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Abstract. 
Suffiicient and realistic conditions are established in this paper for the existence and global attractivity of a positive periodic solution to the neutral multidelay logarithmic population model with impulse by using the theory of abstract continuous theorem of k-set contractive operator and some inequality techniques. The results improve and generalize the known ones in Li 1999, Lu and Ge 2004, Y. Luo and Z. G. Luo 2010, and Wang et al. 2009. As an application, we also give an example to illustrate the feasibility of our main results.
 

1. Introduction
  In this paper, we investigate the existence and uniqueness of the positive periodic solution of the following neutral population system with multiple delays and impulse:
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				𝑑
				𝑁
				(
				𝑡
				)
			

			
				
			
			
				
				−
				𝑑
				𝑡
				=
				𝑁
				(
				𝑡
				)
				𝑟
				(
				𝑡
				)
				−
				𝑎
				(
				𝑡
				)
				l
				n
				𝑁
				(
				𝑡
				)
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑏
			

			

				𝑖
			

			
				
				(
				𝑡
				)
				l
				n
				𝑁
				𝑡
				−
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				𝑖
			

			
				
				−
				(
				𝑡
				)
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			

				𝑗
			

			
				
				(
				𝑡
				)
			

			
				𝑡
				−
				∞
			

			

				𝐾
			

			

				𝑗
			

			
				−
				(
				𝑡
				−
				𝑠
				)
				l
				n
				𝑁
				(
				𝑠
				)
				𝑑
				𝑠
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			

				𝑑
			

			

				𝑙
			

			
				
				(
				𝑡
				)
				𝑑
				l
				n
				𝑁
				𝑡
				−
				𝜏
			

			

				𝑙
			

			
				
				(
				𝑡
				)
			

			
				
			
			
				
				𝑑
				𝑡
				,
				𝑡
				≠
				𝑡
			

			

				𝑘
			

			
				,
				𝑁
				
				𝑡
			

			
				+
				𝑘
			

			
				
				=
				𝑒
			

			
				(
				1
				+
				𝜃
			

			

				𝑘
			

			

				)
			

			
				𝑁
				
				𝑡
			

			

				𝑘
			

			
				
				,
				𝑘
				=
				1
				,
				2
				,
				…
				,
			

		
	

					with the following initial conditions:
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				𝑁
				(
				𝜉
				)
				=
				𝜑
				(
				𝜉
				)
				,
				𝑁
			

			

				
			

			
				(
				𝜉
				)
				=
				𝜑
			

			

				
			

			
				[
				]
				
				[
				(
				𝜉
				)
				,
				𝜉
				∈
				−
				𝜏
				,
				0
				,
				𝜑
				(
				0
				)
				>
				0
				,
				𝜑
				∈
				𝐶
				−
				𝜏
				,
				0
				)
				,
				𝑅
			

			

				+
			

			
				
				
				𝐶
			

			

				1
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				−
				𝜏
				,
				0
				)
				)
				,
				𝑅
			

			

				+
			

			

				,
			

		
	

					where 
	
		
			
				𝑟
				(
				𝑡
				)
				,
				𝑎
				(
				𝑡
				)
				,
				𝑏
			

			

				𝑖
			

			
				(
				𝑡
				)
				,
				𝑐
			

			

				𝑗
			

			
				(
				𝑡
				)
				,
				𝑑
			

			

				𝑙
			

			
				(
				𝑡
				)
				,
				𝜎
			

			

				𝑖
			

			
				(
				𝑡
				)
				,
				𝜏
			

			

				𝑙
			

			
				(
				𝑡
				)
			

		
	
 are positive continuous 
	
		
			

				𝜔
			

		
	
-periodic functions with 
	
		
			

				𝜎
			

			

				𝑖
			

			
				(
				𝑡
				)
				≥
				0
				,
				𝜏
			

			

				𝑙
			

			
				(
				𝑡
				)
				≥
				0
				,
				𝑡
				∈
				[
				0
				,
				𝜔
				]
				,
				𝜏
				=
				m
				a
				x
				{
				𝜎
			

			

				𝑖
			

			
				(
				𝑡
				)
				,
				𝜏
			

			

				𝑙
			

			
				(
				𝑡
				)
				}
				,
				𝜎
			

			
				
				𝑖
			

			
				(
				𝑡
				)
				<
				1
				,
				𝜏
			

			
				
				𝑙
			

			
				(
				𝑡
				)
				<
				1
				,
				f
				o
				r
				a
				l
				l
				𝑖
				=
				{
				1
				,
				2
				,
				…
				,
				𝑛
				}
				,
				f
				o
				r
				a
				l
				l
				𝑙
				=
				{
				1
				,
				2
				,
				…
				,
				𝑝
				}
			

		
	
. Furthermore,
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				𝜏
			

			

				𝑙
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				𝑅
				)
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				∞
				0
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				𝑗
			

			
				∫
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				𝑠
				)
				𝑑
				𝑠
				=
				1
				,
			

			
				0
				+
				∞
			

			
				𝑠
				𝐾
			

			

				𝑗
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				<
				+
				∞
				,
				f
				o
				r
				a
				l
				l
				𝑗
				=
				{
				1
				,
				2
				,
				…
				,
				𝑚
				}
			

		
	
, for all 
	
		
			
				𝑙
				=
				{
				1
				,
				2
				,
				…
				,
				𝑝
				}
			

		
	
. For the ecological justification of (1) and similar types refer to [1–7]. In recent years, Gopalsamy [1] and Kirlinger [2] had proposed the following single species logarithmic model:
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				𝑁
			

			

				
			

			
				[
				]
				.
				(
				𝑡
				)
				=
				𝑁
				(
				𝑡
				)
				𝑎
				−
				𝑏
				l
				n
				𝑁
				(
				𝑡
				)
				−
				𝑐
				l
				n
				𝑁
				(
				𝑡
				−
				𝜏
				)
			

		
	

In [3], Li considered the following nonautonomous single species logarithmic model: 
						
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			

				𝑁
			

			

				
			

			
				[
				]
				.
				(
				𝑡
				)
				=
				𝑁
				(
				𝑡
				)
				𝑎
				(
				𝑡
				)
				−
				𝑏
				(
				𝑡
				)
				l
				n
				𝑁
				(
				𝑡
				)
				−
				𝑐
				(
				𝑡
				)
				l
				n
				𝑁
				(
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
			

		
	

					He used the continuation theorem of the coincidence degree theory to establish sufficient conditions for the existence and attractivity of positive periodic solutions of the system (4).
For more works on the periodic solution of the neutral type logistic model or the Lotka-Volterra model, see [8–12] for details. Only little scholars considered the neutral logarithmic model (see [4–7]). Li [4] had studied the following single species neutral logarithmic model:
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				
			

			
				
				(
				𝑡
				)
				=
				𝑁
				(
				𝑡
				)
				𝑟
				(
				𝑡
				)
				−
				𝑎
				(
				𝑡
				)
				l
				n
				𝑁
				(
				𝑡
				−
				𝜎
				)
				−
				𝑏
				(
				𝑡
				)
				(
				l
				n
				𝑁
				(
				𝑡
				−
				𝜂
				)
				)
			

			

				
			

			
				
				.
			

		
	
Lu and Ge [5] and Y. Luo and Z. G. Luo [6] employed an abstract continuous theorem of 
	
		
			

				𝑘
			

		
	
-set contractive operator to investigate the following equation:
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				
			

			
				
				(
				𝑡
				)
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				𝑁
				(
				𝑡
				)
				𝑟
				(
				𝑡
				)
				−
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑎
			

			

				𝑗
			

			
				
				(
				𝑡
				)
				l
				n
				𝑁
				𝑡
				−
				𝜎
			

			

				𝑗
			

			
				
				−
				(
				𝑡
				)
			

			

				𝑚
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑏
			

			

				𝑖
			

			
				
				
				(
				𝑡
				)
				l
				n
				𝑁
				𝑡
				−
				𝜏
			

			

				𝑖
			

			
				(
				𝑡
				)
				
				
			

			

				
			

			
				
				.
			

		
	

					They established some criteria to guarantee the existence of positive periodic solutions of the system (6), respectively.
In [7], Wang et al. had investigated the existence and uniqueness of the positive periodic solution of the following neutral multispecies logarithmic population model:
						
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			

				𝑁
			

			

				
			

			
				
				−
				(
				𝑡
				)
				=
				𝑁
				(
				𝑡
				)
				𝑟
				(
				𝑡
				)
				−
				𝑎
				(
				𝑡
				)
				l
				n
				𝑁
				(
				𝑡
				)
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑏
			

			

				𝑗
			

			
				
				(
				𝑡
				)
				l
				n
				𝑁
				𝑡
				−
				𝜏
			

			

				𝑗
			

			
				
				−
				(
				𝑡
				)
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			

				𝑗
			

			
				
				(
				𝑡
				)
			

			
				𝑡
				−
				∞
			

			

				𝑘
			

			

				𝑗
			

			
				−
				(
				𝑡
				−
				𝑠
				)
				l
				n
				𝑁
				(
				(
				𝑠
				)
				)
				𝑑
				𝑠
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑑
			

			

				𝑗
			

			
				(
				
				
				𝑡
				)
				l
				n
				𝑁
				𝑡
				−
				𝜂
			

			

				𝑗
			

			
				(
				𝑡
				)
				
				
			

			

				
			

			
				
				.
			

		
	

					By using an abstract continuous theorem of a 
	
		
			

				𝑘
			

		
	
-set contractive operator, the criteria are established for the existence and global attractivity of positive periodic solutions for model (7).
On the other hand, there are some other perturbations in the real world such as fires and floods, which are not suitable to be considered continually. These perturbations bring sudden changes to the system. Systems with such sudden perturbations involving impulsive differential equations have attracted the interest of many researchers in the past twenty years [13–19], since they provide a natural description of several real processes subject to certain perturbations whose duration is negligible in comparison with the duration of the process. Such processes are often investigated in various fields of science and technology such as physics, population dynamics, ecology, biological systems, and optimal control. For details, see [20–22].
However, to this day, no scholars had done works on the existence, uniqueness, and global stability of the positive periodic solution of (1). One could easily see that the systems (5)–(7) are all special cases of the system (1). Therefore, we propose and study the system (1) in this paper.
Throughout this paper, we make the following notations.
Let 
	
		
			
				𝜔
				>
				0
			

		
	
 be a constant,  
	
		
			

				𝐶
			

			

				𝜔
			

			
				=
				{
				𝑥
				∣
				𝑥
				∈
				𝐶
				(
				𝑅
				,
				𝑅
				)
				,
				𝑥
				(
				𝑡
				+
				𝜔
				)
				=
				𝑥
				(
				𝑡
				)
				}
			

		
	
, with the norm defined by 
	
		
			
				|
				𝑥
				|
			

			

				0
			

			
				=
				m
				a
				x
			

			
				𝑡
				∈
				[
				0
				,
				𝜔
				]
			

			
				|
				𝑥
				(
				𝑡
				)
				|
			

		
	
, 
	
		
			

				𝐶
			

			
				1
				𝜔
			

			
				=
				{
				𝑥
				∣
				𝑥
				∈
				𝐶
			

			

				1
			

			
				(
				𝑅
				,
				𝑅
				)
				,
				𝑥
				(
				𝑡
				+
				𝜔
				)
				=
				𝑥
				(
				𝑡
				)
				}
			

		
	
, with the norm defined by 
	
		
			
				‖
				𝑥
				‖
				=
				m
				a
				x
			

			
				𝑡
				∈
				[
				0
				,
				𝜔
				]
			

			
				{
				|
				𝑥
				|
			

			

				0
			

			
				,
				|
				𝑥
			

			

				
			

			

				|
			

			

				0
			

			

				}
			

		
	
. 

				Then, those spaces are both Banach spaces. We also denote that
						
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				
			
			
				1
				ℎ
				=
			

			
				
			
			
				𝜔
				
			

			
				𝜔
				0
			

			
				ℎ
				(
				𝑡
				)
				𝑑
				𝑡
				,
				f
				o
				r
				a
				n
				y
				ℎ
				∈
				𝑃
				𝐶
			

			

				𝜔
			

			

				.
			

		
	

For the sake of generality and convenience, we always make the following fundamental assumptions:
	
		
			
				(
				𝐻
			

			

				1
			

			

				)
			

		
	

	
		
			
				𝑟
				(
				𝑡
				)
				,
				𝑎
				(
				𝑡
				)
				,
				𝑏
			

			

				𝑖
			

			
				(
				𝑡
				)
				,
				𝑐
			

			

				𝑗
			

			
				(
				𝑡
				)
				,
				𝑑
			

			

				𝑙
			

			
				(
				𝑡
				)
				,
				𝜎
			

			

				𝑖
			

			
				(
				𝑡
				)
				,
				𝜏
			

			

				𝑙
			

			
				(
				𝑡
				)
				(
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑛
				;
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑚
				;
				𝑙
				=
				1
				,
				2
				,
				…
				,
				𝑝
				)
			

		
	
 are all positive periodic continuous functions with period 
	
		
			
				𝜔
				>
				0
			

		
	
;
	
		
			
				(
				𝐻
			

			

				2
			

			

				)
			

		
	

	
		
			
				0
				<
				𝑡
			

			

				1
			

			
				<
				𝑡
			

			

				2
			

			
				<
				⋯
				<
				𝑡
			

			

				𝑘
			

			
				<
				⋯
			

		
	
 are fixed impulsive points with 
	
		
			
				l
				i
				m
			

			
				𝑘
				→
				∞
			

			

				𝑡
			

			

				𝑘
			

			
				=
				+
				∞
			

		
	
;
	
		
			
				(
				𝐻
			

			

				3
			

			

				)
			

		
	

	
		
			
				{
				𝜃
			

			

				𝑘
			

			

				}
			

		
	
 is a real sequence such that 
	
		
			

				𝜃
			

			

				𝑘
			

			
				+
				1
				>
				0
			

		
	
, and 
	
		
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑘
			

			
				<
				𝑡
			

			
				(
				1
				+
				𝜃
			

			

				𝑘
			

			

				)
			

		
	
 is an 
	
		
			

				𝜔
			

		
	
-periodic function.
In the following section, some definitions and some useful lemmas are listed. In the third section, by using an abstract continuous theorem of 
	
		
			

				𝑘
			

		
	
-set contractive operator and some inequality techniques, we acquired some sufficient conditions which ensure the existence and uniqueness of the positive periodic solution of the systems (1) and (2). Finally, we give an example to show our results.
2. Preliminaries
In order to obtain the existence and uniqueness of a periodic solution for the systems (1) and (2), we first give some definitions and lemmas.
Definition 1 (see [21]).  A function 
	
		
			
				𝑁
				∶
				𝑅
				→
				(
				0
				,
				+
				∞
				)
			

		
	
 is said to be a positive solution of (1) and (2), if the following conditions are satisfied:(a)
	
		
			
				𝑁
				(
				𝑡
				)
			

		
	
 is absolutely continuous on each 
	
		
			
				(
				𝑡
			

			

				𝑘
			

			
				,
				𝑡
			

			
				𝑘
				+
				1
			

			

				)
			

		
	
;(b)for each 
	
		
			
				𝑘
				∈
				𝑍
			

			

				+
			

			
				,
				𝑁
				(
				𝑡
			

			
				+
				𝑘
			

			

				)
			

		
	
 and 
	
		
			
				𝑁
				(
				𝑡
			

			
				−
				𝑘
			

			

				)
			

		
	
 exist and 
	
		
			
				𝑁
				(
				𝑡
			

			
				−
				𝑘
			

			
				)
				=
				𝑁
				(
				𝑡
			

			

				𝑘
			

			

				)
			

		
	
;(c)
	
		
			
				𝑁
				(
				𝑡
				)
			

		
	
 satisfies the first equation of (1) and (2) for almost everywhere (for short a.e.) in 
	
		
			
				[
				0
				,
				∞
				]
				⧵
				{
				𝑡
			

			

				𝑘
			

			

				}
			

		
	
 and satisfies 
	
		
			
				𝑁
				(
				𝑡
			

			
				+
				𝑘
			

			
				)
				=
				(
				1
				+
				𝜃
			

			

				𝑘
			

			
				)
				𝑁
				(
				𝑡
			

			

				𝑘
			

			

				)
			

		
	
 for 
	
		
			
				𝑡
				=
				𝑡
			

			

				𝑘
			

			
				,
				𝑘
				∈
				𝑍
			

			

				+
			

			
				=
				{
				1
				,
				2
				,
				…
				}
			

		
	
.
Definition 2. The system (1) is said to be globally attractive, if there exists a positive solution 
	
		
			
				𝑥
				(
				𝑡
				)
			

		
	
 of (1) such that 
	
		
			
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			
				|
				𝑥
				(
				𝑡
				)
				−
				𝑦
				(
				𝑡
				)
				|
				=
				0
			

		
	
 for any other positive solution 
	
		
			
				𝑦
				(
				𝑡
				)
			

		
	
 of (1).
We can easily get the following Lemma 3.
Lemma 3.  The region 
	
		
			
				𝑅
				=
				{
				𝑁
				(
				𝑡
				)
				∶
				𝑁
				(
				0
				)
				>
				0
				,
				𝑡
				≥
				0
				}
			

		
	
 is invariant with respect to (1).
 Proof. In view of biological population, we obtain 
	
		
			
				𝑁
				(
				0
				)
				>
				0
			

		
	
. By the system (1), we have 
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				𝑁
				
				
				(
				𝑡
				)
				=
				𝑁
				(
				0
				)
				×
				e
				x
				p
			

			
				𝑡
				0
			

			
				
				−
				𝑟
				(
				𝜂
				)
				−
				𝑎
				(
				𝜂
				)
				l
				n
				𝑁
				(
				𝜂
				)
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑏
			

			

				𝑖
			

			
				(
				
				𝜂
				)
				l
				n
				𝑁
				𝜂
				−
				𝜎
			

			

				𝑖
			

			
				(
				
				−
				𝜂
				)
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			

				𝑗
			

			
				
				(
				𝜂
				)
			

			
				𝑡
				−
				∞
			

			

				𝐾
			

			

				𝑗
			

			
				−
				(
				𝜂
				−
				𝑠
				)
				l
				n
				𝑁
				(
				𝑠
				)
				𝑑
				𝑠
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			

				𝑑
			

			

				𝑙
			

			
				
				(
				𝜂
				)
				𝑑
				l
				n
				𝑁
				𝜂
				−
				𝜏
			

			

				𝑙
			

			
				
				(
				𝜂
				)
			

			
				
			
			
				
				
				
				𝑑
				𝜂
				𝑑
				𝜂
				>
				0
				,
				𝑡
				∈
				0
				,
				𝑡
			

			

				1
			

			
				
				,
				
				𝑡
				𝑁
				(
				𝑡
				)
				=
				𝑁
			

			

				𝑘
			

			
				
				
				
				×
				e
				x
				p
			

			
				𝑡
				𝑡
			

			

				𝑘
			

			
				
				−
				𝑟
				(
				𝜂
				)
				−
				𝑎
				(
				𝜂
				)
				l
				n
				𝑁
				(
				𝜂
				)
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑏
			

			

				𝑖
			

			
				
				(
				𝜂
				)
				l
				n
				𝑁
				𝜂
				−
				𝜎
			

			

				𝑖
			

			
				
				−
				(
				𝜂
				)
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			

				𝑗
			

			
				
				(
				𝜂
				)
			

			
				𝑡
				−
				∞
			

			

				𝐾
			

			

				𝑗
			

			
				−
				(
				𝜂
				−
				𝑠
				)
				l
				n
				𝑁
				(
				𝑠
				)
				𝑑
				𝑠
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			

				𝑑
			

			

				𝑙
			

			
				
				(
				𝜂
				)
				𝑑
				l
				n
				𝑁
				𝜂
				−
				𝜏
			

			

				𝑙
			

			
				
				(
				𝜂
				)
			

			
				
			
			
				
				
				
				𝑡
				𝑑
				𝜂
				𝑑
				𝜂
				>
				0
				,
				𝑡
				∈
			

			

				𝑘
			

			
				,
				𝑡
			

			
				𝑘
				+
				1
			

			
				
				,
				𝑁
				
				𝑡
			

			
				+
				𝑘
			

			
				
				=
				𝑒
			

			
				(
				1
				+
				𝜃
			

			

				𝑘
			

			

				)
			

			
				𝑁
				
				𝑡
			

			

				𝑘
			

			
				
				>
				0
				,
				𝑘
				∈
				𝑁
				.
			

		
	

						Then, the solution of (1) and (2) is positive.
					Under the above hypotheses 
	
		
			
				(
				𝐻
			

			

				1
			

			
				)
				-
				-
				(
				𝐻
			

			

				3
			

			

				)
			

		
	
, we consider the following neutral nonimpulsive system:
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				𝑑
				𝑦
				(
				𝑡
				)
			

			
				
			
			
				
				−
				𝑑
				𝑡
				=
				𝑦
				(
				𝑡
				)
				𝑟
				(
				𝑡
				)
				−
				𝐴
				(
				𝑡
				)
				l
				n
				𝑦
				(
				𝑡
				)
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝐵
			

			

				𝑖
			

			
				
				(
				𝑡
				)
				l
				n
				𝑦
				𝑡
				−
				𝜎
			

			

				𝑖
			

			
				
				−
				(
				𝑡
				)
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝐶
			

			

				𝑗
			

			
				
				(
				𝑡
				)
			

			
				𝑡
				−
				∞
			

			

				𝐾
			

			

				𝑗
			

			
				−
				(
				𝑡
				−
				𝑠
				)
				l
				n
				𝑦
				(
				𝑠
				)
				𝑑
				𝑠
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			

				𝐷
			

			

				𝑙
			

			
				(
				
				𝑡
				)
				𝑑
				l
				n
				𝑦
				𝑡
				−
				𝜏
			

			

				𝑙
			

			
				
				(
				𝑡
				)
			

			
				
			
			
				
				,
				𝑑
				𝑡
			

		
	

						with the following initial conditions:
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				𝑦
				(
				𝜉
				)
				=
				𝜑
				(
				𝜉
				)
				,
				𝑦
			

			

				
			

			
				(
				𝜉
				)
				=
				𝜑
			

			

				
			

			
				[
				]
				
				[
				(
				𝜉
				)
				,
				𝜉
				∈
				−
				𝜏
				,
				0
				,
				𝜑
				(
				0
				)
				>
				0
				,
				𝜑
				∈
				𝐶
				−
				𝜏
				,
				0
				)
				,
				𝑅
			

			

				+
			

			
				
				
				𝐶
			

			

				1
			

			
				(
				[
				−
				𝜏
				,
				0
				)
				)
				,
				𝑅
			

			

				+
			

			

				,
			

		
	

						where
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				
				𝐴
				(
				𝑡
				)
				=
				𝑎
				(
				𝑡
				)
			

			
				0
				<
				𝑡
			

			

				𝑘
			

			
				<
				𝑡
			

			
				
				1
				+
				𝜃
			

			

				𝑘
			

			
				
				,
				𝐵
			

			

				𝑖
			

			
				(
				𝑡
				)
				=
				𝑏
			

			

				𝑖
			

			
				
				(
				𝑡
				)
			

			
				0
				<
				𝑡
			

			

				𝑘
			

			
				<
				𝑡
				−
				𝜎
			

			

				𝑖
			

			
				(
				𝑡
				)
			

			
				
				1
				+
				𝜃
			

			

				𝑘
			

			
				
				,
				𝐶
			

			

				𝑗
			

			
				(
				𝑡
				)
				=
				𝑐
			

			

				𝑗
			

			
				
				(
				𝑡
				)
			

			
				0
				<
				𝑡
			

			

				𝑘
			

			
				<
				𝑡
			

			
				
				1
				+
				𝜃
			

			

				𝑘
			

			
				
				,
				𝐷
			

			

				𝑙
			

			
				(
				𝑡
				)
				=
				𝑑
			

			

				𝑙
			

			
				
				(
				𝑡
				)
			

			
				0
				<
				𝑡
			

			

				𝑘
			

			
				<
				𝑡
				−
				𝜏
			

			

				𝑙
			

			
				(
				𝑡
				)
			

			
				
				1
				+
				𝜃
			

			

				𝑘
			

			
				
				.
			

		
	

						By a solution 
	
		
			
				𝑦
				(
				𝑡
				)
			

		
	
 of (10) and (11), it means an absolutely continuous function 
	
		
			
				𝑦
				(
				𝑡
				)
			

		
	
 defined on 
	
		
			
				[
				−
				𝜏
				,
				0
				]
			

		
	
 that satisfies (10) a.e., for 
	
		
			
				𝑡
				≥
				0
			

		
	
, and 
	
		
			
				𝑦
				(
				𝜉
				)
				=
				𝜑
				(
				𝜉
				)
				,
				𝑦
			

			

				
			

			
				(
				𝜉
				)
				=
				𝜑
			

			

				
			

			
				(
				𝜉
				)
			

		
	
 on 
	
		
			
				[
				−
				𝜏
				,
				0
				]
			

		
	
.The following lemmas will be used in the proofs of our results, and the proof of the lemma is similar to that of Theorem 1 in [13]. 
Lemma 4.  Suppose that 
	
		
			
				(
				𝐻
			

			

				1
			

			
				)
				-
				-
				(
				𝐻
			

			

				4
			

			

				)
			

		
	
 hold. Then, (1)if 
	
		
			
				𝑦
				(
				𝑡
				)
			

		
	
 is a solution of (10) and (11) on 
	
		
			
				[
				−
				𝜏
				,
				+
				∞
				)
			

		
	
, then 
	
		
			
				∏
				𝑁
				(
				𝑡
				)
				=
			

			
				0
				<
				𝑡
			

			

				𝑘
			

			
				<
				𝑡
			

			

				𝑒
			

			
				(
				1
				+
				𝜃
			

			

				𝑘
			

			

				)
			

			
				𝑦
				(
				𝑡
				)
			

		
	
 is a solution of (1) and (2) on 
	
		
			
				[
				−
				𝜏
				,
				+
				∞
				)
			

		
	
;(2)if 
	
		
			
				𝑁
				(
				𝑡
				)
			

		
	
 is a solution of (1) and (2) on 
	
		
			
				[
				−
				𝜏
				,
				+
				∞
				)
			

		
	
, then 
	
		
			
				∏
				𝑦
				(
				𝑡
				)
				=
			

			
				0
				<
				𝑡
			

			

				𝑘
			

			
				<
				𝑡
			

			
				(
				𝑒
			

			
				(
				1
				+
				𝜃
			

			

				𝑘
			

			

				)
			

			

				)
			

			
				−
				1
			

			
				𝑁
				(
				𝑡
				)
			

		
	
 is a solution of (10) and (11) on 
	
		
			
				[
				−
				𝜏
				,
				+
				∞
				)
			

		
	
.
Proof. 
	
		
			
				(
				1
				)
			

		
	
 It is easy to see that 
	
		
			
				∏
				𝑁
				(
				𝑡
				)
				=
			

			
				0
				<
				𝑡
			

			

				𝑘
			

			
				<
				𝑡
			

			

				𝑒
			

			
				(
				1
				+
				𝜃
			

			

				𝑘
			

			

				)
			

			
				𝑦
				(
				𝑡
				)
			

		
	
 is absolutely continuous on every interval 
	
		
			
				(
				𝑡
			

			

				𝑘
			

			
				,
				𝑡
			

			
				𝑘
				+
				1
			

			
				]
				,
				𝑡
				≠
				𝑡
			

			

				𝑘
			

			
				,
				𝑘
				=
				1
				,
				2
				,
				…
			

		
	
,
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			

				𝑁
			

			

				
			

			
				
				−
				(
				𝑡
				)
				−
				𝑁
				(
				𝑡
				)
				𝑟
				(
				𝑡
				)
				−
				𝑎
				(
				𝑡
				)
				l
				n
				𝑁
				(
				𝑡
				)
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑏
			

			

				𝑖
			

			
				
				(
				𝑡
				)
				l
				n
				𝑁
				𝑡
				−
				𝜎
			

			

				𝑖
			

			
				
				−
				(
				𝑡
				)
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			

				𝑗
			

			
				
				(
				𝑡
				)
			

			
				𝑡
				−
				∞
			

			

				𝐾
			

			

				𝑗
			

			
				−
				(
				𝑡
				−
				𝑠
				)
				l
				n
				𝑁
				(
				𝑠
				)
				𝑑
				𝑠
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			

				𝑑
			

			

				𝑙
			

			
				(
				
				𝑡
				)
				𝑑
				𝑁
				𝑡
				−
				𝜏
			

			

				𝑙
			

			
				
				(
				𝑡
				)
			

			
				
			
			
				
				=
				
				𝑑
				𝑡
			

			
				0
				<
				𝑡
			

			

				𝑘
			

			
				<
				𝑡
			

			

				𝑒
			

			
				(
				1
				+
				𝜃
			

			

				𝑘
			

			

				)
			

			

				𝑦
			

			

				
			

			
				−
				
				(
				𝑡
				)
			

			
				0
				<
				𝑡
			

			

				𝑘
			

			
				<
				𝑡
			

			

				𝑒
			

			
				(
				1
				+
				𝜃
			

			

				𝑘
			

			

				)
			

			
				×
				⎡
				⎢
				⎢
				⎣
				
				𝑦
				(
				𝑡
				)
				𝑟
				(
				𝑡
				)
				−
				𝑎
				(
				𝑡
				)
			

			
				0
				<
				𝑡
			

			

				𝑘
			

			
				<
				𝑡
			

			
				
				1
				+
				𝜃
			

			

				𝑘
			

			
				
				−
				l
				n
				𝑦
				(
				𝑡
				)
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑏
			

			

				𝑖
			

			
				
				(
				𝑡
				)
			

			
				0
				<
				𝑡
			

			

				𝑘
			

			
				<
				𝑡
				−
				𝜎
			

			

				𝑖
			

			
				(
				𝑡
				)
			

			
				
				1
				+
				𝜃
			

			

				𝑘
			

			
				
				
				×
				l
				n
				𝑦
				𝑡
				−
				𝜎
			

			

				𝑖
			

			
				
				−
				(
				𝑡
				)
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			

				𝑗
			

			
				
				(
				𝑡
				)
			

			
				𝑡
				−
				∞
			

			

				𝐾
			

			

				𝑗
			

			
				×
				
				(
				𝑡
				−
				𝑠
				)
			

			
				0
				<
				𝑡
			

			

				𝑘
			

			
				<
				𝑡
			

			
				
				1
				+
				𝜃
			

			

				𝑘
			

			
				
				−
				l
				n
				𝑦
				(
				𝑠
				)
				𝑑
				𝑠
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			

				𝑑
			

			

				𝑙
			

			
				
				(
				𝑡
				)
			

			
				0
				<
				𝑡
			

			

				𝑘
			

			
				<
				𝑡
				−
				𝜏
			

			

				𝑙
			

			
				(
				𝑡
				)
			

			
				
				1
				+
				𝜃
			

			

				𝑘
			

			
				
				×
				
				𝑑
				𝑦
				𝑡
				−
				𝜏
			

			

				𝑙
			

			
				
				(
				𝑡
				)
			

			
				
			
			
				⎤
				⎥
				⎥
				⎦
				=
				
				𝑑
				𝑡
			

			
				0
				<
				𝑡
			

			

				𝑘
			

			
				<
				𝑡
			

			

				𝑒
			

			
				(
				1
				+
				𝜃
			

			

				𝑘
			

			

				)
			

			
				×
				
				𝑦
			

			

				
			

			
				×
				
				−
				(
				𝑡
				)
				−
				𝑦
				(
				𝑡
				)
				𝑟
				(
				𝑡
				)
				−
				𝐴
				(
				𝑡
				)
				l
				n
				𝑦
				(
				𝑡
				)
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝐵
			

			

				𝑖
			

			
				
				(
				𝑡
				)
				l
				n
				𝑦
				𝑡
				−
				𝜎
			

			

				𝑖
			

			
				
				−
				(
				𝑡
				)
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝐶
			

			

				𝑗
			

			
				
				(
				𝑡
				)
			

			
				𝑡
				−
				∞
			

			

				𝐾
			

			

				𝑗
			

			
				−
				(
				𝑡
				−
				𝑠
				)
				l
				n
				𝑦
				(
				𝑠
				)
				𝑑
				𝑠
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝐷
			

			

				𝑙
			

			
				
				(
				𝑡
				)
				𝑑
				𝑦
				𝑡
				−
				𝜏
			

			

				𝑙
			

			
				
				(
				𝑡
				)
			

			
				
			
			
				𝑑
				𝑡
				
				
				=
				0
				.
			

		
	

						On the other hand, for any 
	
		
			
				𝑡
				=
				𝑡
			

			

				𝑘
			

			
				,
				𝑘
				=
				1
				,
				2
				,
				…
			

		
	
,
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				𝑁
				
				𝑡
			

			
				+
				𝑘
			

			
				
				=
				l
				i
				m
			

			
				𝑡
				→
				𝑡
			

			
				+
				𝑘
			

			

				
			

			
				0
				<
				𝑡
			

			

				𝑗
			

			
				<
				𝑡
			

			

				𝑒
			

			
				(
				1
				+
				𝜃
			

			

				𝑘
			

			

				)
			

			
				=
				
				𝑦
				(
				𝑡
				)
			

			
				0
				<
				𝑡
			

			

				𝑗
			

			
				≤
				𝑡
			

			

				𝑘
			

			

				𝑒
			

			
				(
				1
				+
				𝜃
			

			

				𝑘
			

			

				)
			

			
				𝑦
				
				𝑡
			

			

				𝑘
			

			
				
				,
				𝑁
				
				𝑡
			

			

				𝑘
			

			
				
				=
				
			

			
				0
				<
				𝑡
			

			

				𝑗
			

			
				<
				𝑡
			

			

				𝑘
			

			

				𝑒
			

			
				(
				1
				+
				𝜃
			

			

				𝑘
			

			

				)
			

			
				𝑦
				
				𝑡
			

			

				𝑘
			

			
				
				,
			

		
	

						thus,
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				𝑁
				
				𝑡
			

			
				+
				𝑘
			

			
				
				=
				𝑒
			

			
				(
				1
				+
				𝜃
			

			

				𝑘
			

			

				)
			

			
				𝑁
				
				𝑡
			

			

				𝑘
			

			
				
				,
				𝑘
				=
				1
				,
				2
				,
				…
				.
			

		
	

						It follows from (13)–(15) that 
	
		
			

				𝑁
			

			

				𝑖
			

			
				(
				𝑡
				)
			

		
	
 is a solution of (1) and (2).
	
		
			
				(
				2
				)
			

		
	
 Since 
	
		
			
				∏
				𝑁
				(
				𝑡
				)
				=
			

			
				0
				<
				𝑡
			

			

				𝑘
			

			
				<
				𝑡
			

			

				𝑒
			

			
				(
				1
				+
				𝜃
			

			

				𝑘
			

			

				)
			

			
				𝑦
				(
				𝑡
				)
			

		
	
 is absolutely continuous on every interval 
	
		
			
				(
				𝑡
			

			

				𝑘
			

			
				,
				𝑡
			

			
				𝑘
				+
				1
			

			
				]
				,
				𝑡
				≠
				𝑡
			

			

				𝑘
			

		
	
, 
	
		
			
				𝑘
				=
				1
				,
				2
				,
				…
			

		
	
, and in view of (15), it follows that for any 
	
		
			
				𝑘
				=
				1
				,
				2
				,
				…
			

		
	
,
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				𝑦
				
				𝑡
			

			
				+
				𝑘
			

			
				
				=
				
			

			
				0
				<
				𝑡
			

			

				𝑗
			

			
				≤
				𝑡
			

			

				𝑘
			

			
				
				𝑒
			

			
				(
				1
				+
				𝜃
			

			

				𝑘
			

			

				)
			

			

				
			

			
				−
				1
			

			
				𝑁
				
				𝑡
			

			
				+
				𝑘
			

			
				
				=
				
			

			
				0
				<
				𝑡
			

			

				𝑗
			

			
				<
				𝑡
			

			

				𝑘
			

			
				
				𝑒
			

			
				(
				1
				+
				𝜃
			

			

				𝑘
			

			

				)
			

			

				
			

			
				−
				1
			

			
				𝑁
				
				𝑡
			

			

				𝑘
			

			
				
				
				𝑡
				=
				𝑦
			

			

				𝑘
			

			
				
				,
				𝑦
				
				𝑡
			

			
				−
				𝑘
			

			
				
				=
				
			

			
				0
				<
				𝑡
			

			

				𝑗
			

			
				<
				𝑡
			

			

				𝑘
			

			
				
				𝑒
			

			
				(
				1
				+
				𝜃
			

			

				𝑘
			

			

				)
			

			

				
			

			
				−
				1
			

			
				𝑁
				
				𝑡
			

			
				−
				𝑘
			

			
				
				=
				
			

			
				0
				<
				𝑡
			

			

				𝑗
			

			
				≤
				𝑡
			

			
				−
				𝑘
			

			
				
				𝑒
			

			
				(
				1
				+
				𝜃
			

			

				𝑘
			

			

				)
			

			

				
			

			
				−
				1
			

			
				𝑁
				
				𝑡
			

			
				−
				𝑘
			

			
				
				
				𝑡
				=
				𝑦
			

			

				𝑘
			

			
				
				,
			

		
	

						which implies that 
	
		
			
				𝑦
				(
				𝑡
				)
			

		
	
 is continuous on 
	
		
			
				[
				−
				𝜏
				,
				+
				∞
				)
			

		
	
. It is easy to prove that 
	
		
			
				𝑦
				(
				𝑡
				)
			

		
	
 is absolutely continuous on 
	
		
			
				[
				−
				𝜏
				,
				+
				∞
				)
			

		
	
. Similar to the proof of (1), one can check that 
	
		
			
				∏
				𝑦
				(
				𝑡
				)
				=
			

			
				0
				<
				𝑡
			

			

				𝑘
			

			
				<
				𝑡
			

			
				(
				𝑒
			

			
				(
				1
				+
				𝜃
			

			

				𝑘
			

			

				)
			

			

				)
			

			
				−
				1
			

			
				𝑁
				(
				𝑡
				)
			

		
	
 are solutions of (10) and (11) on 
	
		
			
				[
				−
				𝜏
				,
				+
				∞
				)
			

		
	
. The proof of Lemma 3 is completed.
Here, we take the transformation 
	
		
			
				𝑦
				(
				𝑡
				)
				=
				𝑒
			

			
				𝑥
				(
				𝑡
				)
			

		
	
; then, (10) can be rewritten in the following form:
						
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				𝑑
				𝑥
				(
				𝑡
				)
			

			
				
			
			
				−
				𝑑
				𝑡
				=
				𝑟
				(
				𝑡
				)
				−
				𝐴
				(
				𝑡
				)
				𝑥
				(
				𝑡
				)
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝐵
			

			

				𝑖
			

			
				
				(
				𝑡
				)
				𝑥
				𝑡
				−
				𝜎
			

			

				𝑖
			

			
				
				−
				(
				𝑡
				)
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝐶
			

			

				𝑗
			

			
				
				(
				𝑡
				)
			

			
				𝑡
				−
				∞
			

			

				𝐾
			

			

				𝑗
			

			
				−
				(
				𝑡
				−
				𝑠
				)
				𝑥
				(
				𝑠
				)
				𝑑
				𝑠
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			

				𝐷
			

			
				0
				𝑙
			

			
				(
				𝑡
				)
				𝑥
			

			

				
			

			
				
				𝑡
				−
				𝜏
			

			

				𝑙
			

			
				
				,
				(
				𝑡
				)
			

		
	

					where 
	
		
			

				𝐷
			

			
				0
				𝑙
			

			
				(
				𝑡
				)
				=
				𝐷
			

			

				𝑙
			

			
				(
				𝑡
				)
				(
				1
				−
				𝜏
			

			
				
				𝑙
			

			
				(
				𝑡
				)
				)
				,
				𝑙
				=
				1
				,
				2
				,
				…
				,
				𝑝
			

		
	
. Therefore, we only discuss the existence and uniqueness of a periodic solution for (17).
Definition 5 (see [23]). Let 
	
		
			

				𝑈
			

		
	
 be a bounded subset in 
	
		
			

				𝑋
			

		
	
. Define that
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			

				𝛼
			

			

				𝑋
			

			
				
				𝑈
				(
				𝑈
				)
				=
				i
				n
				f
				𝛿
				>
				0
				∶
				t
				h
				e
				r
				e
				i
				s
				a
				ﬁ
				n
				i
				t
				e
				n
				u
				m
				b
				e
				r
				o
				f
				s
				u
				b
				s
				e
				t
				s
			

			

				𝑖
			

			
				
				⊂
				𝑈
				s
				u
				c
				h
				t
				h
				a
				t
				𝑈
				=
			

			

				𝑖
			

			

				𝑈
			

			

				𝑖
			

			
				
				𝑈
				a
				n
				d
				d
				i
				a
				m
			

			

				𝑖
			

			
				
				
				,
				≤
				𝛿
			

		
	

						where 
	
		
			
				d
				i
				a
				m
				(
				𝑈
			

			

				𝑖
			

			

				)
			

		
	
 denotes the diameter of the set 
	
		
			

				𝑈
			

			

				𝑖
			

		
	
, obviously, 
	
		
			
				0
				≤
				𝛼
			

			

				𝑋
			

			
				(
				𝑈
				)
				<
				∞
			

		
	
. So, 
	
		
			

				𝛼
			

			

				𝑋
			

			
				(
				𝑈
				)
			

		
	
 is called the (Kuratowski) measure of noncompactness of 
	
		
			

				𝑋
			

		
	
. 
Definition 6 (see [23]).  Let 
	
		
			
				𝑋
				,
				𝑌
			

		
	
 be two Banach spaces and 
	
		
			
				𝐷
				⊂
				𝑋
			

		
	
; a continuous and bounded map 
	
		
			
				𝑇
				∶
				𝐷
				→
				𝑌
			

		
	
 is called 
	
		
			

				𝑘
			

		
	
-set contractive if for any bounded set 
	
		
			
				𝑈
				⊂
				𝐷
			

		
	
 one has 
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			

				𝛼
			

			

				𝑌
			

			
				(
				𝑇
				(
				𝑈
				)
				)
				≤
				𝑘
				𝛼
			

			

				𝑋
			

			
				(
				𝑈
				)
				,
			

		
	

	
		
			

				𝑇
			

		
	
 is called strict-set-contractive if it is 
	
		
			

				𝑘
			

		
	
-set contractive for some 
	
		
			
				0
				≤
				𝑘
				<
				1
			

		
	
.
					For a Fredholm operator 
	
		
			
				𝐿
				∶
				𝑋
				→
				𝑌
			

		
	
 with index zero, according to [9, 24], we define 
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				
				𝑙
				(
				𝐿
				)
				=
				s
				u
				p
				𝑟
				𝛼
			

			

				𝑋
			

			
				(
				𝑈
				)
				≤
				𝛼
			

			

				𝑌
			

			
				(
				𝐿
				(
				𝑈
				)
				)
				f
				o
				r
				a
				n
				y
				b
				o
				u
				n
				d
				e
				d
				s
				e
				t
				𝑈
				⊂
				𝑋
				}
				.
			

		
	

Lemma 7 (see [9, 24]).   Let 
	
		
			
				𝐿
				∶
				𝑋
				→
				𝑌
			

		
	
 be a Fredholm operator with zero index and 
	
		
			
				𝑎
				∈
				𝑌
			

		
	
 be a fixed point. Suppose that 
	
		
			
				𝑁
				∶
				Ω
				→
				𝑌
			

		
	
 is called a 
	
		
			

				𝑘
			

		
	
-set contractive with 
	
		
			
				𝑘
				<
				𝑙
				(
				𝐿
				)
			

		
	
, where 
	
		
			
				Ω
				⊂
				𝑋
			

		
	
 is bounded, open, and symmetric about 
	
		
			
				0
				∈
				Ω
			

		
	
. Further, one also assumes that (1)
	
		
			
				𝐿
				𝑥
				≠
				𝜆
				𝑁
				𝑥
				+
				𝜆
				𝑎
			

		
	
,  for 
	
		
			
				𝑥
				∈
				𝜕
				Ω
				,
				𝜆
				∈
				(
				0
				,
				1
				)
			

		
	
; (2)
	
		
			
				[
				𝑄
				𝑁
				(
				𝑥
				)
				+
				𝑄
				𝑎
				,
				𝑥
				]
				[
				𝑄
				𝑁
				(
				−
				𝑥
				)
				+
				𝑄
				𝑎
				,
				𝑥
				]
				<
				0
			

		
	
, for 
	
		
			
				⋂
				𝑥
				∈
				K
				e
				r
				𝐿
				𝜕
				Ω
			

		
	
; 
					 where 
	
		
			
				[
				⋅
				,
				⋅
				]
			

		
	
 is a bilinear form on 
	
		
			
				𝑌
				×
				𝑋
			

		
	
 and Q is the projection of Y onto Coker(
	
		
			

				𝐿
			

		
	
), where Coker(
	
		
			

				𝐿
			

		
	
) is the cokernel of the operator 
	
		
			

				𝐿
			

		
	
. Then, there is an 
	
		
			
				𝑥
				∈
			

			
				
			
			

				Ω
			

		
	
 such that 
	
		
			
				𝐿
				𝑥
				−
				𝑁
				𝑥
				=
				𝑎
			

		
	
.
In order to use Lemma 7 to study (17), we set 
	
		
			
				𝑋
				=
				𝐶
			

			
				1
				𝜔
			

			
				,
				𝑌
				=
				𝐶
			

			

				𝜔
			

		
	
,
						
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				𝐿
				∶
				𝐶
			

			
				1
				𝜔
			

			
				⟶
				𝐶
			

			

				𝜔
			

			
				,
				𝐿
				𝑥
				=
				𝑑
				𝑥
			

			
				
			
			
				,
				𝑑
				𝑡
			

		
	

					and 
	
		
			
				𝑁
				∶
				𝐶
			

			
				1
				𝜔
			

			
				→
				𝐶
			

			

				𝜔
			

		
	
 defined by
						
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				𝑁
				𝑥
				=
				−
				𝐴
				(
				𝑡
				)
				(
				𝑡
				)
				𝑥
				(
				𝑡
				)
				−
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝐵
			

			

				𝑖
			

			
				
				(
				𝑡
				)
				𝑥
				𝑡
				−
				𝜎
			

			

				𝑖
			

			
				
				−
				(
				𝑡
				)
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝐶
			

			

				𝑗
			

			
				
				(
				𝑡
				)
			

			
				𝑡
				−
				∞
			

			

				𝐾
			

			

				𝑗
			

			
				−
				(
				𝑡
				−
				𝑠
				)
				𝑥
				(
				𝑠
				)
				𝑑
				𝑠
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			

				𝐷
			

			
				0
				𝑙
			

			
				(
				𝑡
				)
				𝑥
			

			

				
			

			
				
				𝑡
				−
				𝜏
			

			

				𝑙
			

			
				
				.
				(
				𝑡
				)
			

		
	

					It is easy to see from [25] that 
	
		
			

				𝐿
			

		
	
 is a Fredholm operator with index zero. Thus, (17) has a positive 
	
		
			

				𝜔
			

		
	
-periodic solution if and only if 
	
		
			
				𝐿
				𝑥
				=
				𝑁
				𝑥
				+
				𝑟
			

		
	
 has a solution 
	
		
			
				𝑥
				∈
				𝐶
			

			
				1
				𝜔
			

		
	
, where 
	
		
			
				𝑟
				=
				𝑟
				(
				𝑡
				)
			

		
	
.
Lemma 8 (see [25]).  The differential operator 
	
		
			

				𝐿
			

		
	
 is a Fredholm operator with index zero and satisfies 
	
		
			
				𝑙
				(
				𝐿
				)
				≥
				1
			

		
	
.
Lemma 9.  Let 
	
		
			

				𝑟
			

			

				0
			

			
				,
				𝑟
			

			

				1
			

		
	
 be two positive constants and 
	
		
			
				Ω
				=
				{
				𝑥
			

			

				𝑖
			

			
				∈
				𝐶
			

			
				1
				𝜔
			

			
				,
				|
				𝑥
			

			

				𝑖
			

			

				|
			

			

				𝑜
			

			
				<
				𝑟
			

			

				0
			

			
				,
				|
				𝑥
			

			
				
				𝑖
			

			

				|
			

			

				𝑜
			

			
				<
				𝑟
			

			

				1
			

			

				}
			

		
	
. If 
	
		
			
				∑
				𝑘
				=
			

			
				𝑝
				𝑙
				=
				1
			

			
				|
				𝐷
			

			
				0
				𝑙
			

			

				|
			

			

				0
			

		
	
, then 
	
		
			
				𝑁
				∶
				Ω
				→
				𝐶
			

			
				1
				𝜔
			

		
	
 is a k-set contractive map.
As Lemma 9 can be proved in the same way as in the proof of Lemma 2.4 in [7], we omit it here.
Lemma 10 (see [7, 9]).  Suppose that 
	
		
			
				𝜏
				∈
				𝐶
			

			
				1
				𝜔
			

		
	
 and 
	
		
			

				𝜏
			

			

				
			

			
				(
				𝑡
				)
				<
				1
			

		
	
, 
	
		
			
				𝑡
				∈
				[
				0
				,
				𝜔
				]
			

		
	
, then the function 
	
		
			
				𝑡
				−
				𝜏
				(
				𝑡
				)
			

		
	
 has a unique inverse 
	
		
			
				𝜇
				(
				𝑡
				)
			

		
	
 satisfying 
	
		
			
				𝜇
				∈
				𝐶
				(
				𝑅
				,
				𝑅
				)
			

		
	
 with 
	
		
			
				𝜇
				(
				𝑎
				+
				𝜔
				)
				=
				𝜇
				(
				𝑎
				)
				+
				𝜔
			

		
	
 for all 
	
		
			
				𝑎
				∈
				𝑅
			

		
	
, and if 
	
		
			
				𝑔
				∈
				𝑃
				𝐶
			

			

				𝜔
			

			
				,
				𝜏
			

			

				
			

			
				(
				𝑡
				)
				<
				1
				,
				𝑡
				∈
				[
				0
				,
				𝜔
				]
			

		
	
, then 
	
		
			
				𝑔
				(
				𝜇
				(
				𝑡
				)
				)
				∈
				𝑃
				𝐶
			

			

				𝜔
			

		
	
.
Lemma 11 11 (see [26, 27]).  Suppose that 
	
		
			
				𝑥
				(
				𝑡
				)
			

		
	
 is a differently continuous 
	
		
			

				𝜔
			

		
	
-periodic function on 
	
		
			

				𝑅
			

		
	
 with 
	
		
			
				(
				𝜔
				>
				0
				)
			

		
	
, then to any 
	
		
			

				𝑡
			

			

				∗
			

			
				∈
				𝑅
				,
				m
				a
				x
			

			

				𝑡
			

			

				∗
			

			
				≤
				𝑡
				≤
				𝑡
			

			

				∗
			

			
				+
				𝜔
			

			
				|
				𝑥
				(
				𝑡
				)
				|
				≤
				|
				𝑥
				(
				𝑡
			

			

				∗
			

			
				∫
				)
				|
				+
				(
				1
				/
				2
				)
			

			
				𝜔
				0
			

			
				|
				𝑥
			

			

				
			

			
				(
				𝑡
				)
				|
				𝑑
				𝑡
			

		
	
.
3. Main Theorem
    Since 
	
		
			

				𝜎
			

			
				
				𝑖
			

			
				(
				𝑡
				)
				<
				1
			

		
	
, 
	
		
			

				𝜏
			

			
				
				𝑙
			

			
				(
				𝑡
				)
				<
				1
				,
				𝑡
				∈
				[
				0
				,
				𝜔
				]
			

		
	
, we see that 
	
		
			

				𝜎
			

			

				𝑖
			

			
				(
				𝑡
				)
				,
				𝜏
			

			

				𝑙
			

			
				(
				𝑡
				)
			

		
	
 all have its inverse function. Throughout the following part, we set 
	
		
			

				𝜁
			

			

				𝑖
			

			
				(
				𝑡
				)
				,
				𝜉
			

			

				𝑙
			

			
				(
				𝑡
				)
			

		
	
 that represent the inverse function of 
	
		
			
				𝑡
				−
				𝜎
			

			

				𝑖
			

			
				(
				𝑡
				)
			

		
	
, 
	
		
			
				𝑡
				−
				𝜏
			

			

				𝑙
			

			
				(
				𝑡
				)
			

		
	
, respectively. We also denote
						
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				Γ
				(
				𝑡
				)
				∶
				=
				𝐴
				(
				𝑡
				)
				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝐵
			

			

				𝑖
			

			
				
				𝜁
			

			

				𝑖
			

			
				
				(
				𝑡
				)
			

			
				
			
			
				1
				−
				𝜎
			

			
				
				𝑖
			

			
				
				𝜁
			

			

				𝑖
			

			
				
				+
				(
				𝑡
				)
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝐶
			

			

				𝑗
			

			
				(
				𝑡
				)
				−
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			

				𝐷
			

			
				
				𝑙
			

			
				
				𝜉
			

			

				𝑙
			

			
				
				(
				𝑡
				)
			

			
				
			
			
				1
				−
				𝜏
			

			
				
				𝑙
			

			
				
				𝜉
			

			

				𝑙
			

			
				(
				
				.
				𝑡
				)
			

		
	

Remark 12. From Lemma 9, we get that 
	
		
			

				𝜁
			

			

				𝑖
			

			
				(
				𝜔
				)
				=
				𝜁
			

			

				𝑖
			

			
				(
				0
				)
				+
				𝜔
				,
				𝜉
			

			

				𝑙
			

			
				(
				𝜔
				)
				=
				𝜉
			

			

				𝑙
			

			
				(
				0
				)
				+
				𝜔
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑛
			

		
	
; 
	
		
			
				𝑙
				=
				1
				,
				2
				,
				…
				,
				𝑝
			

		
	
; then,
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			

				
			

			
				𝜔
				0
			

			

				𝐵
			

			

				𝑖
			

			
				
				𝜁
			

			

				𝑖
			

			
				
				(
				𝑠
				)
			

			
				
			
			
				1
				−
				𝜎
			

			
				
				𝑖
			

			
				
				𝜁
			

			

				𝑖
			

			
				
				=
				
				(
				𝑠
				)
				𝑑
				𝑠
			

			

				𝜁
			

			

				𝑖
			

			
				𝜁
				(
				𝜔
				)
			

			

				𝑖
			

			
				(
				0
				)
			

			

				𝐵
			

			

				𝑖
			

			
				
				(
				𝑡
				)
				1
				−
				𝜎
			

			
				
				𝑖
			

			
				
				(
				𝑡
				)
			

			
				
			
			
				1
				−
				𝜎
			

			
				
				𝑖
			

			
				=
				
				(
				𝑡
				)
				𝑑
				𝑡
			

			

				𝜁
			

			

				𝑖
			

			
				𝜁
				(
				0
				)
				+
				𝜔
			

			

				𝑖
			

			
				(
				0
				)
			

			

				𝐵
			

			

				𝑖
			

			
				(
				𝑡
				)
				𝑑
				𝑡
				=
			

			
				
			
			

				𝐵
			

			

				𝑖
			

			
				𝜔
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑛
				.
			

		
	

						Similarly, 
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			

				
			

			
				𝜔
				0
			

			

				𝐷
			

			
				
				𝑙
			

			
				
				𝜉
			

			

				𝑙
			

			
				
				(
				𝑠
				)
			

			
				
			
			
				1
				−
				𝜏
			

			
				
				𝑙
			

			
				
				𝜉
			

			

				𝑙
			

			
				
				=
				
				(
				𝑠
				)
				𝑑
				𝑠
			

			

				𝜉
			

			

				𝑙
			

			
				𝜉
				(
				𝜔
				)
			

			

				𝑙
			

			
				(
				0
				)
			

			

				𝐷
			

			
				
				𝑙
			

			
				
				(
				𝑡
				)
				1
				−
				𝜏
			

			
				
				𝑙
			

			
				
				(
				𝑡
				)
			

			
				
			
			
				1
				−
				𝜏
			

			
				
				𝑙
			

			
				=
				
				(
				𝑡
				)
				𝑑
				𝑡
			

			

				𝜉
			

			

				𝑙
			

			
				𝜉
				(
				0
				)
				+
				𝜔
			

			

				𝑙
			

			
				(
				0
				)
			

			

				𝐷
			

			
				
				𝑙
			

			
				(
				𝑡
				)
				𝑑
				𝑡
				=
				0
				,
				𝑙
				=
				1
				,
				2
				,
				…
				,
				𝑝
				.
			

		
	

						Thus,
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				
			
			
				
				Γ
				𝜔
				=
			

			
				𝜔
				0
			

			
				
				Γ
				(
				𝑡
				)
				𝑑
				𝑡
				=
			

			
				
			
			
				𝐴
				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			
				
			
			

				𝐵
			

			

				𝑖
			

			

				+
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			
				
			
			

				𝐶
			

			

				𝑗
			

			
				
				𝜔
				.
			

		
	

Theorem 13.  In addition to 
	
		
			
				(
				𝐻
			

			

				1
			

			
				)
				-
				-
				(
				𝐻
			

			

				3
			

			

				)
			

		
	
, suppose that the following conditions hold: 
	
		
			
				(
				𝐻
			

			

				4
			

			

				)
			

		
	
 there exists a constant 
	
		
			
				𝜂
				>
				0
			

		
	
 such that 
	
		
			
				|
				Γ
				(
				𝑡
				)
				|
				≥
				𝜂
			

		
	
, for all 
	
		
			
				𝑡
				∈
				[
				0
				,
				𝜔
				]
			

		
	
, where 
	
		
			
				Γ
				(
				𝑡
				)
			

		
	
 is defined by (23);
	
		
			
				(
				𝐻
			

			

				5
			

			

				)
			

		
	
 if 
	
		
			
				(
				1
				/
				2
				)
				(
				|
				𝐴
				|
			

			

				0
			

			
				∑
				𝜔
				+
			

			
				𝑛
				𝑖
				=
				1
			

			
				|
				𝐵
			

			

				𝑖
			

			

				|
			

			

				0
			

			
				∑
				𝜔
				+
			

			
				𝑚
				𝑗
				=
				1
			

			
				|
				𝐶
			

			

				𝑗
			

			

				|
			

			

				0
			

			

				𝜔
			

			
				1
				/
				2
			

			
				∑
				)
				+
			

			
				𝑝
				𝑙
				=
				1
			

			
				|
				1
				−
				𝜏
			

			
				
				𝑙
			

			

				|
			

			
				0
				1
				/
				2
			

			
				|
				𝐷
			

			

				𝑙
			

			

				|
			

			

				0
			

			
				<
				1
			

		
	
, and 
	
		
			

				∑
			

			
				𝑝
				𝑙
				=
				1
			

			
				|
				1
				−
				𝜏
			

			
				
				𝑙
			

			

				|
			

			

				0
			

			
				|
				𝐷
			

			

				𝑙
			

			

				|
			

			

				0
			

			
				<
				1
			

		
	
. 
					Then, (1) has at least one positive 
	
		
			

				𝜔
			

		
	
-periodic solution.
Proof. Let 
	
		
			
				𝑢
				(
				𝑡
				)
			

		
	
 be an arbitrary 
	
		
			

				𝜔
			

		
	
-periodic solution of the operator equation as follows:
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				𝐿
				𝑢
				=
				𝜆
				𝑁
				𝑢
				+
				𝜆
				𝑟
				,
				𝜆
				∈
				(
				0
				,
				1
				)
				,
			

		
	

						where 
	
		
			

				𝐿
			

		
	
, 
	
		
			

				𝑁
			

		
	
 defined by (21) and (22), respectively. Then, 
	
		
			
				𝑢
				(
				𝑡
				)
			

		
	
 satisfies the following operator equation:
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				𝑑
				𝑢
				(
				𝑡
				)
			

			
				
			
			
				
				−
				𝑑
				𝑡
				=
				𝜆
				𝑟
				(
				𝑡
				)
				−
				𝐴
				(
				𝑡
				)
				𝑢
				(
				𝑡
				)
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝐵
			

			

				𝑖
			

			
				
				(
				𝑡
				)
				𝑢
				𝑡
				−
				𝜎
			

			

				𝑖
			

			
				
				−
				(
				𝑡
				)
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝐶
			

			

				𝑗
			

			
				
				(
				𝑡
				)
			

			
				𝑡
				−
				∞
			

			

				𝐾
			

			

				𝑗
			

			
				−
				(
				𝑡
				−
				𝑠
				)
				𝑢
				(
				𝑠
				)
				𝑑
				𝑠
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			

				𝐷
			

			
				0
				𝑙
			

			
				(
				𝑡
				)
				𝑢
			

			

				
			

			
				
				𝑡
				−
				𝜏
			

			

				𝑙
			

			
				(
				
				
				.
				𝑡
				)
			

		
	

						Integrating both sides of (28) over 
	
		
			
				[
				0
				,
				𝜔
				]
			

		
	
, we have
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				
			
			
				
				𝑟
				𝜔
				=
			

			
				𝜔
				0
			

			
				
				+
				𝐴
				(
				𝑡
				)
				𝑢
				(
				𝑡
				)
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝐵
			

			

				𝑖
			

			
				
				(
				𝑡
				)
				𝑢
				𝑡
				−
				𝜎
			

			

				𝑖
			

			
				
				+
				(
				𝑡
				)
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝐶
			

			

				𝑗
			

			
				
				(
				𝑡
				)
			

			
				𝑡
				−
				∞
			

			

				𝐾
			

			

				𝑗
			

			
				+
				(
				𝑡
				−
				𝑠
				)
				𝑢
				(
				𝑠
				)
				𝑑
				𝑠
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			

				𝐷
			

			
				0
				𝑙
			

			
				(
				𝑡
				)
				𝑢
			

			

				
			

			
				
				𝑡
				−
				𝜏
			

			

				𝑙
			

			
				(
				
				
				=
				
				𝑡
				)
				𝑑
				𝑡
			

			
				𝜔
				0
			

			
				+
				
				𝐴
				(
				𝑡
				)
				𝑢
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				𝜔
				0
				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝐵
			

			

				𝑖
			

			
				
				(
				𝑡
				)
				𝑢
				𝑡
				−
				𝜎
			

			

				𝑖
			

			
				
				+
				
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				𝜔
				0
				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝐶
			

			

				𝑗
			

			
				
				(
				𝑡
				)
			

			
				𝑡
				−
				∞
			

			

				𝐾
			

			

				𝑗
			

			
				−
				
				(
				𝑡
				−
				𝑠
				)
				𝑢
				(
				𝑠
				)
				𝑑
				𝑠
				𝑑
				𝑡
			

			
				𝜔
				0
				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			

				𝐷
			

			
				
				𝑙
			

			
				
				(
				𝑡
				)
				𝑢
				𝑡
				−
				𝜏
			

			

				𝑙
			

			
				
				(
				𝑡
				)
				𝑑
				𝑡
				.
			

		
	

						Let 
	
		
			
				𝑡
				−
				𝜎
			

			

				𝑖
			

			
				(
				𝑡
				)
				=
				𝑠
			

		
	
, then 
	
		
			
				𝑡
				=
				𝜁
			

			

				𝑖
			

			
				(
				𝑠
				)
			

		
	
 and 
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			

				
			

			
				𝜔
				0
			

			

				𝐵
			

			

				𝑖
			

			
				
				(
				𝑡
				)
				𝑢
				𝑡
				−
				𝜎
			

			

				𝑖
			

			
				
				=
				
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				𝜔
				−
				𝜎
			

			

				𝑖
			

			
				(
				𝜔
				)
				−
				𝜎
			

			

				𝑖
			

			
				(
				0
				)
			

			

				𝐵
			

			

				𝑖
			

			
				
				𝜁
			

			

				𝑖
			

			
				
				(
				𝑠
				)
			

			
				
			
			
				1
				−
				𝜎
			

			
				
				𝑖
			

			
				
				𝜁
			

			

				𝑖
			

			
				
				(
				𝑠
				)
				𝑢
				(
				𝑠
				)
				𝑑
				𝑠
				.
			

		
	

						By Lemma 10, we have
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			

				∫
			

			
				𝜔
				0
			

			

				𝐵
			

			

				𝑖
			

			
				
				(
				𝑡
				)
				𝑢
				𝑡
				−
				𝜎
			

			

				𝑖
			

			
				
				=
				∫
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				𝜔
				0
			

			

				𝐵
			

			

				𝑖
			

			
				
				𝜁
			

			

				𝑖
			

			
				
				(
				𝑠
				)
			

			
				
			
			
				1
				−
				𝜎
			

			
				
				𝑖
			

			
				
				𝜁
			

			

				𝑖
			

			
				
				(
				𝑠
				)
				𝑢
				(
				𝑠
				)
				𝑑
				𝑠
				.
			

		
	

						Similarly, we have
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			

				
			

			
				𝜔
				0
			

			

				𝐷
			

			
				
				𝑙
			

			
				(
				𝑡
				)
				𝑢
			

			

				𝑖
			

			
				
				𝑡
				−
				𝜏
			

			

				𝑙
			

			
				
				=
				
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				𝜔
				0
			

			

				𝐷
			

			
				
				𝑙
			

			
				
				𝜉
			

			

				𝑙
			

			
				
				(
				𝑠
				)
			

			
				
			
			
				1
				−
				𝜏
			

			
				
				𝑙
			

			
				
				𝜉
			

			

				𝑙
			

			
				
				(
				𝑠
				)
				𝑢
				(
				𝑠
				)
				𝑑
				𝑠
				.
			

		
	

						Substituting (31) and (32) into (29), we have
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			

				
			

			
				𝜔
				0
			

			
				Γ
				(
				𝑠
				)
				𝑢
				(
				𝑠
				)
				𝑑
				𝑠
				=
			

			
				
			
			
				𝑟
				𝜔
				.
			

		
	

						Considering assumption 
	
		
			
				(
				𝐻
			

			

				4
			

			

				)
			

		
	
, we know that 
	
		
			
				|
				Γ
				(
				𝑡
				)
				|
				≥
				𝜂
				>
				0
			

		
	
, and then, it follows from the integro mean value theorem that there exists a 
	
		
			
				𝛼
				∈
				[
				0
				,
				𝜔
				]
			

		
	
 satisfying 
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				=
				𝑢
				(
				𝛼
				)
			

			
				
			
			

				𝑟
			

			

				𝑖
			

			
				
			
			
				|
				|
				|
				|
				≤
				Γ
				(
				𝛼
				)
			

			
				
			
			

				𝑟
			

			

				𝑖
			

			
				
			
			
				𝜂
				.
			

		
	

						By Lemma 11, we can get that
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				|
				𝑢
				|
			

			

				0
			

			

				≤
			

			
				
			
			

				𝑟
			

			

				𝑖
			

			
				
			
			
				𝜂
				+
				1
			

			
				
			
			
				2
				
			

			
				𝜔
				0
			

			
				|
				|
				𝑢
			

			

				
			

			
				(
				|
				|
				𝑡
				)
				𝑑
				𝑡
				.
			

		
	

						Multiplying both sides of (28) by 
	
		
			

				𝑢
			

			

				
			

			
				(
				𝑡
				)
			

		
	
 and integrating them over 
	
		
			
				[
				0
				,
				𝜔
				]
			

		
	
, we have
							
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			

				
			

			
				𝜔
				0
			

			
				|
				|
				𝑢
			

			

				
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				|
				|
				|
				|
				|
				
				𝑑
				𝑡
				=
				𝜆
			

			
				𝜔
				0
			

			
				𝑟
				(
				𝑡
				)
				𝑢
			

			

				
			

			
				
				(
				𝑡
				)
				𝑑
				𝑡
				−
			

			
				𝜔
				0
			

			
				𝐴
				(
				𝑡
				)
				𝑢
				(
				𝑡
				)
				𝑢
			

			

				
			

			
				−
				
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				𝜔
				0
				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝐵
			

			

				𝑖
			

			
				
				(
				𝑡
				)
				𝑢
				𝑡
				−
				𝜎
			

			

				𝑖
			

			
				
				𝑢
				(
				𝑡
				)
			

			

				
			

			
				−
				
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				𝜔
				0
				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝐶
			

			

				𝑗
			

			
				
				(
				𝑡
				)
			

			
				𝑡
				−
				∞
			

			

				𝐾
			

			

				𝑗
			

			
				(
				𝑡
				−
				𝑠
				)
				𝑢
				(
				𝑠
				)
				𝑢
			

			

				
			

			
				−
				
				(
				𝑡
				)
				𝑑
				𝑠
				𝑑
				𝑡
			

			
				𝜔
				0
				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			

				𝐷
			

			
				0
				𝑙
			

			
				(
				𝑡
				)
				𝑢
			

			

				
			

			
				
				𝑡
				−
				𝜏
			

			

				𝑙
			

			
				
				𝑢
				(
				𝑡
				)
			

			

				
			

			
				|
				|
				|
				|
				|
				≤
				
				(
				𝑡
				)
				𝑑
				𝑡
				|
				𝑟
				|
			

			

				0
			

			
				+
				
				|
				|
				𝐴
				|
				|
			

			

				0
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			
				|
				|
				𝐵
			

			

				𝑖
			

			
				|
				|
			

			

				0
			

			
				
				|
				𝑢
				|
			

			

				0
			

			
				
				
			

			
				𝜔
				0
			

			
				|
				|
				𝑢
			

			

				
			

			
				|
				|
				+
				
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				𝜔
				0
				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			
				|
				|
				|
				|
				𝐶
			

			

				𝑗
			

			
				
				(
				𝑡
				)
			

			
				𝑡
				−
				∞
			

			

				𝐾
			

			

				𝑗
			

			
				(
				𝑡
				−
				𝑠
				)
				𝑢
				(
				𝑠
				)
				𝑑
				𝑠
				𝑢
			

			

				
			

			
				|
				|
				|
				|
				+
				
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				𝜔
				0
				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			
				|
				|
				𝐷
			

			
				0
				𝑙
			

			
				(
				𝑡
				)
				𝑢
			

			

				
			

			
				
				𝑡
				−
				𝜏
			

			

				𝑙
			

			
				
				𝑢
				(
				𝑡
				)
			

			

				
			

			
				|
				|
				(
				𝑡
				)
				𝑑
				𝑡
				.
			

		
	

						By using the Cauchy-Schwarz inequality, we get that
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			

				
			

			
				𝜔
				0
			

			
				|
				𝑢
			

			

				
			

			
				(
				𝑡
				)
				|
			

			

				2
			

			
				≤
				
				𝑑
				𝑡
				|
				𝑟
				|
			

			

				0
			

			
				+
				
				|
				|
				𝐴
				|
				|
			

			

				0
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			
				|
				|
				𝐵
			

			

				𝑖
			

			
				|
				|
			

			

				0
			

			
				
				|
				𝑢
				|
			

			

				0
			

			
				
				×
				
				
			

			
				𝜔
				0
			

			
				|
				𝑢
			

			

				
			

			
				(
				𝑡
				)
				|
			

			

				2
			

			
				
				𝑑
				𝑡
			

			
				1
				/
				2
			

			

				𝜔
			

			
				1
				/
				2
			

			
				+
				
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			
				|
				|
				|
				|
				𝐶
			

			

				𝑗
			

			
				
				(
				𝑡
				)
			

			
				𝑡
				−
				∞
			

			

				𝐾
			

			

				𝑗
			

			
				|
				|
				|
				|
				(
				𝑡
				−
				𝑠
				)
				𝑢
				(
				𝑠
				)
				𝑑
				𝑠
			

			

				2
			

			
				
				𝑑
				𝑡
			

			
				1
				/
				2
			

			
				×
				
				
			

			
				𝜔
				0
			

			
				|
				|
				𝑢
			

			

				
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				
				𝑑
				𝑡
			

			
				1
				/
				2
			

			

				+
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			
				
				
			

			
				𝜔
				0
			

			
				|
				|
				𝐷
			

			
				0
				𝑙
			

			
				(
				𝑡
				)
				𝑢
			

			

				
			

			
				(
				𝑡
				−
				𝜏
			

			

				𝑙
			

			
				|
				|
				(
				𝑡
				)
				)
			

			

				2
			

			
				
				𝑑
				𝑡
			

			
				1
				/
				2
			

			
				×
				
				
			

			
				𝜔
				0
			

			
				|
				|
				𝑢
			

			

				
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				
				𝑑
				𝑡
			

			
				1
				/
				2
			

			
				=
				
				|
				𝑟
				|
			

			

				0
			

			

				𝜔
			

			
				1
				/
				2
			

			
				+
				
				|
				𝐴
				|
			

			

				0
			

			

				𝜔
			

			
				1
				/
				2
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			
				|
				𝐵
			

			

				𝑖
			

			

				|
			

			

				0
			

			

				𝜔
			

			
				1
				/
				2
			

			

				+
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			
				|
				𝐶
			

			

				𝑗
			

			

				|
			

			

				0
			

			
				
				|
				𝑢
				|
			

			

				0
			

			
				
				×
				
				
			

			
				𝜔
				0
			

			
				|
				𝑢
			

			

				
			

			
				(
				𝑡
				)
				|
			

			

				2
			

			
				
				𝑑
				𝑡
			

			
				1
				/
				2
			

			

				+
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			
				
				
			

			
				𝜔
				0
			

			
				|
				|
				𝐷
			

			
				0
				𝑙
			

			
				(
				𝑡
				)
				𝑢
			

			

				
			

			
				
				𝑡
				−
				𝜏
			

			

				𝑙
			

			
				
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				
				𝑑
				𝑡
			

			
				1
				/
				2
			

			
				×
				
				
			

			
				𝜔
				0
			

			
				|
				|
				𝑢
			

			

				
			

			
				(
				|
				|
				𝑡
				)
			

			

				2
			

			
				
				𝑑
				𝑡
			

			
				1
				/
				2
			

			

				.
			

		
	

						Meanwhile, we see that
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			
				
				
			

			
				𝜔
				0
			

			
				|
				|
				𝐷
			

			
				0
				𝑙
			

			
				(
				𝑡
				)
				𝑢
			

			

				
			

			
				(
				𝑡
				−
				𝜏
			

			

				𝑙
			

			
				|
				|
				(
				𝑡
				)
				)
			

			

				2
			

			
				
				𝑑
				𝑡
			

			
				1
				/
				2
			

			
				=
				
				
			

			
				𝜔
				0
			

			

				1
			

			
				
			
			
				1
				−
				𝜏
			

			
				
				𝑙
			

			
				
				𝜉
			

			

				𝑙
			

			
				
				|
				|
				𝐷
				(
				𝑡
				)
			

			
				0
				𝑙
			

			
				
				𝜉
			

			

				𝑙
			

			
				
				𝑢
				(
				𝑡
				)
			

			

				
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				
				𝑑
				𝑡
			

			
				1
				/
				2
			

			
				=
				
				
			

			
				𝜔
				0
			

			
				(
				1
				−
				𝜏
			

			
				
				𝑙
			

			
				(
				𝜉
			

			

				𝑙
			

			
				|
				|
				𝐷
				(
				𝑡
				)
				)
				)
			

			

				𝑙
			

			
				
				𝜉
			

			

				𝑙
			

			
				
				𝑢
				(
				𝑡
				)
			

			

				
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				
				𝑑
				𝑡
			

			
				1
				/
				2
			

			
				≤
				|
				|
				1
				−
				𝜏
			

			
				
				𝑙
			

			
				|
				|
			

			
				0
				1
				/
				2
			

			
				|
				|
				𝐷
			

			

				𝑙
			

			
				|
				|
			

			

				0
			

			
				
				
			

			
				𝜔
				0
			

			
				|
				|
				𝑢
			

			

				
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				
				.
				𝑑
				𝑡
			

		
	

						Substituting (38) and (35) into (37), we can find that
							
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			

				
			

			
				𝜔
				0
			

			
				|
				|
				𝑢
			

			

				
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				≤
				
				𝑑
				𝑡
				|
				𝑟
				|
			

			

				0
			

			

				𝜔
			

			
				1
				/
				2
			

			
				+
				
				|
				|
				𝐴
				|
				|
			

			

				0
			

			

				𝜔
			

			
				1
				/
				2
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			
				|
				|
				𝐵
			

			

				𝑖
			

			
				|
				|
			

			

				0
			

			

				𝜔
			

			
				1
				/
				2
			

			

				+
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			
				|
				|
				𝐶
			

			

				𝑗
			

			
				|
				|
			

			

				0
			

			
				
				×
				
			

			
				
			
			

				𝑟
			

			

				𝑖
			

			
				
			
			
				𝜂
				+
				1
			

			
				
			
			
				2
				
			

			
				𝜔
				0
			

			
				|
				|
				𝑢
			

			

				
			

			
				|
				|
				
				(
				𝑡
				)
				𝑑
				𝑡
				
				
				
			

			
				𝜔
				0
			

			
				|
				|
				𝑢
			

			

				
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				
				𝑑
				𝑡
			

			
				1
				/
				2
			

			

				+
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			
				|
				|
				1
				−
				𝜏
			

			
				
				𝑙
			

			
				|
				|
			

			
				0
				1
				/
				2
			

			
				|
				|
				𝐷
			

			

				𝑙
			

			
				|
				|
			

			

				0
			

			

				
			

			
				𝜔
				0
			

			
				|
				|
				𝑢
			

			

				
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				≤
				
				𝑑
				𝑡
				|
				𝑟
				|
			

			

				0
			

			

				𝜔
			

			
				1
				/
				2
			

			
				+
				
				|
				𝐴
				|
			

			

				0
			

			

				𝜔
			

			
				1
				/
				2
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			
				|
				𝐵
			

			

				𝑖
			

			

				|
			

			

				0
			

			

				𝜔
			

			
				1
				/
				2
			

			

				+
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			
				|
				|
				𝐶
			

			

				𝑗
			

			
				|
				|
			

			

				0
			

			

				
			

			
				
			
			

				𝑟
			

			

				𝑖
			

			
				
			
			
				𝜂
				
				×
				
				
			

			
				𝜔
				0
			

			
				|
				|
				𝑢
			

			

				
			

			
				|
				|
				
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				1
				/
				2
			

			
				+
				
				1
			

			
				
			
			
				2
				
				|
				𝐴
				|
			

			

				0
			

			

				𝜔
			

			
				1
				/
				2
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			
				|
				𝐵
			

			

				𝑖
			

			

				|
			

			

				0
			

			

				𝜔
			

			
				1
				/
				2
			

			

				+
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			
				|
				𝐶
			

			

				𝑗
			

			

				|
			

			

				0
			

			
				
				𝜔
			

			
				1
				/
				2
			

			

				+
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			
				|
				|
				1
				−
				𝜏
			

			
				
				𝑙
			

			
				|
				|
			

			
				0
				1
				/
				2
			

			
				|
				|
				𝐷
			

			

				𝑙
			

			
				|
				|
			

			

				0
			

			
				
				×
				
			

			
				𝜔
				0
			

			
				|
				|
				𝑢
			

			

				
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				𝑑
				𝑡
				,
			

		
	

						which gives that
							
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			
				
				
			

			
				𝜔
				0
			

			
				|
				|
				𝑢
			

			

				
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				
				𝑑
				𝑡
			

			
				1
				/
				2
			

			
				≤
				
				|
				𝑟
				|
			

			

				0
			

			

				𝜔
			

			
				1
				/
				2
			

			
				+
				
				|
				|
				𝐴
				|
				|
			

			

				0
			

			

				𝜔
			

			
				1
				/
				2
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			
				|
				|
				𝐵
			

			

				𝑖
			

			
				|
				|
			

			

				0
			

			

				𝜔
			

			
				1
				/
				2
			

			

				+
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			
				|
				|
				𝐶
			

			

				𝑗
			

			
				|
				|
			

			

				0
			

			

				
			

			
				
			
			

				𝑟
			

			

				𝑖
			

			
				
			
			
				𝜂
				
				+
				
				1
			

			
				
			
			
				2
				
				|
				|
				𝐴
				|
				|
			

			

				0
			

			
				𝜔
				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			
				|
				|
				𝐵
			

			

				𝑖
			

			
				|
				|
			

			

				0
			

			
				𝜔
				+
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			
				|
				|
				𝐶
			

			

				𝑗
			

			
				|
				|
			

			

				0
			

			

				𝜔
			

			
				1
				/
				2
			

			
				
				+
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			
				|
				|
				1
				−
				𝜏
			

			
				
				𝑙
			

			
				|
				|
			

			
				0
				1
				/
				2
			

			
				|
				|
				𝐷
			

			

				𝑙
			

			
				|
				|
			

			

				0
			

			
				
				
				
			

			
				𝜔
				0
			

			
				|
				|
				𝑢
			

			

				
			

			
				|
				|
				
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				1
				/
				2
			

			

				.
			

		
	

						From 
	
		
			
				(
				𝐻
			

			

				5
			

			

				)
			

		
	
, we get that 
	
		
			
				(
				1
				/
				2
				)
				(
				|
				𝐴
				|
			

			

				0
			

			
				∑
				𝜔
				+
			

			
				𝑛
				𝑖
				=
				1
			

			
				|
				𝐵
			

			

				𝑖
			

			

				|
			

			

				0
			

			
				∑
				𝜔
				+
			

			
				𝑚
				𝑗
				=
				1
			

			
				|
				𝐶
			

			

				𝑗
			

			

				|
			

			

				0
			

			

				𝜔
			

			
				1
				/
				2
			

			
				∑
				)
				+
			

			
				𝑝
				𝑙
				=
				1
			

			
				|
				1
				−
				𝜏
			

			
				
				𝑙
			

			

				|
			

			
				0
				1
				/
				2
			

			
				|
				𝐷
			

			

				𝑙
			

			

				|
			

			

				0
			

			
				<
				1
			

		
	
. Then, there exists a constant 
	
		
			
				𝑁
				>
				0
			

		
	
 such that 
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			
				
				
			

			
				𝜔
				0
			

			
				|
				|
				𝑢
			

			
				
				𝑖
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				
				𝑑
				𝑡
			

			
				1
				/
				2
			

			
				≤
				𝑁
				.
			

		
	

						From (35) and the 
	
		
			
				𝐻
				̈
				𝑜
				𝑙
				𝑑
				𝑒
				𝑟
			

		
	
 inequality, we obtain that
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			
				|
				𝑢
				|
			

			

				0
			

			

				≤
			

			
				
			
			

				𝑟
			

			
				
			
			
				𝜂
				+
				1
			

			
				
			
			
				2
				
			

			
				𝜔
				0
			

			
				|
				|
				𝑢
			

			

				
			

			
				|
				|
				≤
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				
			
			

				𝑟
			

			
				
			
			
				𝜂
				+
				𝜔
			

			
				1
				/
				2
			

			
				
			
			
				2
				
				
			

			
				𝜔
				0
			

			
				|
				|
				𝑢
			

			

				
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				
				𝑑
				𝑡
			

			
				1
				/
				2
			

			

				≤
			

			
				
			
			

				𝑟
			

			
				
			
			
				𝜂
				+
				𝜔
			

			
				1
				/
				2
			

			
				
			
			
				2
				𝑁
				∶
				=
				𝑁
			

			

				1
			

			

				.
			

		
	

						Again from (28), we get that
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			
				|
				|
				𝑢
			

			

				
			

			
				|
				|
			

			

				0
			

			
				≤
				|
				𝑟
				|
			

			

				0
			

			
				+
				
				|
				|
				𝐴
				|
				|
			

			

				0
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			
				|
				|
				𝐵
			

			

				𝑖
			

			
				|
				|
			

			

				0
			

			

				+
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			
				|
				|
				𝐶
			

			

				𝑗
			

			
				|
				|
			

			

				0
			

			
				
				|
				𝑢
				|
			

			

				0
			

			

				+
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			
				|
				|
				𝐷
			

			
				0
				𝑙
			

			
				|
				|
			

			

				0
			

			
				|
				|
				𝑢
			

			

				
			

			
				|
				|
			

			

				0
			

			

				.
			

		
	

						From condition 
	
		
			

				∑
			

			
				𝑝
				𝑙
				=
				1
			

			
				|
				𝐷
			

			
				0
				𝑙
			

			

				|
			

			

				0
			

			
				≤
				∑
			

			
				𝑝
				𝑙
				=
				1
			

			
				|
				1
				−
				𝜏
			

			
				
				𝑙
			

			

				|
			

			

				0
			

			
				|
				𝐷
			

			

				𝑙
			

			

				|
			

			

				0
			

			
				<
				1
			

		
	
, it is easy to see that
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			
				|
				|
				𝑢
			

			

				
			

			
				|
				|
			

			

				0
			

			
				≤
				|
				𝑟
				|
			

			

				0
			

			
				+
				
				|
				|
				𝐴
				|
				|
			

			

				0
			

			
				+
				∑
			

			
				𝑛
				𝑖
				=
				1
			

			
				|
				|
				𝐵
			

			

				𝑖
			

			
				|
				|
			

			

				0
			

			
				+
				∑
			

			
				𝑚
				𝑗
				=
				1
			

			
				|
				|
				𝐶
			

			

				𝑗
			

			
				|
				|
			

			

				0
			

			
				
				𝑁
			

			

				1
			

			
				
			
			
				∑
				1
				−
			

			
				𝑝
				𝑙
				=
				1
			

			
				|
				𝐷
			

			
				0
				𝑙
			

			

				|
			

			

				0
			

			
				∶
				=
				𝑁
			

			

				2
			

			

				.
			

		
	

						Now, we take 
	
		
			

				𝑁
			

			

				3
			

			
				>
				m
				a
				x
				{
				𝑁
			

			

				1
			

			
				,
				𝑁
			

			

				2
			

			
				,
				|
			

			
				
			
			
				𝑟
				/
				(
			

			
				
			
			
				∑
				𝐴
				+
			

			
				𝑛
				𝑖
				=
				1
			

			
				
			
			

				𝐵
			

			

				𝑖
			

			
				+
				∑
			

			
				𝑚
				𝑗
				=
				1
			

			
				
			
			

				𝐶
			

			

				𝑗
			

			
				)
				|
				}
			

		
	
 and 
	
		
			
				Ω
				=
				{
				𝑢
				∣
				𝑢
				∈
				𝐶
			

			
				1
				𝜔
			

			
				,
				‖
				𝑢
				‖
				<
				𝑁
			

			

				3
			

			

				}
			

		
	
. Then, 
	
		
			
				∑
				𝑘
				=
			

			
				𝑝
				𝑙
				=
				1
			

			
				|
				𝐷
			

			
				0
				𝑙
			

			

				|
			

			

				0
			

			
				<
				1
				≤
				𝑙
				(
				𝐿
				)
			

		
	
. So by (42) and (44), we can find that all the conditions of Lemma 4 except (2) hold. In what follows, we will prove that condition (2) of Lemma 4 is also satisfied. In order to do this, we defined a bounded bilinear form on 
	
		
			

				𝐶
			

			

				𝜔
			

			
				,
				𝐶
			

			
				!
				𝜔
			

		
	
 by 
	
		
			
				[
				⋅
				,
				⋅
				]
			

		
	
 as the following 
	
		
			
				∫
				[
				𝑦
				,
				𝑥
				]
				=
			

			
				𝜔
				0
			

			
				𝑦
				(
				𝑡
				)
				𝑥
				(
				𝑡
				)
				𝑑
				𝑡
			

		
	
. Also, we defined 
	
		
			
				𝑄
				∶
				𝑦
				→
				C
				o
				k
				e
				r
				(
				𝐿
				)
			

		
	
 as 
	
		
			
				∫
				𝑦
				∶
				→
				(
				1
				/
				𝜔
				)
			

			
				𝜔
				0
			

			
				𝑦
				(
				𝑡
				)
				𝑑
				𝑡
			

		
	
. It is obvious that 
							
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			
				
				
				
				=
				
				𝑢
				∣
				𝑢
				∈
				K
				e
				r
				𝐿
				𝜕
				Ω
				𝑢
				∣
				𝑢
				≡
				𝑁
			

			

				3
			

			
				,
				o
				r
				−
				𝑁
			

			

				3
			

			
				
				.
			

		
	

						Without loss of generality, suppose that 
	
		
			
				𝑢
				≡
				𝑁
			

			

				3
			

		
	
; then,
							
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			
				[
				]
				𝑄
				𝑁
				(
				𝑢
				)
				+
				𝑄
				𝑟
				,
				𝑢
				]
				[
				𝑄
				𝑁
				(
				−
				𝑢
				)
				+
				𝑄
				𝑟
				,
				𝑢
				=
				𝑁
			

			
				2
				3
			

			
				
				
			

			
				𝜔
				0
			

			
				𝑟
				(
				𝑡
				)
				𝑑
				𝑡
				−
				𝑁
			

			

				3
			

			

				
			

			
				𝜔
				0
			

			
				
				𝐴
				(
				𝑡
				)
				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝐵
			

			

				𝑖
			

			
				(
				𝑡
				)
				+
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝐶
			

			

				𝑗
			

			
				
				
				×
				
				
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				𝜔
				0
			

			
				𝑟
				(
				𝑡
				)
				𝑑
				𝑡
				+
				𝑁
			

			

				3
			

			

				
			

			
				𝜔
				0
			

			
				
				𝐴
				(
				𝑡
				)
				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝐵
			

			

				𝑖
			

			
				(
				𝑡
				)
				+
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝐶
			

			

				𝑗
			

			
				
				
				(
				𝑡
				)
				𝑑
				𝑡
				=
				𝜔
			

			

				2
			

			

				𝑁
			

			
				2
				3
			

			

				
			

			
				
			
			
				𝑟
				−
				𝑁
			

			

				3
			

			

				
			

			
				
			
			
				𝐴
				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			
				
			
			

				𝐵
			

			

				𝑖
			

			

				+
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			
				
			
			

				𝐶
			

			

				𝑗
			

			
				×
				
				
				
			

			
				
			
			
				𝑟
				+
				𝑁
			

			

				3
			

			

				
			

			
				
			
			
				𝐴
				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			
				
			
			

				𝐵
			

			

				𝑖
			

			

				+
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			
				
			
			

				𝐶
			

			

				𝑗
			

			
				,
				
				
			

		
	

						since 
	
		
			

				𝑁
			

			

				3
			

			
				>
				|
			

			
				
			
			
				𝑟
				/
				(
			

			
				
			
			
				∑
				𝐴
				+
			

			
				𝑛
				𝑖
				=
				1
			

			
				
			
			

				𝐵
			

			

				𝑖
			

			
				+
				∑
			

			
				𝑚
				𝑗
				=
				1
			

			
				
			
			

				𝐶
			

			

				𝑗
			

			
				)
				|
			

		
	
, then 
							
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			

				𝑁
			

			

				3
			

			

				>
			

			
				
			
			

				𝑟
			

			
				
			
			
				
			
			
				∑
				𝐴
				+
			

			
				𝑛
				𝑖
				=
				1
			

			
				
			
			

				𝐵
			

			

				𝑖
			

			
				+
				∑
			

			
				𝑚
				𝑗
				=
				1
			

			
				
			
			

				𝐶
			

			

				𝑗
			

			
				,
				−
				𝑁
			

			

				3
			

			
				<
				−
			

			
				
			
			

				𝑟
			

			
				
			
			
				
			
			
				∑
				𝐴
				+
			

			
				𝑛
				𝑖
				=
				1
			

			
				
			
			

				𝐵
			

			

				𝑖
			

			
				+
				∑
			

			
				𝑚
				𝑗
				=
				1
			

			
				
			
			

				𝐶
			

			

				𝑗
			

			

				.
			

		
	

						By (46), we get that
							
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			
				[
				]
				𝑄
				𝑁
				(
				𝑢
				)
				+
				𝑄
				𝑟
				,
				𝑢
				]
				[
				𝑄
				𝑁
				(
				−
				𝑢
				)
				+
				𝑄
				𝑟
				,
				𝑢
				<
				0
				.
			

		
	

						Therefore, by using Lemma 4, we obtain that (1) has at least one positive 
	
		
			

				𝜔
			

		
	
-periodic solution; the proof of Theorem 13 is completed.
Since 
	
		
			
				|
				1
				−
				𝜏
			

			
				
				𝑙
			

			

				|
			

			

				0
			

			
				<
				1
			

		
	
, 
	
		
			
				f
				o
				r
				a
				l
				l
				𝑙
				=
				1
				,
				2
				,
				…
				,
				𝑝
			

		
	
, it follows that 
	
		
			

				∑
			

			
				𝑝
				𝑙
				=
				1
			

			
				|
				1
				−
				𝜏
			

			
				
				𝑙
			

			

				|
			

			

				0
			

			
				|
				𝐷
			

			

				𝑙
			

			

				|
			

			

				0
			

			
				≤
				∑
			

			
				𝑝
				𝑙
				=
				1
			

			
				|
				1
				−
				𝜏
			

			
				
				𝑙
			

			

				|
			

			
				0
				1
				/
				2
			

			
				|
				𝐷
			

			

				𝑙
			

			

				|
			

			

				0
			

			
				<
				1
			

		
	
. So from Theorem 13, we have the following result.
Corollary 14.  Suppose that 
	
		
			
				(
				𝐻
			

			

				1
			

			
				)
				-
				-
				(
				𝐻
			

			

				3
			

			

				)
			

		
	
 and the following conditions hold: 
	
		
			
				(
				𝐻
			

			
				
				4
			

			

				)
			

		
	
 there exists a constant 
	
		
			
				𝜂
				>
				0
			

		
	
 such that 
	
		
			
				|
				Γ
				(
				𝑡
				)
				|
				≥
				𝜂
			

		
	
, for all 
	
		
			
				𝑡
				∈
				[
				0
				,
				𝜔
				]
			

		
	
, where 
	
		
			
				Γ
				(
				𝑡
				)
			

		
	
 is defined by (23);
	
		
			
				(
				𝐻
			

			
				
				5
			

			

				)
			

		
	
 if 
	
		
			
				(
				1
				/
				2
				)
				(
				|
				𝐴
				|
			

			

				0
			

			
				∑
				𝜔
				+
			

			
				𝑛
				𝑖
				=
				1
			

			
				|
				𝐵
				|
			

			

				0
			

			
				∑
				𝜔
				+
			

			
				𝑚
				𝑗
				=
				1
			

			
				|
				𝐶
			

			

				𝑗
			

			

				|
			

			

				0
			

			

				𝜔
			

			
				1
				/
				2
			

			
				∑
				)
				+
			

			
				𝑝
				𝑙
				=
				1
			

			
				|
				1
				−
				𝜏
			

			
				
				𝑙
			

			

				|
			

			
				0
				1
				/
				2
			

			
				|
				𝐷
			

			

				𝑙
			

			

				|
			

			

				0
			

			
				<
				1
			

		
	
. 
					Then (1) has at least one positive 
	
		
			

				𝜔
			

		
	
-periodic solution.

				On the other hand, if 
	
		
			
				|
				1
				−
				𝜏
			

			
				
				𝑙
			

			

				|
			

			

				0
			

			
				>
				1
			

		
	
, for all 
	
		
			
				𝑙
				=
				1
				,
				2
				,
				…
				,
				𝑝
			

		
	
, it follows that 
	
		
			

				∑
			

			
				𝑝
				𝑙
				=
				1
			

			
				|
				1
				−
				𝜏
			

			
				
				𝑙
			

			

				|
			

			

				0
			

			
				|
				𝐷
			

			

				𝑙
			

			

				|
			

			

				0
			

			
				≥
				∑
			

			
				𝑝
				𝑙
				=
				1
			

			
				|
				1
				−
				𝜏
			

			
				
				𝑙
			

			

				|
			

			
				0
				1
				/
				2
			

			
				|
				𝐷
			

			

				𝑙
			

			

				|
			

			

				0
			

		
	
. So from Theorem 13, we also have the following result.
Corollary 15.  Suppose that 
	
		
			
				(
				𝐻
			

			

				1
			

			
				)
				-
				-
				(
				𝐻
			

			

				3
			

			

				)
			

		
	
 and the following conditions hold: 
	
		
			
				(
				𝐻
			

			
				∗
				4
			

			

				)
			

		
	
 there exists a constant 
	
		
			
				𝜂
				>
				0
			

		
	
 such that 
	
		
			
				|
				Γ
				(
				𝑡
				)
				|
				≥
				𝜂
			

		
	
, for all 
	
		
			
				𝑡
				∈
				[
				0
				,
				𝜔
				]
			

		
	
, where 
	
		
			
				Γ
				(
				𝑡
				)
			

		
	
 is defined by (23);
	
		
			
				(
				𝐻
			

			
				∗
				5
			

			

				)
			

		
	
 if 
	
		
			
				(
				1
				/
				2
				)
				(
				|
				𝐴
				|
			

			

				0
			

			
				∑
				𝜔
				+
			

			
				𝑛
				𝑖
				=
				1
			

			
				|
				𝐵
				|
			

			

				0
			

			
				∑
				𝜔
				+
			

			
				𝑚
				𝑗
				=
				1
			

			
				|
				𝐶
			

			

				𝑗
			

			

				|
			

			

				0
			

			

				𝜔
			

			
				1
				/
				2
			

			
				∑
				)
				+
			

			
				𝑝
				𝑙
				=
				1
			

			
				|
				1
				−
				𝜏
			

			
				
				𝑙
			

			

				|
			

			

				0
			

			
				|
				𝐷
			

			

				𝑙
			

			

				|
			

			

				0
			

			
				<
				1
			

		
	
. 
					Then, (1) has at least one positive 
	
		
			

				𝜔
			

		
	
-periodic solution.

				Our next theorem is concerned with the global attractivity of periodic solution of the system (1).
Theorem 16.  Suppose that 
	
		
			
				(
				𝐻
			

			

				1
			

			
				)
				-
				-
				(
				𝐻
			

			

				5
			

			

				)
			

		
	
 and the following conditions hold: 
	
		
			
				(
				𝐻
			

			

				6
			

			

				)
			

		
	
 there is a positive constant 
	
		
			

				𝜇
			

		
	
 such that 
										
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			
				|
				|
				𝐷
			

			

				𝑙
			

			
				|
				|
			

			

				0
			

			
				+
				
			

			
				𝑡
				0
			

			

				
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			
				|
				𝐻
			

			

				𝑙
			

			

				|
			

			

				0
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			
				|
				𝐵
			

			

				𝑖
			

			

				|
			

			

				0
			

			

				+
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			
				|
				𝐶
			

			

				𝑗
			

			

				|
			

			

				0
			

			
				
				×
				
				−
				∫
				e
				x
				p
			

			
				𝑡
				𝑢
			

			
				
				𝐴
				(
				𝜉
				)
				𝑑
				𝜉
				𝑑
				𝑢
				≤
				𝜇
				<
				1
				;
			

		
	

	
		
			
				(
				𝐻
			

			

				7
			

			

				)
			

		
	

	
		
			
				∫
				e
				x
				p
				(
				−
			

			
				𝑡
				0
			

			
				𝐴
				(
				𝜉
				)
				𝑑
				𝜉
				)
				→
				0
			

		
	
, as 
	
		
			
				𝑡
				→
				+
				∞
			

		
	
. 
					Then, the positive 
	
		
			

				𝜔
			

		
	
-periodic solution of (1) is globally attractive, where 
	
		
			

				𝐻
			

			

				𝑙
			

			
				(
				𝑡
				)
				=
				[
				𝐷
			

			
				
				𝑙
			

			
				(
				𝑡
				)
				+
				𝐷
			

			

				𝑙
			

			
				(
				𝑡
				)
				𝐴
				(
				𝑡
				)
				]
				[
				1
				−
				𝜏
			

			
				
				𝑙
			

			
				(
				𝑡
				)
				]
				+
				𝐷
			

			

				𝑙
			

			
				(
				𝑡
				)
				𝜏
			

			
				𝑙
				
				
			

			
				(
				𝑡
				)
				/
				[
				1
				−
				𝜏
			

			
				
				𝑙
			

			
				(
				𝑡
				)
				]
			

			

				2
			

		
	
.
 Proof. Suppose that 
	
		
			
				𝑦
				(
				𝑡
				)
				=
				𝑒
			

			
				𝑣
				(
				𝑡
				)
			

		
	
 is a positive 
	
		
			

				𝜔
			

		
	
-periodic solution of (10), 
	
		
			

				𝑦
			

			

				∗
			

			
				(
				𝑡
				)
				=
				𝑒
			

			

				𝑣
			

			

				∗
			

			
				(
				𝑡
				)
			

		
	
 is another positive solution of (10). Similar to (17), we have
							
	
 		
 			
				(
				5
				0
				)
			
 			
				(
				5
				1
				)
			
 		
	

	
		
			
				𝑑
				𝑣
			

			
				
			
			
				𝑑
				𝑡
				=
				𝑟
				(
				𝑡
				)
				−
				𝐴
				(
				𝑡
				)
				𝑣
				(
				𝑡
				)
				−
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝐵
			

			

				𝑖
			

			
				
				(
				𝑡
				)
				𝑣
				𝑡
				−
				𝜎
			

			

				𝑖
			

			
				
				−
				(
				𝑡
				)
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝐶
			

			

				𝑗
			

			
				
				(
				𝑡
				)
			

			
				𝑡
				−
				∞
			

			

				𝐾
			

			

				𝑗
			

			
				−
				(
				𝑡
				−
				𝑠
				)
				𝑣
				(
				𝑠
				)
				𝑑
				𝑠
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			

				𝐷
			

			
				0
				𝑙
			

			
				(
				𝑡
				)
				𝑣
			

			

				
			

			
				
				𝑡
				−
				𝜏
			

			

				𝑙
			

			
				
				,
				(
				𝑡
				)
				𝑑
				𝑣
			

			

				∗
			

			
				
			
			
				𝑑
				𝑡
				=
				𝑟
				(
				𝑡
				)
				−
				𝐴
				(
				𝑡
				)
				𝑣
			

			

				∗
			

			
				(
				−
				𝑡
				)
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝐵
			

			

				𝑖
			

			
				(
				𝑡
				)
				𝑣
			

			

				∗
			

			
				
				𝑡
				−
				𝜎
			

			

				𝑖
			

			
				
				−
				(
				𝑡
				)
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝐶
			

			

				𝑗
			

			
				
				(
				𝑡
				)
			

			
				𝑡
				−
				∞
			

			

				𝐾
			

			

				𝑗
			

			
				(
				𝑡
				−
				𝑠
				)
				𝑣
			

			

				∗
			

			
				−
				(
				𝑠
				)
				𝑑
				𝑠
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			

				𝐷
			

			
				0
				𝑙
			

			
				(
				𝑡
				)
				𝑣
			

			
				
				∗
			

			
				
				𝑡
				−
				𝜏
			

			

				𝑙
			

			
				
				.
				(
				𝑡
				)
			

		
	

						Let 
	
		
			
				𝑣
				(
				𝑡
				)
				−
				𝑣
			

			

				∗
			

			
				(
				𝑡
				)
				=
				𝑤
				(
				𝑡
				)
			

		
	
; then,
							
	
 		
 			
				(
				5
				2
				)
			
 		
	

	
		
			
				𝑑
				𝑤
			

			
				
			
			
				𝑑
				𝑡
				=
				−
				𝐴
				(
				𝑡
				)
				𝑤
				(
				𝑡
				)
				−
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝐵
			

			

				𝑖
			

			
				
				(
				𝑡
				)
				𝑤
				𝑡
				−
				𝜎
			

			

				𝑖
			

			
				
				−
				(
				𝑡
				)
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝐶
			

			

				𝑗
			

			
				
				(
				𝑡
				)
			

			
				𝑡
				−
				∞
			

			

				𝐾
			

			

				𝑗
			

			
				−
				(
				𝑡
				−
				𝑠
				)
				𝑤
				(
				𝑠
				)
				𝑑
				𝑠
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			

				𝐷
			

			
				0
				𝑙
			

			
				(
				𝑡
				)
				𝑤
			

			

				
			

			
				
				𝑡
				−
				𝜏
			

			

				𝑙
			

			
				
				.
				(
				𝑡
				)
			

		
	

						Multiply both sides of (51) with 
	
		
			
				∫
				e
				x
				p
				(
			

			
				𝑡
				0
			

			
				𝐴
				(
				𝜉
				)
				𝑑
				𝜉
				)
			

		
	
 and then integrate from 0 to 
	
		
			

				𝑡
			

		
	
 to obtain that
							
	
 		
 			
				(
				5
				3
				)
			
 		
	

	
		
			

				
			

			
				𝑡
				0
			

			
				
				
				
				𝑤
				(
				𝑢
				)
				e
				x
				p
			

			
				𝑢
				0
			

			
				𝐴
				(
				𝜉
				)
				𝑑
				𝜉
				
				
			

			

				
			

			
				
				𝑑
				𝑢
				=
				−
			

			
				𝑡
				0
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝐵
			

			

				𝑖
			

			
				
				(
				𝑢
				)
				𝑤
				𝑡
				−
				𝜎
			

			

				𝑖
			

			
				
				+
				(
				𝑢
				)
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝐶
			

			

				𝑗
			

			
				
				(
				𝑢
				)
			

			
				𝑡
				−
				∞
			

			

				𝐾
			

			

				𝑗
			

			
				+
				(
				𝑢
				−
				𝑠
				)
				𝑤
				(
				𝑠
				)
				𝑑
				𝑠
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			

				𝐷
			

			
				0
				𝑙
			

			
				(
				𝑢
				)
				𝑤
			

			

				
			

			
				
				𝑢
				−
				𝜏
			

			

				𝑙
			

			
				
				
				
				
				(
				𝑢
				)
				×
				e
				x
				p
			

			
				𝑢
				0
			

			
				
				𝐴
				(
				𝜉
				)
				𝑑
				𝜉
				𝑑
				𝑢
				,
			

		
	

						Then,
							
	
 		
 			
				(
				5
				4
				)
			
 		
	

	
		
			
				
				−
				
				𝑤
				(
				𝑡
				)
				=
				𝑤
				(
				0
				)
				e
				x
				p
			

			
				𝑡
				0
			

			
				
				−
				
				𝐴
				(
				𝜉
				)
				𝑑
				𝜉
			

			
				𝑡
				0
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝐵
			

			

				𝑖
			

			
				
				(
				𝑢
				)
				𝑤
				𝑡
				−
				𝜎
			

			

				𝑖
			

			
				
				+
				(
				𝑢
				)
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝐶
			

			

				𝑗
			

			
				
				(
				𝑢
				)
			

			
				𝑡
				−
				∞
			

			

				𝐾
			

			

				𝑗
			

			
				+
				(
				𝑢
				−
				𝑠
				)
				𝑤
				(
				𝑠
				)
				𝑑
				𝑠
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			

				𝐷
			

			
				0
				𝑙
			

			
				(
				𝑢
				)
				𝑤
			

			

				
			

			
				
				𝑢
				−
				𝜏
			

			

				𝑙
			

			
				
				
				
				−
				
				(
				𝑢
				)
				×
				e
				x
				p
			

			
				𝑡
				𝑢
			

			
				
				𝐴
				(
				𝜉
				)
				𝑑
				𝜉
				𝑑
				𝑢
				.
			

		
	

						Meanwhile, we see that
							
	
 		
 			
				(
				5
				5
				)
			
 		
	

	
		
			

				
			

			
				𝑡
				0
				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			

				𝐷
			

			
				0
				𝑙
			

			
				(
				𝑢
				)
				𝑤
			

			

				
			

			
				
				𝑢
				−
				𝜏
			

			

				𝑙
			

			
				
				
				−
				
				(
				𝑢
				)
				e
				x
				p
			

			
				𝑡
				𝑢
			

			
				
				=
				
				𝐴
				(
				𝜉
				)
				𝑑
				𝜉
				𝑑
				𝑢
			

			
				𝑡
				0
				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			

				𝐷
			

			
				0
				𝑙
			

			
				(
				𝑢
				)
				𝑤
			

			

				
			

			
				
				𝑢
				−
				𝜏
			

			

				𝑙
			

			
				(
				𝑢
				)
				
				
				1
				−
				𝜏
			

			
				
				𝑙
			

			
				
				(
				𝑢
				)
			

			
				
			
			
				1
				−
				𝜏
			

			
				
				𝑙
			

			
				
				−
				
				(
				𝑢
				)
				×
				e
				x
				p
			

			
				𝑡
				𝑢
			

			
				
				=
				
				𝐴
				(
				𝜉
				)
				𝑑
				𝜉
				𝑑
				𝑢
			

			
				𝑡
				0
				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			
				⎡
				⎢
				⎢
				⎣
				𝐷
			

			

				0
			

			

				l
			

			
				
				−
				∫
				(
				𝑢
				)
				e
				x
				p
			

			
				𝑡
				𝑢
			

			
				
				𝐴
				(
				𝜉
				)
				𝑑
				𝜉
			

			
				
			
			
				1
				−
				𝜏
			

			
				
				𝑙
			

			
				⎤
				⎥
				⎥
				⎦
				×
				
				𝑤
				(
				𝑢
				)
			

			

				
			

			
				
				𝑢
				−
				𝜏
			

			

				𝑙
			

			
				(
				𝑢
				)
				
				
				1
				−
				𝜏
			

			
				
				𝑙
			

			
				=
				(
				𝑢
				)
				
				
				𝑑
				𝑢
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			
				
				𝐷
			

			
				0
				𝑙
			

			
				(
				𝑡
				)
			

			
				
			
			
				1
				−
				𝜏
			

			
				
				𝑙
			

			
				(
				𝑤
				
				𝑡
				)
				𝑡
				−
				𝜏
			

			

				𝑙
			

			
				
				−
				𝐷
				(
				𝑡
				)
			

			
				0
				𝑙
			

			
				(
				0
				)
			

			
				
			
			
				1
				−
				𝜏
			

			
				
				𝑙
			

			
				𝑤
				
				(
				0
				)
				−
				𝜏
			

			

				𝑙
			

			
				
				
				−
				
				(
				0
				)
				e
				x
				p
			

			
				𝑡
				0
			

			
				−
				𝐴
				(
				𝜉
				)
				𝑑
				𝜉
				
				
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			

				
			

			
				𝑡
				0
			

			

				𝐻
			

			

				𝑙
			

			
				
				−
				
				(
				𝑢
				)
				e
				x
				p
			

			
				𝑡
				𝑢
			

			
				𝐴
				
				𝑤
				
				(
				𝜉
				)
				𝑑
				𝜉
				𝑢
				−
				𝜏
			

			

				𝑙
			

			
				
				=
				(
				𝑢
				)
				𝑑
				𝑢
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			
				
				𝐷
			

			

				𝑙
			

			
				
				(
				𝑡
				)
				𝑤
				𝑡
				−
				𝜏
			

			

				𝑙
			

			
				
				(
				𝑡
				)
				−
				𝐷
			

			

				𝑙
			

			
				
				(
				0
				)
				𝑤
				−
				𝜏
			

			

				𝑙
			

			
				
				
				−
				
				(
				0
				)
				e
				x
				p
			

			
				𝑡
				0
			

			
				−
				𝐴
				(
				𝜉
				)
				𝑑
				𝜉
				
				
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			

				
			

			
				𝑡
				0
			

			

				𝐻
			

			

				𝑙
			

			
				
				−
				
				(
				𝑢
				)
				e
				x
				p
			

			
				𝑡
				𝑢
			

			
				
				𝑤
				
				𝐴
				(
				𝜉
				)
				𝑑
				𝜉
				𝑢
				−
				𝜏
			

			

				𝑙
			

			
				
				(
				𝑢
				)
				𝑑
				𝑢
				,
			

		
	

						where 
							
	
 		
 			
				(
				5
				6
				)
			
 		
	

	
		
			

				𝐻
			

			

				𝑙
			

			
				=
				
				𝐷
				(
				𝑢
				)
			

			
				
				𝑙
			

			
				(
				𝑢
				)
				+
				𝐷
			

			

				𝑙
			

			
				(
				𝑡
				)
				𝐴
				(
				𝑡
				)
				
				
				1
				−
				𝜏
			

			
				
				𝑙
			

			
				
				(
				𝑡
				)
				+
				𝐷
			

			

				𝑙
			

			
				(
				𝑡
				)
				𝜏
			

			
				𝑙
				
				
			

			
				(
				𝑡
				)
			

			
				
			
			
				
				1
				−
				𝜏
			

			
				
				𝑙
			

			
				
				(
				𝑡
				)
			

			

				2
			

			

				.
			

		
	

						Substituting (55) into (54), we get that
							
	
 		
 			
				(
				5
				7
				)
			
 		
	

	
		
			
				
				𝑤
				(
				𝑡
				)
				=
				𝑤
				(
				0
				)
				+
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			

				𝐷
			

			

				𝑙
			

			
				
				(
				0
				)
				𝑤
				−
				𝜏
			

			

				𝑙
			

			
				
				
				
				−
				
				(
				0
				)
				×
				e
				x
				p
			

			
				𝑡
				0
			

			
				
				+
				
				𝐴
				(
				𝜉
				)
				𝑑
				𝜉
			

			
				𝑡
				0
			

			

				
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			

				𝐻
			

			

				𝑙
			

			
				
				(
				𝑢
				)
				𝑤
				𝑢
				−
				𝜏
			

			

				𝑙
			

			
				
				−
				(
				𝑢
				)
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝐵
			

			

				𝑖
			

			
				
				(
				𝑢
				)
				𝑤
				𝑢
				−
				𝜎
			

			

				𝑖
			

			
				
				−
				(
				𝑢
				)
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝐶
			

			

				𝑗
			

			
				
				(
				𝑢
				)
			

			
				𝑢
				−
				∞
			

			

				𝐾
			

			

				𝑗
			

			
				
				
				−
				
				(
				𝑢
				−
				𝑠
				)
				𝑤
				(
				𝑠
				)
				𝑑
				𝑠
				×
				e
				x
				p
			

			
				𝑡
				𝑢
			

			
				
				𝐴
				(
				𝜉
				)
				𝑑
				𝜉
				𝑑
				𝑢
				−
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			

				𝐷
			

			

				𝑙
			

			
				
				(
				𝑡
				)
				𝑤
				𝑡
				−
				𝜏
			

			

				𝑙
			

			
				
				.
				(
				𝑡
				)
			

		
	

						Therefore, we have
							
	
 		
 			
				(
				5
				8
				)
			
 		
	

	
		
			
				|
				𝑤
				|
			

			

				0
			

			
				≤
				|
				|
				|
				|
				|
				𝑤
				(
				0
				)
				+
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			

				𝐷
			

			

				𝑙
			

			
				(
				
				0
				)
				𝑤
				−
				𝜏
			

			

				𝑙
			

			
				(
				
				|
				|
				|
				|
				|
				
				−
				
				0
				)
				×
				e
				x
				p
			

			
				𝑡
				0
			

			
				
				+
				
				𝐴
				(
				𝜉
				)
				𝑑
				𝜉
			

			
				𝑡
				0
			

			

				
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			
				|
				𝐻
			

			

				𝑙
			

			

				|
			

			

				0
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			
				|
				𝐵
			

			

				𝑖
			

			

				|
			

			

				0
			

			

				+
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			
				|
				|
				𝐶
			

			

				𝑗
			

			
				|
				|
			

			

				0
			

			
				
				×
				|
				𝑤
				|
			

			

				0
			

			
				
				−
				
				e
				x
				p
			

			
				𝑡
				𝑢
			

			
				
				𝐴
				(
				𝜉
				)
				𝑑
				𝜉
				𝑑
				𝑢
				+
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			
				|
				𝐷
			

			

				𝑙
			

			

				|
			

			

				0
			

			
				|
				𝑤
				|
			

			

				0
			

			

				.
			

		
	

						From 
	
		
			
				(
				𝐻
			

			

				6
			

			

				)
			

		
	
, we have
							
	
 		
 			
				(
				5
				9
				)
			
 		
	

	
		
			
				|
				𝑤
				|
			

			

				0
			

			
				≤
				|
				|
				|
				|
				|
				𝑤
				(
				0
				)
				+
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			

				𝐷
			

			

				𝑙
			

			
				
				(
				0
				)
				𝑤
				−
				𝜏
			

			

				𝑙
			

			
				
				|
				|
				|
				|
				|
				
				−
				
				(
				0
				)
				e
				x
				p
			

			
				𝑡
				0
			

			
				
				×
				
				𝐴
				(
				𝜉
				)
				𝑑
				𝜉
				1
				−
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			
				|
				|
				𝐷
			

			

				𝑙
			

			
				|
				|
			

			

				0
			

			
				−
				
			

			
				𝑡
				0
			

			

				
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			
				|
				𝐻
			

			

				𝑙
			

			

				|
			

			

				0
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			
				|
				𝐵
			

			

				𝑖
			

			

				|
			

			

				0
			

			

				+
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			
				|
				𝐶
			

			

				𝑗
			

			

				|
			

			

				0
			

			
				
				
				−
				
				×
				e
				x
				p
			

			
				𝑡
				𝑢
			

			
				𝐴
				
				
				(
				𝜉
				)
				𝑑
				𝜉
				𝑑
				𝑢
			

			
				−
				1
			

			
				≤
				|
				|
				∑
				𝑤
				(
				0
				)
				+
			

			
				𝑝
				𝑙
				=
				1
			

			

				𝐷
			

			

				𝑙
			

			
				
				(
				0
				)
				𝑤
				−
				𝜏
			

			

				𝑙
			

			
				
				|
				|
				
				−
				∫
				(
				0
				)
				e
				x
				p
			

			
				𝑡
				0
			

			
				
				𝐴
				(
				𝜉
				)
				𝑑
				𝜉
			

			
				
			
			
				.
				1
				−
				𝜇
			

		
	

						From 
	
		
			
				(
				𝐻
			

			

				7
			

			

				)
			

		
	
, we have
	
 		
 			
				(
				6
				0
				)
			
 		
	

	
		
			
				|
				𝑤
				|
			

			

				0
			

			
				=
				|
				𝑣
				−
				𝑣
			

			

				∗
			

			

				|
			

			

				0
			

			
				=
				0
				,
				a
				s
				𝑡
				⟶
				+
				∞
				,
			

		
	

						thus, 
	
		
			
				𝑣
				(
				𝑡
				)
				→
				𝑣
			

			

				∗
			

			
				(
				𝑡
				)
			

		
	
, as 
	
		
			
				𝑡
				→
				+
				∞
			

		
	
; that is, the positive 
	
		
			

				𝜔
			

		
	
-periodic solution of (10) is globally attractive; by Definition 2, the positive 
	
		
			

				𝜔
			

		
	
-periodic solution of (1) is globally attractive. The proof is completed.
Consider the following equation:
						
	
 		
 			
				(
				6
				1
				)
			
 		
	

	
		
			
				𝑑
				𝑁
				(
				𝑡
				)
			

			
				
			
			
				
				−
				𝑑
				𝑡
				=
				𝑁
				(
				𝑡
				)
				𝑟
				(
				𝑡
				)
				−
				𝑎
				(
				𝑡
				)
				l
				n
				𝑁
				(
				𝑡
				)
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑏
			

			

				𝑖
			

			
				
				(
				𝑡
				)
				l
				n
				𝑁
				𝑡
				−
				𝜎
			

			

				𝑖
			

			
				
				−
				(
				𝑡
				)
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			

				𝑗
			

			
				
				(
				𝑡
				)
			

			
				𝑡
				−
				∞
			

			

				𝐾
			

			

				𝑗
			

			
				−
				(
				𝑡
				−
				𝑠
				)
				l
				n
				𝑁
				(
				𝑠
				)
				𝑑
				𝑠
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			

				𝑑
			

			

				𝑙
			

			
				(
				
				𝑡
				)
				𝑑
				l
				n
				𝑁
				𝑡
				−
				𝜏
			

			

				𝑙
			

			
				
				(
				𝑡
				)
			

			
				
			
			
				
				,
				𝑑
				𝑡
			

		
	

					which is a special case of the system (1) without impulse. Similarly, we can get the following conclusions.
Corollary 17.  Suppose that the following conditions hold: 
	
		
			
				(
				𝐻
			

			
				∗
				1
			

			

				)
			

		
	

	
		
			
				𝑟
				(
				𝑡
				)
				,
				𝑎
				(
				𝑡
				)
				,
				𝑏
			

			

				𝑖
			

			
				(
				𝑡
				)
				,
				𝑐
			

			

				𝑗
			

			
				(
				𝑡
				)
				,
				𝑑
			

			

				𝑙
			

			
				(
				𝑡
				)
				,
				𝜎
			

			

				𝑖
			

			
				(
				𝑡
				)
			

		
	
,
	
		
			

				𝜏
			

			

				𝑙
			

			
				(
				𝑡
				)
				(
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑛
			

		
	
; 
	
		
			
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑚
			

		
	
; 
	
		
			
				𝑙
				=
				1
				,
				2
				,
				…
				,
				𝑝
				)
			

		
	
 are all  positive 
	
		
			

				𝜔
			

		
	
-periodic continuous functions with 
	
		
			

				𝜎
			

			

				𝑖
			

			
				(
				𝑡
				)
				≥
				0
				,
				𝜏
			

			

				𝑙
			

			
				(
				𝑡
				)
				≥
				0
			

		
	
, 
	
		
			
				𝑡
				∈
				[
				0
				,
				𝜔
				]
			

		
	
, 
	
		
			

				𝜎
			

			
				
				𝑖
			

			
				(
				𝑡
				)
				<
				1
			

		
	
, 
	
		
			

				𝜏
			

			
				
				𝑙
			

			
				(
				𝑡
				)
				<
				1
			

		
	
, for all 
	
		
			
				𝑖
				=
				{
				1
				,
				2
				,
				…
				,
				𝑛
				}
			

		
	
, for all 
	
		
			
				𝑙
				=
				{
				1
				,
				2
				,
				…
				,
				𝑝
				}
			

		
	
; furthermore, 
	
		
			

				𝑑
			

			

				𝑙
			

			
				(
				𝑡
				)
				∈
				𝐶
			

			

				1
			

			
				(
				𝑅
				,
				𝑅
				)
			

		
	
, 
	
		
			

				𝜏
			

			

				𝑙
			

			
				(
				𝑡
				)
				∈
				𝐶
			

			

				2
			

			
				∫
				(
				𝑅
				,
				𝑅
				)
				,
			

			
				∞
				0
			

			

				𝐾
			

			

				𝑗
			

			
				∫
				(
				𝑠
				)
				𝑑
				𝑠
				=
				1
				,
			

			
				0
				+
				∞
			

			
				𝑠
				𝐾
			

			

				𝑗
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				<
				+
				∞
			

		
	
, for all 
	
		
			
				𝑗
				=
				{
				1
				,
				2
				,
				…
				,
				𝑚
				}
			

		
	
, for all 
	
		
			
				𝑙
				=
				{
				1
				,
				2
				,
				…
				,
				𝑝
				}
			

		
	
;
	
		
			
				(
				𝐻
			

			
				∗
				2
			

			

				)
			

		
	
 there exists a constant 
	
		
			
				𝜂
				>
				0
			

		
	
 such that 
	
		
			
				|
				Γ
			

			

				∗
			

			
				(
				𝑡
				)
				|
				≥
				𝜂
			

		
	
, for all 
	
		
			
				𝑡
				∈
				[
				0
				,
				𝜔
				]
			

		
	
, where 
	
		
			

				Γ
			

			

				∗
			

			
				(
				𝑡
				)
			

		
	
 is defined by the following: 
										
	
 		
 			
				(
				6
				2
				)
			
 		
	

	
		
			

				Γ
			

			

				∗
			

			
				(
				𝑡
				)
				∶
				=
				𝑎
				(
				𝑡
				)
				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑎
			

			

				𝑖
			

			
				
				𝜁
			

			

				𝑖
			

			
				
				(
				𝑡
				)
			

			
				
			
			
				1
				−
				𝜎
			

			
				
				𝑖
			

			
				
				𝜁
			

			

				𝑖
			

			
				
				+
				(
				𝑡
				)
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			

				𝑗
			

			
				(
				𝑡
				)
				−
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			

				𝑑
			

			
				
				𝑙
			

			
				
				𝜉
			

			

				𝑙
			

			
				
				(
				𝑡
				)
			

			
				
			
			
				1
				−
				𝜏
			

			
				
				𝑙
			

			
				
				𝜉
			

			

				𝑙
			

			
				(
				
				;
				𝑡
				)
			

		
	

	
		
			
				(
				𝐻
			

			
				∗
				3
			

			

				)
			

		
	
 if 
	
		
			
				(
				1
				/
				2
				)
				(
				|
				𝑎
				|
			

			

				0
			

			
				∑
				𝜔
				+
			

			
				𝑛
				𝑖
				=
				1
			

			
				|
				𝑏
			

			

				𝑖
			

			

				|
			

			

				0
			

			
				∑
				𝜔
				+
			

			
				𝑚
				𝑗
				=
				1
			

			
				|
				𝑐
			

			

				𝑗
			

			

				|
			

			

				0
			

			

				𝜔
			

			
				1
				/
				2
			

			
				∑
				)
				+
			

			
				𝑝
				𝑙
				=
				1
			

			
				|
				1
				−
				𝜏
			

			
				
				𝑙
			

			

				|
			

			
				0
				1
				/
				2
			

			
				|
				𝑑
			

			

				𝑙
			

			

				|
			

			

				0
			

			
				<
				1
			

		
	
, and 
	
		
			

				∑
			

			
				𝑝
				𝑙
				=
				1
			

			
				|
				1
				−
				𝜏
			

			
				
				𝑙
			

			

				|
			

			

				0
			

			
				|
				𝑑
			

			

				𝑙
			

			

				|
			

			

				0
			

			
				<
				1
			

		
	
. 
					Then, (61) has at least one positive 
	
		
			

				𝜔
			

		
	
-periodic solution.
Corollary 18.  Suppose that 
	
		
			
				(
				𝐻
			

			
				∗
				1
			

			

				)
			

		
	
 and the following conditions hold: 
	
		
			
				(
				𝐻
			

			
				∗
				4
			

			

				)
			

		
	
 there is a positive constant 
	
		
			

				𝜇
			

		
	
 such that 
										
	
 		
 			
				(
				6
				3
				)
			
 		
	

	
		
			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			
				|
				|
				𝑑
			

			

				𝑙
			

			
				|
				|
			

			

				0
			

			
				+
				
			

			
				𝑡
				0
			

			

				
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				1
			

			
				|
				|
				ℎ
			

			

				𝑙
			

			
				|
				|
			

			

				0
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			
				|
				|
				𝑏
			

			

				𝑖
			

			
				|
				|
			

			

				0
			

			

				+
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			
				|
				|
				𝑐
			

			

				𝑗
			

			
				|
				|
			

			

				0
			

			
				
				
				−
				
				×
				e
				x
				p
			

			
				𝑡
				𝑢
			

			
				
				𝑎
				(
				𝜉
				)
				𝑑
				𝜉
				𝑑
				𝑢
				≤
				𝜇
				<
				1
				;
			

		
	

	
		
			
				(
				𝐻
			

			
				∗
				5
			

			

				)
			

		
	

	
		
			
				∫
				e
				x
				p
				(
				−
			

			
				𝑡
				0
			

			
				𝐴
				(
				𝜉
				)
				𝑑
				𝜉
				)
				→
				0
			

		
	
, as 
	
		
			
				𝑡
				→
				+
				∞
			

		
	
. 
					Then, the positive 
	
		
			

				𝜔
			

		
	
-periodic solution of (61) is globally attractive, where 
	
		
			

				ℎ
			

			

				𝑙
			

			
				(
				𝑡
				)
				∶
				=
				[
				𝑑
			

			
				
				𝑙
			

			
				(
				𝑡
				)
				+
				𝑑
			

			

				𝑙
			

			
				(
				𝑡
				)
				𝑎
				(
				𝑡
				)
				]
				[
				1
				−
				𝜏
			

			
				
				𝑙
			

			
				(
				𝑡
				)
				]
				+
				𝑑
			

			

				𝑙
			

			
				(
				𝑡
				)
				𝜏
			

			
				𝑙
				
				
			

			
				(
				𝑡
				)
				/
				[
				1
				−
				𝜏
			

			
				
				𝑙
			

			
				(
				𝑡
				)
				]
			

			

				2
			

		
	
.
Remark 19. One could easily see that the systems (5)–(7) are all special cases of the system (61); we can get the similar results, and we omit them here. Hence, our results improve and generalize the corresponding results in [4–7].
4. An Example
   Consider the following impulsive model:
						
	
 		
 			
				(
				6
				4
				)
			
 		
	

	
		
			
				𝑑
				𝑁
				(
				𝑡
				)
			

			
				
			
			
				
				
				𝑑
				𝑡
				=
				𝑁
				(
				𝑡
				)
				𝑟
				(
				𝑡
				)
				−
				𝑎
				(
				𝑡
				)
				l
				n
				𝑁
				(
				𝑡
				)
				−
				𝑏
				(
				𝑡
				)
				l
				n
				𝑁
				(
				𝑡
				−
				𝜎
				(
				𝑡
				)
				)
				−
				𝑐
				(
				𝑡
				)
			

			
				𝑡
				−
				∞
			

			
				𝐾
				(
				𝑡
				−
				𝑠
				)
				l
				n
				𝑁
				(
				𝑠
				)
				𝑑
				𝑠
				−
				𝑑
				(
				𝑡
				)
				𝑑
				l
				n
				𝑁
				(
				𝑡
				−
				𝜏
				(
				𝑡
				)
				)
			

			
				
			
			
				
				,
				𝑑
				𝑡
				𝑡
				≠
				𝑡
			

			

				𝑘
			

			
				,
				
				𝑡
				Δ
				𝑁
			

			

				𝑘
			

			
				
				
				𝑡
				=
				𝑁
			

			
				+
				𝑘
			

			
				
				
				𝑡
				−
				𝑁
			

			

				𝑘
			

			
				
				=
				𝜃
			

			

				𝑘
			

			
				𝑁
				
				𝑡
			

			

				𝑘
			

			
				
				,
				𝑘
				=
				1
				,
				2
				,
				…
				,
			

		
	

					where 
	
		
			
				𝑟
				(
				𝑡
				)
				,
				𝑎
				(
				𝑡
				)
				,
				𝑏
				(
				𝑡
				)
				,
				𝑐
				(
				𝑡
				)
				,
				𝑑
				(
				𝑡
				)
				,
				𝜎
				(
				𝑡
				)
				,
				𝜏
				(
				𝑡
				)
			

		
	
 are all positive 
	
		
			

				𝜔
			

		
	
-periodic continuous functions with 
	
		
			
				𝜎
				(
				𝑡
				)
				≥
				0
				,
				𝜏
				(
				𝑡
				)
				≥
				0
				,
				𝑡
				∈
				[
				0
				,
				𝜔
				]
				,
				𝜎
			

			

				
			

			
				(
				𝑡
				)
				<
				1
				,
				𝜏
			

			

				
			

			
				(
				𝑡
				)
				<
				1
			

		
	
; furthermore, 
	
		
			
				𝑑
				(
				𝑡
				)
				∈
				𝐶
			

			

				1
			

			
				(
				𝑅
				,
				𝑅
				)
			

		
	
, 
	
		
			
				𝜏
				(
				𝑡
				)
				∈
				𝐶
			

			

				2
			

			
				(
				𝑅
				,
				𝑅
				)
			

		
	
, 
	
		
			

				∫
			

			
				∞
				0
			

			
				𝐾
				(
				𝑠
				)
				𝑑
				𝑠
				=
				1
			

		
	
, 
	
		
			

				∫
			

			
				0
				+
				∞
			

			
				𝑠
				𝐾
				(
				𝑠
				)
				𝑑
				𝑠
				<
				+
				∞
			

		
	
.
Corollary 20.  Suppose that 
	
		
			
				(
				𝐻
			

			

				1
			

			
				)
				-
				-
				(
				𝐻
			

			

				3
			

			

				)
			

		
	
 and the following conditions hold: 
	
		
			
				(
				𝐻
			

			

				4
			

			

				)
			

		
	
 there exists a constant 
	
		
			
				𝜂
				>
				0
			

		
	
 such that 
	
		
			
				|
				Γ
				(
				𝑡
				)
				|
				≥
				𝜂
			

		
	
, for all 
	
		
			
				𝑡
				∈
				[
				0
				,
				𝜔
				]
			

		
	
, where 
	
		
			
				Γ
				(
				𝑡
				)
			

		
	
 is defined by the following: 
										
	
 		
 			
				(
				6
				5
				)
			
 		
	

	
		
			
				Γ
				(
				𝑡
				)
				∶
				=
				𝐴
				(
				𝑡
				)
				+
				𝐵
				(
				𝜁
				(
				𝑡
				)
				)
			

			
				
			
			
				1
				−
				𝜎
			

			

				
			

			
				𝐷
				(
				𝜁
				(
				𝑡
				)
				)
				+
				𝐶
				(
				𝑡
				)
				−
			

			

				
			

			
				(
				𝜉
				(
				𝑡
				)
				)
			

			
				
			
			
				1
				−
				𝜏
			

			

				
			

			
				;
				(
				𝜉
				(
				𝑡
				)
				)
			

		
	

	
		
			
				(
				𝐻
			

			

				5
			

			

				)
			

		
	
 if 
	
		
			
				(
				1
				/
				2
				)
				[
				(
				|
				𝐴
				|
			

			

				0
			

			
				+
				|
				𝐵
				|
			

			

				0
			

			
				)
				𝜔
				+
				|
				𝐶
				|
			

			

				0
			

			

				𝜔
			

			
				1
				/
				2
			

			
				)
				+
				|
				1
				−
				𝜏
			

			

				
			

			

				|
			

			
				0
				1
				/
				2
			

			
				|
				𝐷
				|
			

			

				0
			

			
				<
				1
			

		
	
, and 
	
		
			
				|
				1
				−
				𝜏
			

			

				
			

			

				|
			

			

				0
			

			
				|
				𝐷
				|
			

			

				0
			

			
				<
				1
			

		
	
. 
					Then, (64) has at least one positive 
	
		
			

				𝜔
			

		
	
-periodic solution, where
							
	
 		
 			
				(
				6
				6
				)
			
 		
	

	
		
			
				
				𝐴
				(
				𝑡
				)
				=
				𝑎
				(
				𝑡
				)
			

			
				0
				<
				𝑡
			

			

				𝑘
			

			
				<
				𝑡
			

			
				
				1
				+
				𝜃
			

			

				𝑘
			

			
				
				,
				
				𝐵
				(
				𝑡
				)
				=
				𝑏
				(
				𝑡
				)
			

			
				0
				<
				𝑡
			

			

				𝑘
			

			
				<
				𝑡
				−
				𝜎
				(
				𝑡
				)
			

			
				
				1
				+
				𝜃
			

			

				𝑘
			

			
				
				,
				𝐶
				
				(
				𝑡
				)
				=
				𝑐
				(
				𝑡
				)
			

			
				0
				<
				𝑡
			

			

				𝑘
			

			
				<
				𝑡
			

			
				
				1
				+
				𝜃
			

			

				𝑘
			

			
				
				,
				
				𝐷
				(
				𝑡
				)
				=
				𝑑
				(
				𝑡
				)
			

			
				0
				<
				𝑡
			

			

				𝑘
			

			
				<
				𝑡
				−
				𝜏
				(
				𝑡
				)
			

			
				
				1
				+
				𝜃
			

			

				𝑘
			

			
				
				.
			

		
	

Corollary 21.  Suppose that 
	
		
			
				(
				𝐻
			

			

				1
			

			
				)
				-
				-
				(
				𝐻
			

			

				5
			

			

				)
			

		
	
 and the following conditions hold: 
	
		
			
				(
				𝐻
			

			

				6
			

			

				)
			

		
	
 there is a positive constant 
	
		
			

				𝜇
			

		
	
 such that 
										
	
 		
 			
				(
				6
				7
				)
			
 		
	

	
		
			
				|
				𝐷
				|
			

			

				0
			

			
				+
				
			

			
				𝑡
				0
			

			
				
				|
				𝐻
				|
			

			

				0
			

			
				+
				|
				𝐵
				|
			

			

				0
			

			
				+
				|
				𝐶
				|
			

			

				0
			

			
				
				
				−
				
				×
				e
				x
				p
			

			
				𝑡
				𝑢
			

			
				
				𝐴
				(
				𝜉
				)
				𝑑
				𝜉
				𝑑
				𝑢
				≤
				𝜇
				<
				1
				;
			

		
	

	
		
			
				(
				𝐻
			

			

				7
			

			

				)
			

		
	

	
		
			
				∫
				e
				x
				p
				(
				−
			

			
				𝑡
				0
			

			
				𝐴
				(
				𝜉
				)
				𝑑
				𝜉
				)
				→
				0
			

		
	
, as 
	
		
			
				𝑡
				→
				+
				∞
			

		
	
. 
					Then, the positive 
	
		
			

				𝜔
			

		
	
-periodic solution of (64) is globally attractive, where 
	
		
			
				𝐻
				(
				𝑡
				)
				∶
				=
				[
				𝐷
			

			

				
			

			
				(
				𝑡
				)
				+
				𝐷
				(
				𝑡
				)
				𝐴
				(
				𝑡
				)
				]
				[
				1
				−
				𝜏
			

			

				
			

			
				(
				𝑡
				)
				]
				+
				𝐷
				(
				𝑡
				)
				𝜏
			

			
				
				
			

			
				(
				𝑡
				)
				/
				[
				1
				−
				𝜏
			

			

				
			

			
				(
				𝑡
				)
				]
			

			

				2
			

		
	
.
Remark 22. The results in the work show that by means of appropriate impulsive perturbations, we can control the dynamics of these equations.
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