally add
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FIGURE 2: K = 10 targets localization results without noise.

the Gaussian white noise to the measurements. Due to the
specificity of the model, the Gaussian white noise is added
to the distance between nodes and targets. Each presented
result is the average value with 200 random runs. Finally, the
localization performance is studied under different sensing
radius, targets quantity, and sensor quantity.

5.1. Localization Error. In this paper, localization error is
defined as the average Euclidean distance between the real
positions and the recovered positions of the K targets. It is
shown as follows:

_WR)TE (-

r

xz{)z +(yi- J’i’)z (10)

In (10), K is the total number of the targets with real
positions (x, 1), (X, ), - - (Xg» ¥, respectively. (x;, y}),
(X3, ¥3)s - - (X, yi) are the corresponding estimated target
positions. r is the sensing radius of nodes.

In the simulation, there are M = 40 sensor nodes
randomly deployed in the monitoring area, which is divided
into a 20 x 20 (N = 20 x 20) grid. The sensing radius of
nodes is 14 (r = 14). There are 10 (K = 10) targets located in
the monitoring area. Figure 2(a) shows the recovered targets
position and real target position, while Figure 2(b) shows
the localization error without noise. The average localization
error with BP and OMP are 19.02% and 20.50%, respectively.
BP does better than OMP as expected. Both of them satisfy
the localization requirement in WSN [21].

MTLSI performances with noise measurements are also
studied. Figures 3 and 4 show the localization error under
SNR 15dB and SNR 25dB. The average localization error
with BP and OMP are 19.07% and 20.62% under SNR 15 dB,
respectively, and the average localization error with BP and

OMP are 19.22% and 21.99% under SNR 25 dB, respectively.
Localizing the same number of targets with MTLSI, the bigger
the measurement noise is, the bigger the error is, which is
consistent with the reality. Furthermore, the localization error
is very close for the case with measurement noise and without
noise. It indicates that MTLSI can tolerate a certain level of
measurement noise.

5.2. Localization Error versus Semsing Radius. The bigger
the node’s sensing radius, the higher the probability that
the node detects more targets. Different sensing radius will
lead to different measures matrix y. The performance will
be affected by different sensing radius. Localization error
varies with the ratio r/n studied. In cases K = 10 and
M = 40, simulations are done without noise, SNR =
25dB and SNR = 15dB, respectively. In Figure 5, MTLSI
using BP recovering algorithm has a lower localization error
than MTLSI using OMP recovering algorithm. Localization
error shows the same trend varying with »/n under different
noise environments. Localization error decreases with the
increasing of the ratio if #/n < 0.7, and the error increases
when the ratio continues to increase. The error reaches the
minimum when r/n = 0.7. When r/n < 0.7, r is smaller
compared with the fixed n. The absolute distance between
real positions and recovered positions of target changes less
with the radius r. Localization error is defined as the ratio of
the absolute error and sensing radius shown in (10) above. So
for the fixed absolute distance error, when r is smaller, the
localization error is bigger.

When r/n > 0.7, for the sensing radius that is bigger, each
sensor node can almost detect all targets in the monitored
area, which brings more noise and leads to a lower localiza-
tion precision of the reconstruction algorithm in CS. So the
localization error becomes bigger as r/n increases.
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j oToTel "o 4
e HB R d
-.. e 1
o ]
...... : o
....... ‘. cooniiiiin] 5
Y el g
.o o e . .. .. 4
[ e Ce “.’: ] 5
Lo I coonnniii 3
PR 9] 5
I S (& o g g
. +° o ¥l =
LIl el el
SRR 4
Lo o
oo L AN o]
..... . e ..
0o 2 4 8§ 10 12 14 16 18 20
X-axis
@ Sensor node O Recovered target position by BP
% Real target position > Recovered target position by OMP
(a) Distribution of nodes, targets, and recovered targets
o B S I S I S PR
el N
niiin SSSBEN 1 IO DU SRR
* e SESEEEEIEES Sl BLANE S
B e PP H P H PR 5
L S DRG] =
[ - - - - P ‘:
e A B
I ooy E
S e B
PO e
I L e e 4w
RN e R
L e @y
0o 2 4 8§ 10 12 14 16 18 20
X-axis

@ Sensor node

O Recovered target position by BP
* Real target position ¢, Recovered target position by OMP

(a) Distribution of nodes, targets, and recovered targets

0.5

04+ |
Q , | ﬂ‘ | T

0.3 i 'i » '
f Wiy Al ‘I '!l ] | @ "

t I II\!" \1‘ | A fr | l bl T

“«- || I ' “‘r. @ "fl‘ o [ | ”}".. ,.'1,‘1‘1‘&" & l“ h. ‘I‘

o2 ] "l"‘"" Jitd ” iy R fill s
lh ‘.| |,'|M|, |“ “ ] |1‘ :! \i: b IU {IH u,!.l‘ ”"Ei‘i‘ L ﬂ'u. o Jo

sl i h il ol ity

TS PRI e H e
0.1 - ! i @q L | o | ]
0 " . .
0 50 100 150 200
Rounds

—o— Recovered target position by BP
—— Recovered target position by OMP

(b) Localization error versus rounds

FIGURE 4: K = 10 targets localization results under SNR = 25 dB.

5.3. Localization Error versus Number of Targets. Under the
= 20 x 20, and r/n = 0.7, the

parameters M =

performance of localization algorithm is investigated with
the number of targets changing from 2 to 25. Three cases
SNR = 25dB, SNR = 5dB, and without noise are studied. As
shown in Figure 6, MTLSI using BP and OMP show the same
trend. When K < 15, under different noise level, the less
the number of targets is, the lower the localization accuracy
is. It is consistent with the fact in CS theory that the bigger
the sparsity is, the more accurate the recovery sparse vector
is. When the targets number K = 15, the localization error

with BP is close to 19%, while the localization error with
OMP is nearly 25%. With the targets number increasing when
K > 15, the localization error changes less and maintains
at around 19% and 25% for MTLSI using BP and OMP,
respectively. On the other hand, when K < 8, MTLSI with
OMP does better than with BP.

5.4. Localization Error versus Number of Sensor Nodes. Under

the parameters N =

20 x 20, r = 14, localization error

is studied with different number of sensor nodes in SNR
= 25dB, SNR = 15dB and without noise cases. Simulation
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is conducted when the number of sensor nodes M varies
from 20 to 100 at a step size of 5. As shown in Figure 7,
for both BP and OMP recovered method, the larger the M
is, the smaller the error for all numbers of targets will be.
Localization error range is from 35% to 5%. It is rational in the
theoretic analysis. In CS theory, more measurements mean
more information obtained about the network. The sparse
vector can be recovered more precisely and the localization
error is smaller.

5.5. Computation Complexity. MTLSI has the same compu-
tation complexity with the multiple targets localization algo-
rithm using compressive sensing theory based on received

Localization error

Number of sensor nodes

—e— BPSNR=25
—+— OMP SNR = 25
—eo— BPSNR=15

—— OMP SNR =15
BP without noise
—+— OMP without noise

FIGURE 7: Localization error versus number of sensor nodes.

signal strength (MTLCS-RSS) proposed in [14], with the same
recovery algorithm, such as BP and OMP. The measurement
in [14] is RSS, which depends on hardware device to acquire.
Furthermore, there are some challenges to distinguish the
RSS transmitted by different targets. In MTLSI, the measured
value is 1 if the sensor has discovered the target or 0 if the
sensor has not discovered the target. The data bits collected
to localize target are small. With the same conditions, the
performances of MTLSI and MTLCS-RSS are compared.
Figure 8 shows localization error with different sensing
radius, respectively, by OMP and BP recovery algorithm.
No matter with OMP or BP, MTLCS-RSS works better than
MTLSL. The localization error decreases monotonically with
the increasing sensing radius by MTLCS-RSS. As mentioned
in Section 4.2, there is an inflection point at r/n = 0.7 by
MTLSI in the localization error varying with sensing radius.
Beside very small sensing radius (#/n < 0.35), the localization
error is lower than 40% by both MTLSI and MTLCS-RSS that
satisfy with the application requirement.

Figure 9 shows the localization error varying with the
targets number. With OMP recovery method, MTLSI and
MTLCS-RSS have the same tendency. The more the targets,
the lower the localization error. The results meet the expected
design objective. With BP recovery methods, MTLCS-RSS
works better than MTLSI. The localization error increases
with the increasing targets number, but the localization is
totally lower than 25%. There is no big difference between the
two methods in the localization performance varying with
the targets number.

Figure 10 shows localization error varying with the num-
ber of sensor nodes. Both MTLSI and MTLCS-RSS provide
a decreasing localization error with increasing number of
sensor nodes. It is rational that the more the information
can be used, the more precise the targets’ position can be
acquired. The localization error is not more than 35%.
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Comparing with Figures 8-10, some conclusion can be
made. BP recovery method works batter in both MTLSI and
MTLCA-RSS for OMP is a proximal greedy recovery method.
MTLSI owns the same performance with MTLCS-RSS with
OMP recovery method, while MTLCS-RSS works better than
MTLSI with BP recovery method. It is attributed to the more
precise RSS measurements and BP recovery mechanism. On
the other hand, MTLSI can deliver the satisfied localization
performance with low data bits transmission and extra
hardware equipment.

6. Conclusion

In this paper, considering hardware measurement cost in
wireless sensor networks localization, we use targets number
sensed by each node to induce the targets position. It is
a range-free algorithm. On the other hand, the localiza-
tion information shows sparsity for the network charac-
teristic and environment. We applied compressive sensing
theory to the localization mechanism MTLSI, using pre-
processing to induce incoherence needed in the CS theory
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and postprocessing to compensate for spatial discretization
caused by grid assumption. The positions of target are
represented as a sparse vector, and the number of detected
targets by sensor nodes is expressed as the product of
measurement matrix, sparse matrix, and sparse vector in
compressive sensing theory. The sparse vector of target
positions is reconstructed by Basis Pursuit (BP) and Orthog-
onal Matching Pursuit (OMP). MTLSI performance under
different measurement noise, sensor radius, targets number,
and sensor nodes number is investigated. Simulation results
validate that MTLSI can satisfy the multitarget localization
accuracy requirement in the case of incomplete information.
When r/n = 0.7, the localization error of MTLSI reaches the
minimum. In the situation stated in the paper, the localization
error increases with the number of targets increasing and
is maintained at about 19% with BP and 25% with OMP
eventually. With the number of sensor nodes increasing,
the localization accuracy will be improved. MTLSI has the
same computation complexity as multiple targets localization
using compressive sensing based on received signal strengths
(MTLCS-RSS). It can be applied without extra equipment and
low data bits transmission, which satisfy the requirements of
target localization in wireless sensor network in the case of
incomplete information.
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