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This paper presents the nonsimilarity solutions for mixed convection heat and mass transfer along a semi-infinite vertical plate
embedded in a doubly stratified fluid saturated porous medium in the presence of Soret and Dufour effects. The flow in the porous
medium is described by employing the Darcy-Forchheimer based model. The nonlinear governing equations and their associated
boundary conditions are initially cast into dimensionless forms and then solved numerically.The influence of pertinent parameters
on dimensionless velocity, temperature, concentration, heat, andmass transfer in terms of the local Nusselt and Sherwood numbers
is discussed and presented graphically.

1. Introduction

The study of mixed convective transport in a doubly stratified
(thermal and/or solutal stratification) fluid saturated porous
medium has been a topic of continuing interest in the past
decades owing to its importance in many industrial and
engineering applications. These applications include heat
rejection into the environment such as lakes, rivers, and seas;
thermal energy storage systems such as solar ponds; and
heat transfer from thermal sources such as the condensers of
power plants. Numerous studies on mixed convection heat
and mass transfer have been reported in the past several
decades using both Darcian and non-Darcian models for the
porous medium. Comprehensive reviews of convective heat
transfer in porous medium can be found in the books by
Nield and Bejan [1], Pop and Ingham [2], and Bejan [3].
Non-Darcianmodels are the extensions of the classical Darcy
formulation to incorporate inertial drag effects, vorticity
diffusion, and combinations of these effects. Differentmodels
such as Brinkman-extended Darcy, Forchheimer-extended
Darcy, and the generalized flowmodels were proposed in the
literature to analyze the non-Darcian flow in porous media.
The Darcy-Forchheimer model is an extension of classical
Darcian formulation obtained by adding a velocity squared
term in the momentum equation to account for the inertial

effects. Several authors have reported the study of mixed
convection heat and mass transfer in porous medium for
which the Forchheimer-extended Darcy model is employed.

Stratification of fluid is a deposition/formation of layers
and occurs due to temperature variations, concentration
differences, or the presence of different fluids. It is important
to examine the temperature stratification and concentration
differences of hydrogen and oxygen in lakes and ponds as
theymay directly affect the growth rate of all cultured species.
Also, the analysis of thermal stratification is important for
solar engineering because higher energy efficiency can be
achieved with better stratification. It has been shown by
scientists that thermal stratification in energy storage may
considerably increase system performance. Although the
effect of stratification of the medium on the heat removal
process in a porous medium is important, very little work
has been reported in the literature. Mukhopadhyay and
Ishak [4] presented an analysis for the axisymmetric laminar
boundary layer mixed convection flow of a viscous and
incompressible fluid towards a stretching cylinder immersed
in a thermally stratified medium. The influence of thermal
dispersion and stratification on the flow and temperature
fields for mixed convection from a vertical plate embedded
in a porousmedium has been investigated by Hassanien et al.
[5]. Steady, laminar, hydromagnetic simultaneous heat and
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mass transfer by mixed convection flow over a vertical plate
embedded in a uniform porous medium with a stratified
free stream and taking into account the presence of thermal
dispersion has been investigated for the case of power-law
variations of both the wall temperature and concentration
by Chamkha and Khaled [6]. Ishak et al. [7] investigated
the mixed convection boundary layer flow through a stable
stratified porous medium bounded by a vertical surface.
The effects of variable viscosities and thermal stratification
on the MHD mixed convective heat and mass transfer of
a viscous, incompressible, and electrically conducting fluid
past a porous wedge in the presence of a chemical reaction
have been investigated byMuhaimin et al. [8]. UsingGalerkin
finite element method, numerical investigation of mixed
convection flow in a concentration-stratified fluid-saturated
vertical square porous enclosure has been investigated by
Rathish Kumar and Krishna Murthy [9].

In all the aforementioned papers, the significance of
Dufour and Soret was neglected on the basis that they are
of a smaller order of magnitude than the effects described
by Fourier’s and Fick’s laws. However, Eckert and Drake [10]
reported several cases when the Dufour effect cannot be
neglected. Diffusion-thermal or Dufour effect corresponds to
the energy flux caused by a concentration gradient. On the
other hand, thermal diffusion or Soret effect corresponds to
species differentiation occurring in an initial homogeneous
mixture submitted to a thermal gradient. Due to the impor-
tance of Dufour and Soret effects for the fluids with very
light molecular weight as well as medium molecular weight,
many investigators have studied and reported results for these
flows. Seddeek [11] analyzed the thermal-diffusion and the
diffusion-thermal effects on themixed free-forced convective
and mass transfer steady laminar boundary-layer flow over
an accelerating surface with a heat source in the presence of
suction and blowing. The influence of a magnetic field on
heat and mass transfer by mixed convection from vertical
surfaces in the presence of Hall, radiation, Soret, and Dufour
effects has been investigated by Shateyi et al. [12]. The Soret
and Dufour effects on the steady, laminar mixed convection
heat and mass transfer along a semi-infinite vertical plate
embedded in a non-Darcy porous medium saturated with
micropolar fluid have been studied by Srinivasacharya and
Ramreddy [13]. Cheng [14] studied the Soret and Dufour
effects on the boundary layer flow due to mixed convection
heat and mass transfer over a downward-pointing vertical
wedge in a porous medium saturated with Newtonian fluids
with constant wall temperature and concentration.

In this paper, we made an attempt to obtain the nonsim-
ilar solutions for mixed convection on a vertical plate with
constant and uniform wall temperature and concentration
in a stable doubly stratified non-Darcian fluid in which the
ambient temperature and concentration vary linearly. Soret
and Dufour effects are considered. The Keller-box method
given in Cebeci and Bradshaw [15] is employed to solve the
nonlinear system of this particular problem. The influence
of stratification parameters, Lewis number, Forchheimer
number, Buoyancy parameter, mixed convection parameter,
Soret, and Dufour parameters on physical quantities are
examined and displayed graphically.

2. Mathematical Formulation

Consider non-Darcian mixed convective heat and mass
transfer along a semi-infinite vertical plate in a stable, doubly
stratified viscous fluid saturated porous medium with uni-
form velocity 𝑈

∞
far away from the plate with Soret and

Dufour effects. In the formulation of the present problem, the
following assumptions are made.

(i) The flow is steady, laminar, incompressible, two
dimensional.

(ii) The porous medium is homogeneous and isotropic
(i.e., uniformwith a constant porosity and permeabil-
ity).

(iii) The fluid has constant properties except the density
in the buoyancy term of the balance of momentum
equation.

(iv) The fluid flow is moderate, so the pressure drop
is proportional to the linear combination of fluid
velocity and the square of velocity.

(v) The Boussinesq and boundary-layer approximations
are applicable.

The 𝑥 coordinate is taken along the plate, in the ascending
direction and the 𝑦 coordinate is measured normal to the
plate, while the origin of the reference system is considered
at the leading edge of the vertical plate. The physical model
and the coordinate system are shown in Figure 1. The plate is
maintained at uniform wall temperature and concentration
𝑇
𝑤
and 𝐶

𝑤
, respectively. The ambient medium is assumed to

be vertically linearly stratified with respect to both temper-
ature and concentration in the form 𝑇

∞
(𝑥) = 𝑇

∞,0
+ 𝐴𝑥,

𝐶
∞
(𝑥) = 𝐶

∞,0
+ 𝐵𝑥, where 𝐴 and 𝐵 are constants varied

to alter the intensity of stratification in the medium and
𝑇
∞,0

and 𝐶
∞,0

are ambient temperature and concentration,
respectively. With the above assumptions and using the
Darcy-Forchheimer model, the governing equations for flow
are given by

𝜕𝑢

𝜕𝑥
+

𝜕V
𝜕𝑦

= 0, (1)

𝜕𝑢
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, (3)

𝑢
𝜕𝐶

𝜕𝑥
+ V

𝜕𝐶

𝜕𝑦
= 𝐷

𝜕
2

𝐶

𝜕𝑦2
+

𝐷𝐾
𝑇

𝑇
𝑚

𝜕
2

𝑇

𝜕𝑦2
, (4)

where 𝑢 and V are the average velocity components in 𝑥

and 𝑦 directions, respectively, 𝑇 is the temperature, 𝐶 is the
concentration, 𝛽

𝑇
and 𝛽

𝐶
are the thermal and solutal expan-

sion coefficients, respectively, ] is the kinematic viscosity of
the fluid, 𝐾 is the permeability, 𝑔 is the acceleration due to
gravity, 𝛼 is the thermal diffusivity of the porous medium
and 𝐷 is the solutal diffusivity of the porous medium, 𝐾

𝑇
is

thermal diffusion ratio, 𝐶
𝑠
is concentration susceptibility, 𝐶

𝑝
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Figure 1: Physical model and coordinate system.

is specific heat capacity, and 𝑇
𝑚
is mean fluid temperature.

The last terms in (3) and (4) are due to Dufour and Soret
effects, respectively.

The boundary conditions are

V = 0, 𝑇 = 𝑇
𝑤
, 𝐶 = 𝐶

𝑤
at 𝑦 = 0, (5a)

𝑢 = 𝑢
∞
, 𝑇 = 𝑇

∞
(𝑥) , 𝐶 = 𝐶

∞
(𝑥) as 𝑦 → ∞, (5b)

where the subscripts𝑤, (∞, 0), and∞ indicate the conditions
at the wall, at some reference point in the medium, and at the
outer edge of the boundary layer, respectively.

3. Method of Solution

The continuity equation (1) is satisfied by introducing the
stream function 𝜓 such that

𝑢 =
𝜕𝜓

𝜕𝑦
, V = −

𝜕𝜓

𝜕𝑥
. (6)

Introducing the following nondimensional variables:

𝜉 =
𝑥

𝐿
, 𝜂 =

Pe1/2

𝐿𝜉1/2
𝑦, 𝜓 = 𝛼Pe1/2𝜉1/2𝑓 (𝜉, 𝜂)

𝑇 − 𝑇
∞

(𝑥) = (𝑇
𝑤
− 𝑇
∞,0

) 𝜃 (𝜉, 𝜂) ,

𝐶 − 𝐶
∞

(𝑥) = (𝐶
𝑤
− 𝐶
∞,0

) 𝜙 (𝜉, 𝜂) .

(7)

Substituting (6) and (7) in (2), (3), and (4), we obtain

𝑓


+ 2𝐹
𝑐
𝑓


𝑓


=
Ra
Pe

[𝜃


+ 𝐵𝜙


] , (8)

𝜃


+
1

2
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− 𝜖
1
𝜉𝑓


+ 𝐷
𝑓
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] , (9)

1
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𝜙
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1

2
𝑓𝜙


− 𝜖
2
𝜉𝑓


+ 𝑆
𝑟
𝜃


= 𝜉 [𝑓

𝜕𝜙

𝜕𝜉
− 𝜙

𝜕𝑓

𝜕𝜉
] , (10)

where the prime denotes differentiation with respect to 𝜂,
Ra = 𝐾𝑔𝛽

𝑇
(𝑇
𝑤

− 𝑇
∞,0

)𝐿/𝛼] is the Rayleigh number,
Pr = ]/𝛼 is the Prandtl number, 𝐹

𝑐
= 𝑐√𝐾Pe/𝐿Pr is the

Forchheimer number, Le = 𝛼/𝐷 is the diffusivity ratio and
𝐵 = 𝛽

𝐶
(𝐶
𝑤

− 𝐶
∞,0

)/𝛽
𝑇
(𝑇
𝑤

− 𝑇
∞,0

) is the buoyancy ratio,
𝜖
1

= 𝐴𝐿/(𝑇
𝑤

− 𝑇
∞,0

) and 𝜖
2

= 𝐵𝐿/(𝐶
𝑤

− 𝐶
∞,0

) are the
thermal and solutal stratification parameters, respectively,
𝐷
𝑓

= (𝐷𝐾
𝑇
/𝛼𝐶
𝑠
𝐶
𝑝
)((𝐶
𝑤

− 𝐶
∞,0

)/(𝑇
𝑤

− 𝑇
∞,0

)) is Dufour
parameter, and 𝑆

𝑟
= (𝐷𝐾

𝑇
/𝛼𝑇
𝑚
)((𝑇
𝑤
−𝑇
∞,0

)/(𝐶
𝑤
−𝐶
∞,0

)) is
Soret parameter.

The boundary conditions (5a) and (5b) in terms of 𝑓, 𝜃,
and 𝜙 becomes

𝑓 (𝜉, 0) + 2𝜉(
𝜕𝑓

𝜕𝜉
)

𝜂=0

= 0, 𝜃 (𝜉, 0) = 1 − 𝜖
1
𝜉,

𝜙 (𝜉, 0) = 1 − 𝜖
2
𝜉,

(11a)

𝑓


(𝜉,∞) = 1, 𝜃 (𝜉,∞) = 0, 𝜙 (𝜉,∞) = 0. (11b)

Results of practical interest are both heat and mass
transfer rates. The local Nusselt number Nu

𝜉
and the local

Sherwood number Sh
𝜉
are, respectively, given by

Nu
𝜉

Pe1/2
= −𝜉
1/2

𝜃


(𝜉, 0) ,
Sh
𝜉

Pe1/2
= −𝜉
1/2

𝜙


(𝜉, 0) . (12)

4. Results and Discussion

Equations (8)–(10) with the boundary conditions (11a) and
(11b) constitute a nonlinear nonhomogeneous differential
equations for which closed form solution cannot be obtained.
Hence, these equations have been solved numerically using
an implicit finite-difference method known as the Keller-box
scheme [15]. This method has four main steps. The first step
is converting (8) to (10) into a system of first-order equations.
The second step is replacing partial derivatives by central
finite difference approximation. The third step is linearizing
the nonlinear algebraic equations by Newton’s method and
then casting as the matrix vector form.The last step is solving
linearized system of equations using the block-tridiagonal-
elimination technique. Here, the initial values for velocity
temperature and concentration are arbitrarily chosen so that
they satisfy the boundary conditions. The independence of
the results at least up to the 4th decimal place on the mesh
density was examined. A convergence criterion based on
the relative difference between the current and previous
iterations was used. When this difference reached 10

−5, the
solutions were assumed to have converged and the iterative
process was terminated. This method has been proven to
be adequate and give accurate results for boundary layer
equations. In the present study, the boundary conditions for
𝜂 at∞ are replaced by sufficiently large value of 𝜂, where the
velocity, temperature, and concentration profiles approach to
zero. We have taken 𝜂

∞
= 8 and a grid size of 𝜂 of 0.01 and

𝜉 = 0.1 is fixed. In order to study the effects of stratification
parameters, 𝜖

1
and 𝜖
2
computations were carried out for the

fixed values of 𝐹
𝑐
= 0.5, Le = 1.0, 𝐵 = 0.5,𝐷

𝑓
= 0.3, 𝑆

𝑟
= 0.2,

and Ra/Pe = 1.0 while 𝜖
1
and 𝜖
2
were varied over a range.



4 International Journal of Engineering Mathematics
f


𝜖1 = 0.0

𝜖1 = 0.5

𝜖1 = 1.0
𝜖1 = 1.5

0 2 4 6 8

𝜂

1.6400

1.5375

1.4350

1.3325

1.2300

1.1275

1.0250

0.9225

𝜖2 = 0.5, B = 0.5, Fc = 0.5, Df = 0.3,
= 0.2, Le = 1.0, Ra/Pe = 1.0Sr

Figure 2: Variation of nondimensional velocity with thermal strat-
ification parameter.
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Figure 3: Variation of nondimensional temperature with thermal
stratification parameter.

The variation of the nondimensional velocity and tem-
perature profiles with 𝜂 for different values of thermal
stratification parameter 𝜖

1
is illustrated in Figures 2 and

3. It is observed from Figure 2 that the velocity of the
fluid decreases by nearly 11% with the increase of thermal
stratification parameter 𝜖

1
from 0 to 1.5. This is due to

that thermal stratification reduces the effective convective
potential between the heated plate and ambient fluid in the
medium. Hence, the thermal stratification effect reduces the
velocity in the boundary layer. From Figure 3, it is clear that
the temperature of the fluid decreases by around 72%with the
increase of thermal stratification parameter 𝜖

1
from 0 to 1.5.
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𝜖1 = 0.5, B = 0.5, Fc = 0.5, Df = 0.3,
Sr = 0.2, Le = 1.0, 1.0Ra/Pe =

Figure 4: Variation of nondimensional velocity with solutal strati-
fication parameter.
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Figure 5: Variation of nondimensional concentration with solutal
stratification parameter.

When the thermal stratification is taken into consideration,
the effective temperature difference between the plate and the
ambient fluid will decrease; therefore, the thermal boundary
layer is thickened and the temperature is reduced. The
figure depicting the effect of thermal stratification parameter
on nondimensional concentration is not included as the
variation is very less.

Figures 4 and 5 depict the effect of solutal stratification
parameter 𝜖

2
on the nondimensional velocity, and concen-

tration. It is noticed from Figure 4 that the velocity of the
fluid decreases by about 5% with the increase of solutal
stratification parameter 𝜖

2
from 0 to 1.5. From Figure 5, it



International Journal of Engineering Mathematics 5

2.0

1.8

1.6

1.4

1.2

1.0

f


0 1 2 3 4 5 6

𝜂

𝜖1 = 0.01, 𝜖2 = 0.01, B = 0.5, Df = 0.3,

Sr = 0.2, Le = 1.0, 1.0

Fc = 0.1

Fc = 1.5Fc = 0.5

Fc = 1.0

Ra/Pe =

Figure 6: Variation of nondimensional velocity with Forchheimer
parameter.
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Figure 7: Variation of nondimensional temperature with Forch-
heimer parameter.

is observed that the concentration of the fluid decreases
by about 80% with the increase of the solutal stratification
parameter 𝜖

2
from 0 to 1.5. The graph showing the influence

of solutal stratification on nondimensional temperature is not
included as the impact is very low. It is observed that the
nondimensional temperature and concentration values are
becoming negative inside the boundary layer for different
values of the stratification parameters depending on the val-
ues of other parameters. This is in tune with the observation
made in [16–19]. This is because the fluid near the plate can
have temperature or concentration lower than the ambient
medium.
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Figure 8: Variation of nondimensional concentration with Forch-
heimer parameter.
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Figure 9:Variation of nondimensional velocitywithDufour param-
eter.

Figures 6–8 depict the effect of Forchheimer number
𝐹
𝑐
on the nondimensional velocity, temperature, and con-

centration. It is observed from Figure 6 that the velocity
of the fluid decreases by nearly 22% with the increase of
Forchheimer number 𝐹

𝑐
from 0.1 to 1.5. Since 𝐹

𝑐
represents

the inertial drag, thus an increase in the Forchheimer number
increases the resistance to the flow and so a decrease in
the fluid velocity ensues. Here 𝐹

𝑐
= 0 represents the case

where the flow is Darcian. The velocity is maximum in this
case due to the total absence of inertial drag. It is noticed
from Figure 7 that the temperature of the fluid increases by
about 18%with the increase of Forchheimer number 𝐹

𝑐
from
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Figure 11: Variation of nondimensional velocity with Soret param-
eter.

0.1 to 1.5. An increase in 𝐹
𝑐
leads to rise temperature. As

the fluid is decelerated, energy is dissipated as heat and it
serves to enhance temperature in the boundary layer. From
Figure 8, it is observed that the concentration of the fluid
increases 19% with the increase of the Forchheimer number
𝐹
𝑐
from 0.1 to 1.5. As the Forchheimer number increases,

the concentration boundary layer thickness increases. The
increase in non-Darcy parameter reduces the intensity of the
flow but enhances the thermal and concentration boundary
layer thicknesses.

Figures 9 and 10 present the variation of nondimensional
velocity and temperature with Dufour parameter 𝐷

𝑓
. It is
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Figure 12: Variation of nondimensional concentration with Soret
parameter.

seen from Figure 9 that the velocity of the fluid is enhanced
by nearly 9%with the increase of Dufour parameter𝐷

𝑓
from

0 to 1.2. The nondimensional temperature is enhanced by
around 69% with the increase of Dufour parameter 𝐷

𝑓
from

0 to 1.2 as shown in Figure 10.TheDufour parameter denotes
the contribution of the concentration gradients to the thermal
energy flux in the flow. It can be seen that an increase in
the Dufour parameter produces a significant increase in the
velocity and temperature. The graph showing the effect of
Dufour parameter on concentration is not included in the
paper as the impact is very low.

Figures 11 and 12 depict the effect of Soret parameter 𝑆
𝑟

on nondimensional velocity and concentration. It is noticed
from Figure 11 that the velocity of the fluid increased by
nearly 4% with rise of Soret parameter 𝑆

𝑟
from 0 to 1.2.

Soret parameter is the ratio of temperature difference to the
concentration. Hence, the higher value of Soret parameter
stands for a larger temperature difference and precipitous
gradient.Thus the fluid velocity enhances due to greater ther-
mal diffusion factor. Figure 12 shows that the nondimensional
concentration is enhanced by about 70% with the raise of
Soret parameter 𝑆

𝑟
from 0 to 1.2. The figure depicting the

effect of Soret parameter on nondimensional temperature
is not presented in this paper due to less variation in the
temperature with varying Soret parameters.

The variation of local heat and mass transfer coefficients
(Nusselt number Nu

𝜉
and Sherwood number Sh

𝜉
) with

thermal and solutal stratification parameters is presented in
Figures 13 and 14. It is found from Figure 13 that the local heat
transfer rate enhances by nearly 54% with the increase in the
value of thermal stratification parameter 𝜖

1
from 1.0 to 2.0.

Physically, positive values of the stratification parameter have
the tendency to decrease the boundary layer thickness due
to the reduction in the temperature difference between the
plate and the free stream. This causes increase in the Nusselt
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Figure 13: Variation of heat transfer rate with stratification param-
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Figure 14: Variation of mass transfer rate with stratification param-
eters.

number. It is also clear from the same graph that the local
heat transfer rate decreases by around 22% with the raise of
𝜖
2
from 1.0 to 2.0. Figure 14 illustrates that the local mass

transfer coefficient decreases by closely 16%with the increase
in the thermal stratification parameter 𝜖

1
from 1.0 to 2.0.This

is due to the effective mass transfer between the plate and
the ambient medium decreases as the thermal stratification
effect increases. It is seen from the same figure that the local
mass transfer coefficient enhances by 53% with the increase
of solutal stratification parameter 𝜖

2
from 1.0 to 2.0.

The effect of Dufour and Soret parameters on local heat
and mass transfer coefficients is exhibited in Figures 15 and
16. It is found from Figure 15 that the local heat transfer rate
enhances by about 18% with the increase in Soret parameter
𝑆
𝑟
from 0.5 to 1.5 but decreases by 40% with the raise of

Dufour parameter 𝐷
𝑓
from 0.4 to 1.0. Figure 16 reveals that
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Figure 15: Variation of heat transfer rate with Dufour and Soret
parameters.
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Figure 16: Variation of mass transfer rate with Dufour and Soret
parameters.

the local mass transfer coefficient increases by nearly 7%with
the increase in the Dufour parameter𝐷

𝑓
from 0.4 to 1.0, and

we notice that the local mass transfer coefficient enhances by
about 29% with the decrease in the Soret parameter 𝑆

𝑟
from

0.9 to 0.5.
The variation of local heat and mass transfer coefficients

with Forchheimer number and Lewis number is shown in
Figures 17 and 18. It is found from Figure 17 that local heat
transfer rate decreases by about 5% with the increase of
Forchheimer number 𝐹

𝑐
from 0.5 to 0.9, and mass transfer

rate decreases by 7% with the increase in Forchheimer
number 𝐹

𝑐
from 0.1 to 0.5. Since 𝐹

𝑐
represents the inertial

drag, thus an increase in the Forchheimer number increases
the resistance to the flow. Figure 18 shows that the local heat
transfer rate decreases by about 24% with the increase in
Lewis number Le from 1.0 to 3.0, whereas the mass transfer
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Figure 17: Variation of heat and mass transfer rates with Forch-
heimer parameter.
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Figure 18: Variation of heat and mass transfer rates with Lewis
number.

rate is enhanced by nearly 51%with the raise of Lewis number
Le from 2.0 to 4.0.

The influence of mixed convection parameter on local
heat and mass transfer coefficients is shown in Figure 19. The
figure depicts that the local heat transfer rate increases by 22%
with the increase of mixed convection parameter from 0.1 to
1.0, and mass transfer rate increase by about 25% with the
increase of mixed convection parameters from 1.0 to 3.0.

5. Conclusions

Mixed convection heat and mass transfer from a vertical
plate in a doubly stratified viscous fluid saturated non-Darcy
porousmedium in the presence of Soret and Dufour effects is
studied. Numerically, nonsimilar solutions are obtained for
different values of thermal stratification parameter, solutal
stratification parameter, buoyancy parameter, Forchheimer
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Figure 19: Variation of heat and mass transfer rates with mixed
convection parameter.

number, Soret, and Dufour parameters. An increase in the
thermal stratification parameter, 𝜖

1
, decreases the velocity,

temperature, and local mass transfer coefficient but increases
local heat transfer coefficient. The higher value of solutal
stratification parameter 𝜖

2
resulting in lower velocity, con-

centration, and local heat transfer coefficient but higher
local mass transfer coefficient. The influence of Forchheimer
number is to decrease the velocity and the local heat and
mass transfer coefficients but to increase nondimensional
temperature and concentration. The influence of Dufour
parameter is to increase the nondimensional velocity and
temperature. The higher value of Soret parameter results in
the higher velocity and concentration. The presence of Soret
parameter increases the local heat transfer rate but decreases
the local mass transfer rate. The local heat transfer rate is
decreased and local mass transfer rate is increased due to the
presence of Dufour parameter. The local heat transfer rate is
decreased whereas the local mass transfer rate is increased
with the increase of Lewis number.The significance of mixed
convection parameter is to increase both the local heat and
mass transfer rates.
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