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How to obtain the “truth” of land surface parameter as reference value to validate the remote sensing retrieved parameter in
heterogeneous scene and coarse-resolution pixel is one of the most challenging topics in environmental studies. In this paper, a
distributed sensor network system named CPP-WSN was established to capture the spatial and temporal variation of land surface
parameters at coarse-resolution satellite pixel scale around the Huailai Remote Sensing Station, which locates in the North China
Plain. The system consists of three subnetworks that are RadNet, SoilNet, and VegeNet. Time series observations of typical land
surface parameters, including UVR, PAR, SWR, LWR, albedo, and land surface temperature (LST) from RadNet, multilayer soil
moisture and soil temperature from SoilNet, and fraction of vegetation cover (FVC), clumping index (CI), and leaf area index
(LAI) from VegeNet, have been obtained and shared on the web. Compared with traditional single-point measurement, the “true”
reference value of coarse pixel is obtained by averaging or representativeness-weighted averaging the multipoint measurements
acquired using the sensor network. The preliminary applications, which validate several remote sensing products with CPP-WSN

data, demonstrate that a high quality ground “truth” dataset has been available for remote sensing as well as other applications.

1. Introduction

With the increase of datasets from coarse-resolution remote
sensing satellites, researchers have developed many quanti-
tative products of land surface parameters and have been
concerned with the need to quantify the accuracy of their
application [1, 2]. Thus, several validation plans have been
implemented to verify these products at both the local scale
and global scale, such as BigFoot, Validation of the Land
European Remote Sensing Instruments (VALERI), and Land
Product Validation (LPV) [3-5]. These works have evaluated

the accuracy of remote sensing products under abundant land
covers in long time series but mainly use single-point obser-
vation for remote sensing pixel validation. The representa-
tiveness of the in situ point observation with regard to the
remote sensing pixel scale observation is questionable, espe-
cially for products with coarse spatial resolution [6, 7]. The
mismatch between point observation and pixel observation,
in other words, the scale effect, becomes the main challenge
for the validation of remote sensing products in coarse reso-
lution. Advanced observation methods should be employed
with consideration of the heterogeneity of coarse pixel.
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FIGURE 1: Location and underlying characteristics of research area (revised from [7]).

Wireless sensor network (WSN), which is typically com-
prised of a collection of sensors with their own power supply,
wireless communication, data storage, and data processing
capability, collects and transmits data from remote field sites
back to base station [10-12]. Networks of embedded devices
that work together to provide enhanced monitoring across
spatial and temporal scales are growing in popularity [13].
Wireless sensor networks are increasingly applied in research
fields including earth observation, environmental monitor-
ing, agriculture, resource management, public health, public
security, transportation, and military [14]. With the ability of
large-scale coverage and long time series running, WSN has
the potential to contribute to the solution of the scale effect
challenge in remote sensing research.

Recently, new remote sensing products of energy bud-
get, vegetation characteristics, and soil characteristics have
been generated to meet the needs in the climate change,
environment monitoring, and agricultural yield estimation.
WSN is an effective way for simultaneously monitoring these
parameters at ground. With its flexibility, automation, and
relatively low cost to synchronously acquire data in multiple
sites, the WSN is recently adopted in validation/calibration
of remote sensing products [15-17]. For this purpose, it is
desirable that each node could contain multiple sensors to
measure different kinds of parameters. In this paper, we
explore the establishment of the wireless sensor networks
which monitor the heterogeneity of coarse spatial resolution
pixel, with consideration of different categories of land
surface parameters (hereafter referred to as CPP-WSN).

This paper firstly presents the China validation network
and Huailai remote sensing station where the CPP-WSN
lies. Then, the parameter selection and sensor specifications
of CPP-WSN are discussed. Construction of CPP-WSN,
including design of CPP-WSN nodes, optimized layout at
pixel scale, and automatic data transmission and sharing

are described in the third part of this paper. And, finally,
the validations of a variety of remote sensing products are
introduced as preliminary applications of the CPP-WSN.

2. Huailai Remote Sensing Station

There are many ecohydrology and flux sites around China
(Figure 1), and these sites have provided various data for
environmental monitoring and remote sensing products val-
idation. With advanced observational techniques, abundant
data accumulation, and ability of carrying on multiscale
experiment, the Huailai Remote Sensing Station and around
(for short HuailaiS), located in Huailai, Hebei province,
China (40.349°N, 115.785°E), becomes one of the ideal study
areas for remote sensing algorithms/products validation and
scale effect research. The HuailaiS is mainly covered by irri-
gated corn and unirrigated corn. The differences in irrigation
condition and soil type distribution make the single land
cover area heterogeneous but continuously changing, which
characterize the problem of scale transformation from point-
measured parameters to pixel scale reference value.

The sinusoidal grid is one of the most widely used
grid schemes for global remote sensing products. For 1km
sinusoidal pixel covering HuailaiS (the green parallelogram
shown on the right of Figure 1), a 2km * 1.5km layout area
for CPP-WSN (the red square shown on the right of Figure 1)
is chosen in consideration of the adjacent pixels’ influence.

3. CPP-WSN Observations and Data Collection

3.1. Specifications of CPP-WSN and Sensor Intercomparison.
Considering the needs of validating various remote sensing
products and the different heterogeneity conditions of differ-
ent parameters, three categories of parameters are observed,
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TABLE 1: Specifications of WSNs’ parameters and sensors in CPP-WSN.

WSN Number of nodes Categories of parameters Observed parameters Sensors
Ultraviolet irradiance (UVR) CUV5
Photosynthetically active radiation (PAR) PQS1
Shortwave irradiance (SWR)

RadNet 6 Multiband radiation Shortwave albedo CNR4
Longwave irradiance (LWR)
Net radiation
Land surface temperature (LST) SI-111
5cm, 10 cm, 20 cm, and 40 cm soil EC-5

SoilNet 21 Multilayer soil parameters moisture
5cm, 10 cm, and 20 cm soil temperature PT100
Fraction of vegetation cover (FVC)

VegeNet 6 Vegetation parameters Leaf area index (LAI) Camera
Clumping index (CI)

including multiband upward/downward radiation, multilayer
soil moisture and temperature, and vegetation structure
parameters. Different layouts are required to capture the het-
erogeneity of each kind of parameters. Therefore, three WSNs
were established, namely, RadNet, SoilNet, and VegeNet.
The specifications of the three WSNs are shown in Table 1,
including WSN name, parameters’ category, observed param-
eters, and selected sensors. The three vegetation structural
parameters, that is, FVC, LAI, and CI, are estimated from
the camera-acquired true color image based on the improved
Lang and Xiang (LAILX) algorithm [18, 19].

Sensor intercomparison is commonly performed before
the establishment of observation network or experiment,
such as the First International Satellite Land Surface Clima-
tology Project Field Experiment (FIFE), the Energy Balance
Experiment (EBEX-2000), and the Heihe Watershed Allied
Telemetry Experimental Research (HIWATER) [20-22]. To
acquire reliable radiation data when multiple sensors observe
simultaneously, intercomparison is essential to ensure all
of these sensors have consistent performance. Thus, an
intercomparison experiment was carried out for RadNet
sensors/parameters, including CUV5/UVR, CNR4/SWR,
CNR4/LWR, PQSI1/PAR, and SI-111/LST. The intercompari-
son scene and acquired data of CNR4/SWR are shown in
Figure 2. All CNR4 sensors lay on the same horizontal plane
with identical solar radiation condition (Figure 2(a)), and
time series observations from various CNR4s were collected
for comparison (Figure 2(b)). The comparisons of other
sensors/parameters were conducted using the same method.

The measured parameters were collected and temporally
averaged for each individual sensor. The maximum relative
differences among sensors of UVR, SWR, LWR, PAR, and
LST are 4.83%, 5.3%, 3.71%, 11%, and 0.54%, respectively.
Sensor/parameter differences indeed exist and are consid-
erably large for PAR, SWR, UVR, and LWR, which cannot
be ignored. Thus, it is necessary to analyze and correct
the discrepancies among the sensors. The normalization
coeflicient, defined as the mean ratio of each sensor observed

value to the average value of all sensor observations, is
adopted to adjust the sensor observation (1). Consider
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n

K

where K is the normalization coeflicient, #n is the number
of sensor observations, v is observation value, and v is the
averaged observations of all sensors.

Table 2 lists the normalization coeflicients of employed
sensor parameters. The corrected observation value equals
the original observation value multiplied by the normaliza-
tion coefficient.

3.2. CPP-WSN Construction. Figure 3 shows the CPP-WSN
system for coarse scale pixel observation and near real-time
data sharing consists of the following components: WSN
nodes, data receiving/processing server, data sharing server,
and data sharing website. The observations of WSN nodes
are collected by data receiving/processing server via a 3G
network that is General Packet Radio Service (GPRS) and
then processed in near real-time. After quality control and
standardization, data together with the metadata is imported
into the data sharing database. Finally, the near real-time
CPP-WSN dataset is shared with self-explanatory metadata
on the data sharing website.

According to the needs of validating remote sensing prod-
ucts in coarse spatial resolution, three scientific objectives are
proposed and accomplished to establish the CPP-WSN.

3.2.1. Design of CPP-WSN Nodes. As the variation in vege-
tation density is the main driving factor for the variation of
radiation parameters in the study area, the nodes of RadNet
and VegeNet are bonded together, while SoilNet node was
designed separately, and both RadNet/VegeNet node and
SoilNet node consist of bracket, sensors, data collector, solar
panel, and battery, just as Figure 4 shows. The minimum
height of bracket and solar panel should be higher than



4 International Journal of Distributed Sensor Networks

1000 -
&
=]
g 800
3
5
£ 600}
<
E
i)
>
g 400 ¢
£
9]
<
w
200 .
f=} (=3 [=} (=3 [} (=3 (=3 (=3
< N X X % X % X
<t n — N <t n — N
X b 4 k3] 4 k3] h= =
Time
—— CNR4_1 ~— CNR4_4
—— CNR4_2 —— CNR4_5
—— CNR4_3 —— CNR4_6
(a) Scene of intercomparison (b) Observed shortwave irradiance

FIGURE 2: Intercomparison scene (a) and measured data (b) of CNR4/SWR.

i g l..D.ata sharing website

7/

Data receiving/
prodgss server

Data Data sharing server
standardizing

@
o g
© / () () (@) /
I/ ﬁ é A //
/ /
/ /
/I //
/ /
// () WSN node ) WSN node D) WSN node /
/ /I
/ /
/ //
// /
/ ()  WSNnode (¢  WSNnode () WSN node
I/ ﬁ ﬂ b
/
/
II
// WSN node WSN node WSN node

FIGURE 3: Archetype of CPP-WSN.

TaBLE 2: Normalization coefficients of RadNet parameters.

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6
UVR 0.9972 1.0279 0.9987 0.9868 0.9796 1.0113
SWR 0.9734 0.9994 1.0053 0.9990 1.0264 0.9989
LWR 1.0161 1.0189 0.9973 0.9932 0.9938 0.9818
PAR 1.0177 0.9422 1.0030 1.0391 0.9557 1.0522

LST 1.0019 0.9965 1.0014 0.9986 1.0007 1.0009
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FIGURE 4: Scene of RadNet/VegeNet node (a) and SoilNet node (b).

the height of canopy for solar energy supply. Thus, the bracket
height of SoilNet node is set to 2.5 m because the maximum
canopy height of observed area is about 2 m, while the bracket
height of RadNet/VegeNet node with above canopy bracket
height of wide field of view radiometer is set to 4m to
supply a large enough field of view for effective parameters
observation.

The observing period depends on the variation frequency
of parameter; for example, the instantaneous LST mea-
surement for synchronously validating the remote sensing
retrieved LST changes rapidly. However, the power supply
of solar panel is limited. Therefore, there is a compromise
strategy between the observing period and power supply
limitation. The observing period of RadNet and SoilNet is
set to 5 minutes, which is a typical frequency of global flux
observation station, to ensure a sustainable continuous obser-
vation in day and night. The VegeNet camera sensor works
twice a day at 12 oclock and 17 oclock, respectively. After
sampling, the observed voltages are preliminarily processed
to parameters.

3.2.2. Optimized Layout to Capture the Land Surface Het-
erogeneity. Different categories of parameters show different
heterogeneity within coarse pixel. According to the influence
of underground water, soil texture, irrigation condition,
and vegetation, the soil moisture and temperature have the
highest spatial variation. Therefore, dense grid layout should
be selected for SoilNet nodes, especially considering the lack
of a priori information of soil moisture and temperature dis-
tribution in the study area. The radiation (including albedo)
and vegetation parameters are mainly determined by the
planting structure and vegetation growth, and it is preferred
that they share the same layout for relevance and mutually
supportive study. In contrast to soil parameters, the radiation
and vegetation parameters have lower spatial variation and
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FIGURE 5: Cumulative representativeness for the 1km pixel with
different node number.

abundant a priori information retrieved from remote sensing
image. So, the heterogeneity of RadNet/VegeNet could be
captured using fewer nodes. As the radiation sensors (CUV5,
CNR4, PQSI, and SI-111) are expensive and fragile, it is also
a practical need to reduce the number of RadNet nodes
so long as the radiation parameters at the coarse-resolution
pixel scale can be satisfactorily represented by the nodes.
In this consideration, the representativeness-based sampling
method [23] is adopted to determine the node number and
location of the RadNet/VegeNet in CPP-WSN. The method
selects the point of highest representativeness as the location
for WSN node and multiple nodes are selected one by one
to increase the cumulative representativeness for 1km pixel.
Figure 5 reveals the cumulative representativeness for 1km
pixel increases with node number and approaches a steady
state after the sixth point. Therefore, the coarse-resolution
pixel could be well-represented by six nodes with cumulative
representativeness high to 99.1%.
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As shown in Figure 6, 6-node RadNet/VegeNet and 21-
node SoilNet were set up, respectively. The red points show
the layout of RadNet/VegeNet, and the green points show
the layout of SoilNet. The 1km pixel “true” value of radiation
parameters could be obtained by the weighted average of the
measurements at the 6 nodes, and the weights are calculated
according to the representativeness as well as covariance of
the nodes. The SoilNet consists of both the gridded nodes and
the nodes attached with RadNet. The 1 km pixel “true” value
of soil parameters could be yielded by the simple average
or the geostatistic interpolation of the measurements at all
nodes.

3.2.3. Automatic Data Transmission and Sharing. Near real-
time data transmission is not only important for data user,
but also essential for WSN maintenance to monitor the node
status and track bugs. GPRS is best-effort service, implying
variable throughput and latency that depend on the number
of other users sharing the service concurrently, as opposed to

circuit switching, where a certain quality of service (QoS) is
guaranteed during the connection [24]. It is one of the general
ways for real-time and stable wireless data transmission. Since
the data amount of CPP-WSN is large compared with general
wireless sensor networks, a 3G network via GPRS is adopted.

For energy saving, the WSN nodes send observation
data once per hour, and the data are listened and received by
remote data server. After the data are received, a time series
continuity check is performed and a gap-filling method
is taken to make time-continuous data by identifying and
filling the missing or invalid data. A further quality control
process is conducted to check if the data is effective and
mark the data with a quality flag. The data of RadNet and
SoilNet are packaged, and their self-description metadata
are produced every month. The data of VegeNet is true
color photo of the canopys; it is further processed to separate
green leaf from background and then used to estimate
the FVC, LAJ, and CI. A dataset is composed of both the
data and metadata and shared via an open access website
(http://rsesd.slrss.cn/WSNProj/business/product/datalist.jsp).
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4. Preliminary Applications of CPP-WSN Data

The main objective of CPP-WSN is to provide ground
“truth” at the coarse pixel scale over heterogeneous land
surface to assess the accuracy of remote sensing products or
algorithms. The RadNet data has been available since May
2013, and the SoilNet has been available since December 2012.
Many researchers have used the data for various validation
activities.

4.1. Remote Sensing Albedo Products Validation. Land sur-
face albedo observed by RadNet was upscaled to satel-
lite pixel scale using weighted average according to the
representativeness-based sampling method and then vali-
dated three albedo products, that is, MCD43B3, GLASS
albedo, and NPP VIIRS albedo products in 2014. Figure 7(a)
shows the scatterplot of the validation of 16-day 1km pixel
scale in situ observation and mean MCD43B3 albedo which is
with 1 km spatial resolution and 16-day temporal composition
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window. The WSN measurement is also upscaled to 1 km pixel
and averaged on the 16 days corresponding to MCD43B3
product. Figure 7(b) shows the scatterplot of the validation
of VIIRS albedo which is in 750 m spatial resolution and 1-
day temporal resolution. Only the inversion results on clear
sky conditions are selected. The in situ WSN measurements
are processed to the identical spatial and temporal resolution.
Figure 7(c) shows the scatterplot between 1km pixel scale
in situ observation and GLASS daily albedo in clear sky
conditions. All the three albedo products show similar and
acceptable accuracy, and the RMSEs are 0.023, 0.021, and
0.021, respectively, for MCD43B3, VIIRS, and GLASS. VIIRS
albedo on “strict clear days” shows less RMSE of 0.014 than
that of the “clear days” of this site [25].

4.2. Remote Sensing PAR Algorithm Validation. Observed
PAR data from RadNet was compared with the instanta-
neous PAR estimated from the geostationary and polar-
orbiting satellite data in spatial resolution of 5 km. Figure 8(a)
shows the scatterplot between derived instantaneous PAR
and measured instantaneous PAR under different climate
conditions; Figure 8(b) shows the scatterplot between the
measured instantaneous PAR and the retrieved instantaneous
PAR according to measured AOD in clear sky conditions. The
accuracy of retrieved PAR in clear sky is higher than retrieved
PAR in cloudy sky. With the assistance of measured AOD in
clear sky, the retrieved instantaneous PAR gets even higher
accuracy, and the RMSE decreases to 25.13 W/m? [8].

4.3. Remote Sensing LST Products Validation. The multipoint
measurements of ground LST were averaged as the pixel
scale value to validate different LST products, including
NPP VIIRS LST, Terra MODIS LST, and Aqua MODIS LST.
Figure 9(a) shows the scatterplot between ground LST and
NPP VIIRS LST; Figure 9(b) shows the scatterplot between
ground LST and Terra MODIS LST; Figure 9(c) shows

the scatterplot between ground LST and Aqua MODIS LST.
The daytime and nighttime LST were verified separately.
The NPP VIIRS LST shows higher accuracy than the Terra
MODIS LST and Aqua MODIS LST of this site.

4.4. Leaf Area Index (LAI) Products Validation. VegeNet at
Huailai Station was used to validate three MODIS C5 LAI
products, including MOD15A2, MYDI15A2, and MCDI15A2.
Figure 10 shows the time series comparison between the pixel
scale LAI reference values derived from WSN measurement
and the corresponding LAI of the three MODIS products.
The accuracy of MODI15A2 and MCDI5A2 is higher than
MYDI15A2 of this site. The mean RMSE of MODIS LA is 0.33,
and the relative uncertainty is 12.2% [9].

5. Conclusions

The CPP-WSN with consideration of the heterogeneity of
different parameters was established for the research of
parameters’ scale effect and the validation of remote sensing
products. And it achieves the near real-time data trans-
mission and standard data sharing for three categories of
parameters. Time series observations of land surface typical
parameters, including UVR, PAR, SWR, LWR, albedo, NR,
and LST from RadNet, multilayer soil moisture and soil
temperature from SoilNet, and FVC, LAI, and CI from
VegeNet, have been obtained and shared online. The WSN
measurements with multiple nodes can capture the spatial
variation of parameters in heterogeneous low-resolution
pixel. Based on optimized layout and precalculated weights,
the parameters measured with WSN can be upscaled to the
scale of low-resolution pixels. So, it provides a more accurate
reference value for validating the remote sensing products
than the traditional single-point value.

The dataset has been shared and many researchers have
started to use it to assess a variety of remote sensing
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FIGURE 9: Validation of three land surface temperature products.

products. The preliminary results show good consistency
between remote sensing products and the reference values
acquired with CPP-WSN, indicating that the system is run-
ning smoothly and fulfills its scientific goal. However, more
sites and longer time series of good quality observations

are needed for comprehensive validation of remote sensing
products and strict calibration for the WSN sensors and
improvement to the upscaling scheme are also needed to
support the high quality of the reference values in coarse pixel
scale. These show our further research direction.
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