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Jeffrey fluid flow in the presence of magnetic field through porous medium in tubes of small diameters is studied. It is assumed
that the core region consists of a Jeffrey fluid and the peripheral region of a Newtonian fluid. Making the assumptions as in the
work of Chaturani and Upadhya, the linearised equations of motion have been solved and analytical solution has been obtained.
The influence of various pertinent parameters on the flow characteristics such as effective viscosity, core hematocrit, and mean
hematocrit has been studied and discussed through graphs. It is found that the effective viscosity and mean hematocrit decrease
with Jeffrey parameter and Darcy number but increase with tube hematocrit and tube radius. Also, the core hematocrit decreases
with Jeffrey parameter, Darcy number, tube hematocrit, and tube radius. Further, it is noticed that the flow exhibits the anomalous
Fahraeus-Lindquist effect.

1. Introduction

Microcirculation is a part of human circulatory system,
which consists of a complex network of blood vessels, whose
diameter ranges from approximately 20 𝜇m (microns) to
500𝜇m.There are several types of vessels in microcirculation
such as arterioles, capillaries, and venules. Its main functions
are to supply oxygen and nutrients to every part of the
human body. Several anomalous effects have been observed
in microcirculation. In particular, the apparent viscosity of
the blood increases with tube diameter and this is referred
to as the Fahraeus-Lindquist effect. This effect has been
confirmed by several investigators.

To explain the observed Fahraeus-Lindquist effect,
Haynes [1] considered a two-fluid model with both fluids
as Newtonian fluids with different viscosities. Bugliarello
and Sevilla [2] have considered a two-fluid model where
in the core region as well as peripheral region fluids are
both Newtonian with different viscosities or both fluids are
Casson’s fluid with different yield coefficients and viscosities.
Sharan and Popel [3] and Srivastava [4] have reported that,

for blood flowing through narrow tubes, there is a peripheral
layer of plasma and a core region of suspension of all
erythrocytes. Following the theoretical study of Haynes [1]
and experimentally tested model of Bugliarello and Sevilla
[2], two-fluid modeling of blood flow has been discussed
and used by a good number of researchers. Several non-
Newtonian fluid models have been considered for blood
flow in small diameter tubes. Chaturani and Upadhya [5,
6] analyzed two-fluid models assuming Newtonian fluid in
peripheral region and micropolar and couple stress fluids in
the core region. Bali and Awasthi [7] presented a mathe-
matical model for blood flow in a small blood vessel in the
presence of a magnetic field. Kumar et al. [8] investigated
a computational technique for flow in blood vessels with
porous effects. Gupta [9] investigated computational study of
blood flow through stenosed artery with magnetic effects.

A porousmedium is amaterial volume consisting of solid
matrix with an interconnected void. Flows through a porous
medium have several practical applications present in nature:
flow in sand beds, in petroleum reservoir rocks, slurries,
sedimentation, and so forth. Examples of natural porous
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media are beach sand, sandstone, limestone, the human lung,
bile duct, and gall bladder with stones in small blood vessels.
Flow through porous medium has been studied by a number
of workers employing Darcy’s law. Furthermore, the study of
magnetohydrodynamics (MHD) flow problems has gained
considerable interest because of its extensive engineering and
medical applications. The MHD deals with the dynamics of
electrically conducting fluids. Some investigators have con-
sidered the MHD studies of Newtonian and non-Newtonian
fluids in different flow geometries. Misra et al. [10] have
investigated amathematicalmodeling of bloodflow in porous
vessel having double stenosis in the presence of an external
magnetic field. Eldabe et al. [11] studied the peristalticmotion
of non-Newtonian fluid with heat and mass transfer through
a porous medium in the channel under the effect of magnetic
field.

A non-Newtonian fluid model that has attracted many
researchers is the Jeffrey fluid as this is found to be a better
model for physiological fluids [12]. Jeffrey fluid model is
a significant generalization of Newtonian fluid model as
the latter one can be deduced as a special case of the
former. Several researchers have studied Jeffrey fluid flows
under different conditions. Ebaid et al. [13] have studied
the peristaltic transport in an asymmetric channel through
a porous medium. Vajravelu et al. [14] investigated the
influence of heat transfer on peristaltic transport of a Jeffrey
fluid. Jyothi et al. [15] have considered the pulsatile flow of
a Jeffrey fluid in a circular tube lined internally with porous
material. Ebaid [16] has analyzed a mathematical model to
study the peristaltic transport of an incompressible viscous
fluid in an asymmetric channel under the effect of transverse
magnetic field with slip boundary conditions. Akbar et al.
[17] have studied the Jeffrey fluid model for the peristaltic
flow of chyme in the small intestine with magnetic field.
Abd-Alla et al. [18] have investigated the peristaltic flow of
a Jeffrey fluid in an asymmetric channel. Recently, Nallapu
and Radhakrishnamacharya [19] studied a two-fluid model
for the flow of Jeffrey fluid in tubes of small diameters.

In the present paper, a two-fluid model for the flow of
Jeffrey fluid through a porous medium in tubes of small
diameters with magnetic effect has been investigated. It is
assumed that the core region consists of Jeffrey fluid and
the peripheral region consists of Newtonian fluid. Making
the assumptions as in the work of Chaturani et al. [6], the
linearised equations of motion have been solved and ana-
lytical solution has been obtained. The influence of various
pertinent parameters on the flow characteristics such as
effective viscosity, core hematocrit, and mean hematocrit has
been studied.

2. Formulation of the Problem

Consider an axisymmetric, laminar, steady flow of an elec-
trically conducting Jeffrey fluid through a circular tube of
radius “𝑎” filled with porous medium. It is assumed that a
uniform magnetic field 𝐵

0
is applied transversely to the flow.

It is assumed that the system consists of two immiscible layers
of fluids; the inside layer is non-Newtonian fluid obeying
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Figure 1: Flow geometry of blood in small vessels.

Jeffery model and takes cylindrical shape of radius 𝑏, while
the outside layer is Newtonian fluid and takes cylindrical
shape of radius 𝑎. Further, the cylinders have a common axis.
It is clear that the surface of discontinuity between them is
imaginary due to the two fluids being immiscible, as shown
in Figure 1. Let 𝜇

𝑝
and 𝜇
𝑐
be the viscosities of Newtonian fluid

in the peripheral region and Jeffrey fluid in the core region,
respectively.

Here, 𝑞 is the velocity of the fluid, 𝑗 is the current density,
𝐵 = (𝐵

0
+ 𝐵
1
) is the total magnetic field, 𝐵

1
is the induced

magnetic field (𝐵
1
≪ 𝐵
0
), and 𝑗 × 𝐵 is Lorentz’s force which

is the body force acting on the fluid. The Maxwell equations
and Ohm’s law (on neglecting the displacement currents) are

∇ ⋅ 𝐵 = 0, ∇ × 𝐵 = 𝜇
𝑚
𝑗, ∇ × 𝐸 = −

𝜕𝐵

𝜕𝑡
,

𝑗 = 𝜎 (𝐸 + 𝑞 × 𝐸) ,

(1)

where 𝜎 is the electrical conductivity, 𝜇
𝑚

is the magnetic
permeability, and 𝐸 is the electric field. The imposed and
induced electric fields are assumed to be negligible. The
magnetic Reynolds number is assumed to be small so that the
induced magnetic field is neglected.

Hence, the force 𝑗 × 𝐵 simplifies to

𝑗 × 𝐵 = −𝜎𝐵
2

0
𝑤. (2)

Cylindrical polar coordinate system (𝑟, 𝜃, 𝑧) is chosen, where
the 𝑧-axis is taken along the axis of the tube. The equations
governing the steady two-dimensional flowof an incompress-
ible Jeffrey fluid for the present problem are as follows.

Equation of Continuity. One has

𝜕V
𝑟

𝜕𝑟
+
V
𝑟

𝑟
+
𝜕V
𝑧

𝜕𝑧
= 0. (3)

Equations of Motion. Consider

𝜌 [V
𝑟

𝜕

𝜕𝑟
+ V
𝑧

𝜕

𝜕𝑧
] V
𝑟

= −
𝜕𝑝

𝜕𝑟
+
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑆
𝑟𝑟
) +

𝜕

𝜕𝑧
(𝑆
𝑟𝑧
) −

𝜇
𝑐

𝑘
0

V
𝑟
,
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𝜌 [V
𝑟

𝜕

𝜕𝑟
+ V
𝑧

𝜕

𝜕𝑧
] V
𝑧

= −
𝜕𝑝

𝜕𝑧
+
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑆
𝑧𝑟
) +

𝜕

𝜕𝑧
(𝑆
𝑧𝑧
) − 𝜎𝐵

2

0
V
𝑧
−
𝜇
𝑐

𝑘
0

V
𝑧
,

(4)
in which

𝑆
𝑟𝑟
=

2𝜇
𝑐

1 + 𝜆
1

[1 + 𝜆
2
(V
𝑟

𝜕

𝜕𝑟
+ V
𝑧

𝜕

𝜕𝑧
)](

𝜕V
𝑟

𝜕𝑟
) ,

𝑆
𝑟𝑧
= 𝑆
𝑧𝑟
=

𝜇
𝑐

1 + 𝜆
1

[1 + 𝜆
2
(V
𝑟

𝜕

𝜕𝑟
+ V
𝑧

𝜕

𝜕𝑧
)](

𝜕V
𝑧

𝜕𝑟
+
𝜕V
𝑟

𝜕𝑧
) ,

𝑆
𝑧𝑧
=

2𝜇
𝑐

1 + 𝜆
1

[1 + 𝜆
2
(V
𝑟

𝜕

𝜕𝑟
+ V
𝑧

𝜕

𝜕𝑧
)]

𝜕V
𝑧

𝜕𝑧

(5)

are the extra stress components.

Further, V
𝑟
and V
𝑧
are the velocity components in the 𝑟-

and 𝑧-directions, respectively, 𝜆
1
is the ratio of relaxation

to retardation times, 𝜆
2
is the retardation time, 𝑝 is the

pressure, 𝜌 is the density, 𝑘
0
is the permeability of the

porous medium, 𝜎 is the electrical conductivity of the fluid,
Da(=𝑘

0
/𝑎
2
) is the Darcy number, and 𝑀(=√𝜎/𝜇𝐵

0
𝑎) is the

magnetic parameter.
It is assumed that the flow is in the 𝑧-direction only and

hence the velocity component V
𝑟
= 0. Consequently, the

equations governing the flow of fluid (Jeffrey fluid) in the core
region (0 ≤ 𝑟 ≤ 𝑏) reduce to

𝜕𝑝

𝜕𝑟
= 0,

𝜇
𝑐

1 + 𝜆
1

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕V
𝑧

𝜕𝑟
) − 𝜎𝐵

2

0
V
𝑧
−
𝜇
𝑐

𝑘
0

V
𝑧
−
𝜕𝑝

𝜕𝑧
= 0.

(6)

Let V
𝑧
(𝑟) = V

1
(𝑟) be the velocity in the peripheral region and

V
2
(𝑟) in the core region. The equations governing the flow of

fluid are as follows.

Peripheral Region (Newtonian Fluid). Consider

𝜇
𝑝

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕V
1

𝜕𝑟
) − 𝜎𝐵

2

0
V
1
−
𝜇
𝑝

𝑘
0

V
1
−
𝜕𝑝

𝜕𝑧
= 0

for 𝑏 ≤ 𝑟 ≤ 𝑎.
(7)

Core Region (Jeffrey Fluid). One has
𝜇
𝑐

1 + 𝜆
1

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕V
2

𝜕𝑟
) − 𝜎𝐵

2

0
V
2
−
𝜇
𝑐

𝑘
0

V
2
−
𝜕𝑝

𝜕𝑧
= 0

for 0 ≤ 𝑟 ≤ 𝑏,
(8)

where 𝜕𝑝/𝜕𝑧 is the constant pressure gradient.

The boundary conditions for the problem are given by
V
1
= 0, at 𝑟 = 𝑎, (9a)

V
1
= V
2
, 𝜏

1
= 𝜏
2
, at 𝑟 = 𝑏, (9b)

V
2
is finite at 𝑟 = 0. (9c)

Condition (9a) is the classical no-slip boundary condition
for the velocity; (9b) denotes the continuity of velocities and
stresses at the interface and (9c) is the regularity condition.

Solving (7) and (8) under conditions (9a), (9b), and (9c),
we get

V
1 (𝜉) =

𝑎
2
𝑃

𝜇
𝑝
𝛼
(1 −

𝐼
0
(√𝛼 ⋅ 𝜉)

𝐼
0
(√𝛼)

) for 𝑑 ≤ 𝜉 ≤ 1,

(10)

V
2
(𝜉) =

𝑎
2
𝑃

𝜇
𝑝
𝛼
(1 −

𝐼
0
(√𝛼 ⋅ 𝑑)

𝐼
0
(√𝛼)

+ 𝜇

𝛽 [1 −

𝐼
0
(𝜔 ⋅ 𝜉)

𝐼
0 (𝜔𝑑)

])

for 0 ≤ 𝜉 ≤ 𝑑,
(11)

where

𝜉 =
𝑟

𝑎
, 𝑑 =

𝑏

𝑎
, 𝑃 = −

𝜕𝑝

𝜕𝑧
,

𝜇

=
𝜇
𝑝

𝜇
𝑐

, 𝛼 = 𝑀
2

𝑝
+

1

Da
,

𝛽 =
𝛼

𝑀2
𝑐
+ (1/Da)

,

𝜔 = √(1 + 𝜆
1
) (𝑀2
𝑐
+

1

Da
).

(12)

The flow flux in the peripheral region, denoted by 𝑄
𝑝
, is

defined by

𝑄
𝑝
= 2𝜋𝑎

2
∫

1

𝑑

V
1
(𝜉) 𝜉𝑑𝜉. (13)

Substituting for V
1
(𝜉) from (10) in (13), we get

𝑄
𝑝
=
𝑎
4
𝑃𝜋

𝜇
𝑝
𝛼
(1 − 𝑑

2
+ 2

𝑑𝐼
1
(√𝛼 ⋅ 𝑑) − 𝐼

1
(√𝛼)

√𝛼𝐼
0
(√𝛼)

) . (14)

Similarly, the flow flux in the core region is given by

𝑄
𝑐
= 2𝜋𝑎

2
∫

𝑑

0

V
2 (𝜉) 𝜉𝑑𝜉

=
𝑎
4
𝑃𝜋

𝜇
𝑝
𝛼
(𝑑
2
− 𝑑
2
𝐼
0
(√𝛼 ⋅ 𝑑)

𝐼
0
(√𝛼)

+ 𝜇

𝛽[𝑑
2
− 2𝑑

𝐼
1
(𝜔𝑑)

𝜔𝐼
0 (𝜔𝑑)

]) .

(15)

Thus, the flow flux through the tube is given by

𝑄 = 𝑄
𝑝
+ 𝑄
𝑐
. (16)

Using (14) and (15) in (16), we get

𝑄 =
𝑎
4
𝑃𝜋

𝜇
𝑝
𝛼
(1 + 2

𝑑𝐼
1
(√𝛼 ⋅ 𝑑) − 𝐼

1
(√𝛼)

√𝛼𝐼
0
(√𝛼)

− 𝑑
2
𝐼
0
(√𝛼 ⋅ 𝑑)

𝐼
0
(√𝛼)

+ 𝜇

𝛽 [𝑑
2
− 2𝑑

𝐼
1
(𝜔𝑑)

𝜔𝐼
0
(𝜔𝑑)

]) .

(17)
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Comparing (17) with flow flux for Poiseuille flow, we get the
effective viscosity as follows:

𝜇eff

= 𝜇
𝑝
𝛼 × (8Da(1 + 2

𝑑𝐼
1
(√𝛼 ⋅ 𝑑) − 𝐼

1
(√𝛼)

√𝛼𝐼
0
(√𝛼)

− 𝑑
2
𝐼
0
(√𝛼 ⋅ 𝑑)

𝐼
0
(√𝛼)

+𝜇

𝛽 [𝑑
2
− 2𝑑

𝐼
1
(𝜔𝑑)

𝜔𝐼
0 (𝜔𝑑)

]))

−1

.

(18)

2.1. Mean Hematocrit for Cell-Free Wall Layer. The percent-
age volume of red blood cells is called the hematocrit and is
approximately 40–45% for human adults.

The core hematocrit𝐻
𝑐
is related to the hematocrit𝐻

0
of

blood leaving or entering the tube by

𝐻
0
𝑄 = 𝐻

𝑐
𝑄
𝑐
. (19)

Substituting for 𝑄
𝑐
and 𝑄 from (15) and (17) in (19), we get

(after simplification)

𝐻
𝑐

=
𝐻
𝑐

𝐻
0

= 1

+ (1 − 𝑑
2
+ 2

𝑑𝐼
1
(√𝛼 ⋅ 𝑑) − 𝐼

1
(√𝛼)

√𝛼𝐼
0
(√𝛼)

×(𝑑
2
− 𝑑
2
𝐼
0
(√𝛼 ⋅ 𝑑)

𝐼
0
(√𝛼)

+𝜇

𝛽 [𝑑
2
− 2𝑑

𝐼
1
(𝜔𝑑)

𝜔𝐼
0 (𝜔𝑑)

])

−1

) ,

(20)

where𝐻
𝑐
is the normalized core hematocrit.

The mean hematocrit within the tube𝐻
𝑚
is related to the

core hematocrit𝐻
𝑐
by

𝐻
𝑚
𝜋𝑎
2
= 𝐻
𝑐
𝜋𝑏
2
. (21)

On simplification, we get

𝐻
𝑚
=
𝐻
𝑚

𝐻
0

=
𝐻
𝑐

𝐻
0

𝑑
2
= 𝐻
𝑐
𝑑
2
, (22)

where𝐻
𝑚
is the normalized mean hematocrit.
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Substituting for𝐻
𝑐
from (20) in (22), we get

𝐻
𝑚
=
𝐻
𝑚

𝐻
0

=
𝐻
𝑐

𝐻
0

𝑑
2

= (1 + (1 − 𝑑
2
+ 2

𝑑𝐼
1
(√𝛼 ⋅ 𝑑) − 𝐼

1
(√𝛼)

√𝛼𝐼
0
(√𝛼)

× (𝑑
2
− 𝑑
2
𝐼
0
(√𝛼 ⋅ 𝑑)

𝐼
0
(√𝛼)

+ 𝜇

𝛽 [𝑑
2
− 2𝑑

𝐼
1
(𝜔𝑑)

𝜔𝐼
0
(𝜔𝑑)

])

−1

))𝑑
2
.

(23)

3. Results and Discussion

In order to discuss the effects of Jeffrey parameter (𝜆
1
),

core magnetic parameter (𝑀
𝑐
), Darcy number (Da), tube

hematocrit (𝐻
0
), and tube radius (𝑎) on effective viscosity

𝜇eff, core hematocrit 𝐻
𝑐
, and mean hematocrit 𝐻

𝑚
, they

have been numerically computed and graphically presented
in Figures 2–13. In the present analysis, the values of 𝜇

𝑝
are

taken as 1.2 𝜇m, 𝜇
𝑐
= 4.0 𝜇m and the value of 𝑑 is calculated

from the relation 𝑑 = 1 − (𝜖/𝑎) in which 𝜖 = 3.12 𝜇m for 40%
hematocrit, 3.60 𝜇m for 30%, and 4.67 𝜇m for 20% [5].

Figures 2–5 show the variation of effective viscosity (𝜇eff)
for different values of Jeffrey parameter 𝜆

1
, core magnetic

parameter (𝑀
𝑐
), Darcy number (Da), tube hematocrit (𝐻

0
),

and tube radius (𝑎). It can be seen that the effective viscosity
decreases with Jeffrey parameter (𝜆

1
) (Figure 2) and Darcy

number (Da) (Figure 3) but increases with core magnetic
parameter (𝑀

𝑐
) (Figure 4) and tube hematocrit𝐻

0
(Figure 5).

These results are in agreement with the results of Bugliarello
and Sevilla [2], Srivastava [4], and Chaturani and Upadhya
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[5]. Further, for given values of all the parameters, the
effective viscosity (𝜇eff) increases with tube radius (𝑎); that
is, the flow exhibits the Fahraeus-Lindquist effect. For higher
values of Jeffrey parameter (𝜆

1
) and Darcy number (Da), the

increase in effective viscosity with tube radius is not very
significant for values of tube radius larger than 75𝜇m(Figures
2 and 3).

The effects of Jeffrey parameter (𝜆
1
), core magnetic

parameter (𝑀
𝑐
), Darcy number (Da), tube hematocrit (𝐻

0
),

and tube radius (𝑎) on core hematocrit (𝐻
𝑐
) and mean

hematocrit (𝐻
𝑚
) are depicted in Figures 6–13. It can be

seen that the core hematocrit (𝐻
𝑐
) decreases with Jeffrey

Tube radius

𝜇
ef

f

H0 = 40%
H0 = 30%
H0 = 20%

50 100 150 200

2.4

2.2

2.0

1.8

1.6

Figure 5: Effect of 𝐻
0
on 𝜇eff (𝜆1 = 2, 𝑀

𝑝
= 1, 𝑀

𝑐
= 0.5, and Da =

0.5).

Tube radius
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Figure 6: Effect of 𝜆
1
on𝐻

𝑐
(𝐻
0
= 40%,𝑀

𝑝
= 1,𝑀

𝑐
= 0.5, and Da

= 0.5).

parameter (𝜆
1
) (Figure 6), Darcy number (Da) (Figure 7),

tube hematocrit (𝐻
0
) (Figure 8), and tube radius “𝑎.” It

can be observed that core hematocrit (𝐻
𝑐
) decreases with

tube radius (Figures 6–9). Figure 9 shows that the influence
of magnetic parameter (𝑀

𝑐
) on core hematocrit is very

insignificant. Also, the mean hematocrit (𝐻
𝑚
) decreases

with Jeffrey parameter (𝜆
1
) (Figure 10) and Darcy number

(Da) (Figure 11) but increases with tube hematocrit (𝐻
0
)

(Figure 12) and tube radius “𝑎.” It can be observed that mean
hematocrit (𝐻

𝑚
) increases with tube radius (Figures 10–

13). The influence of magnetic parameter (𝑀
𝑐
) on mean

hematocrit (𝐻
𝑚
) is very insignificant (Figure 13).
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0
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(𝜆
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𝑝
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𝑐
= 0.5, and Da =

0.5).

4. Conclusions

A two-fluid model has been proposed to describe flow
through porous medium in small diameter tubes with Jeffrey
fluid in the core region and Newtonian fluid in the peripheral
region in the presence of a magnetic field. It is found
that the effective viscosity increases with Jeffrey parameter,
core magnetic parameter, Darcy number, tube hematocrit,
and tube radius. Further, the core hematocrit decreases
with Jeffrey parameter, Darcy number, tube hematocrit, and
tube radius and the mean hematocrit increases with Jeffrey
parameter, Darcy number, tube hematocrit, and tube radius.
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= 2, and Da =

0.5).
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Figure 10: Effect of 𝜆
1
on𝐻
𝑚
(𝐻
0
= 40%,𝑀

𝑝
= 1,𝑀

𝑐
= 0.5, and Da

= 0.5).

The influence of magnetic parameter on core hematocrit and
mean hematocrit is very insignificant.

Nomenclature

𝑎: Tube radius
𝑏: Radius of the core region
𝑑: Dimensionless core radius = 1 − (𝜖/𝑎)
𝜖: Peripheral region thickness = 𝑎 − 𝑏
𝜉: Dimensionless radial direction 𝑟/𝑎
𝜇
: Ratio of viscosity = 𝜇

𝑝
/𝜇
𝑐

𝜇
𝑝
: Peripheral region viscosity
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Figure 12: Effect of𝐻
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on𝐻
𝑚
(𝜆
1
= 2,𝑀

𝑝
= 1,𝑀

𝑐
= 0.5, and Da =

0.5).

𝜆
1
: Jeffrey parameter

Da: Darcy number = 𝑘
0
/𝑎
2

𝜎: Electrical conductivity
𝑀
𝑝
: Magnetic parameter in peripheral region
=√𝜎/𝜇𝑝𝐵0𝑎

𝑀
𝑐
: Magnetic parameter in core region =
√𝜎/𝜇

𝑐
𝐵
0
𝑎

𝑟: Radial direction
𝑧: Axial direction
V
1
: Velocity in peripheral region

V
2
: Velocity in core region

𝑝: Pressure
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Figure 13: Effect of𝑀
𝑐
on𝐻
𝑚
(𝐻
0
= 40%,𝑀

𝑝
= 1, 𝜆

1
= 2, and Da =

0.5).

𝑃: Constant pressure gradient = −(𝜕𝑝/𝜕𝑧)
𝜇
𝑐
: Core region viscosity

𝜌: Density
𝑘
0
: Permeability of porous medium

𝐵
0
: Uniform magnetic field.
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