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CpG islands are typically located in the 5′ end of genes and considered as gene markers because they play important roles in gene
regulation via epigenetic change. In this study, we compared the features of CpG islands identified by several major algorithms
by setting the parameter cutoff values in order to obtain a similar number of CpG islands in a genome. This approach allows us
to systematically compare the methylation and gene expression patterns in the identified CpG islands. We found that Takai and
Jones’ algorithm tends to identify longer CpG islands but with weaker CpG island features (e.g., lower GC content and lower
ratio of the observed over expected CpGs) and higher methylation level. Conversely, the CpG clusters identified by Hackenberg
et al.’s algorithm using stringent criteria are shorter and have stronger features and lower methylation level. In addition, we used
the genome-wide base-resolution methylation profile in two cell lines to show that genes with a lower methylation level at the
promoter-associated CpG islands tend to express in more tissues and have stronger expression. Our results validated that the DNA
methylation of promoter-associated CpG islands suppresses gene expression at the genome level.

1. Introduction

CpG islands (CGIs), which are clusters of CpG dinucleotides
in GC-rich regions, are often located in the 5′ end of genes
and are considered as gene markers in vertebrate genomes
[1–3]. These CpG islands, especially promoter-associated
CpG islands, play important roles in gene silencing, genomic
imprinting, X-chromosome inactivation, and tumorigenesis
[4]. Due to the functional importance of CpG islands in tran-
scriptional regulation and epigenetic modifications [5], mul-
tiple algorithms have been developed to identify CpG islands
in a genome or a specific sequence. Overall, these algorithms
can be classified into two groups: traditional algorithms and
new algorithms. Traditional algorithms are based on three
features and parameters (length, GC content, and ratio of the

observed over the expected CpGs (CpG O/E)) [2, 4, 6, 7],
while new algorithms are based on statistical property [8, 9].
Substantial debate exists as to which algorithm performs
better and in which context, such as in organisms, tissues,
or developmental stages [4, 8, 10–12]. Comparing different
features of CpG islands, especially length of the predicted
islands [11], our previous study suggested that Takai and
Jones’ algorithm is more appropriate overall for identifying
promoter-associated islands of CpGs in vertebrate genomes
[10]. However, the major biological patterns would remain
similar regardless of the algorithm being used [13, 14]. For
example, the density of CpG islands is highly correlated with
the number or the size of the chromosomes in mammalian
genomes [13], and the number of CpG islands varies greatly
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among fish genomes [14]. Nevertheless, the recent study by
Hackenberg et al. showed that setting the P value to 10−20

could largely improve the performance [11]. Considering
the information above, a further comparison using a similar
number of CpG islands identified by different algorithms
might provide us additional insights into biological features
and their regulation in the cellular system.

DNA methylation is an important epigenetic modifica-
tion at the transcriptional regulation level, and this process is
directly and substantially related to CpG islands [5, 15, 16].
Over 50% of human genes are associated with CpG islands in
their promoter regions [3, 7], while∼15–35% of CpG islands
are located in the promoter regions of genes, according to
several algorithms [10, 11]. Promoter-associated CpG islands
have different features compared to other types of CpG
islands; these features include a longer CpG island sequence,
higher GC content, and higher CpG O/E ratio [6, 10]. How-
ever, the correlation between the methylation of promoter-
associated CpG islands and gene expression is more complex
than what investigators previously thought. Several studies
reported that the methylation level of promoter-associated
CpG islands is negatively correlated with gene expression
strength [16, 17] while others observed no or weak corre-
lations [18, 19]. This difference may be due to the dynamic
and complex nature of methylation in cellular systems [20–
23]. Until 2009, when single-base resolution methylome
data was released, studies regarding the relationship between
CpG islands, methylation, and gene expression were limited.
Additionally, the earlier data was often at the computa-
tional level and used features based on low-resolution data
generated by array-based technology [24]. In this study,
we performed an extensive investigation of the correlations
between CpG islands, methylation, and gene expression by
taking advantage of newly available whole genome base-
resolution methylation profiling [25].

2. Materials and Methods

2.1. Identification of CpG Islands in the Human Genome. We
used the stringent criteria presented in Takai and Jones [4]
to search CpG islands: length ≥ 500 bp, GC content ≥ 55%,
and CpG O/E ratio ≥ 0.65. We also used the CpG cluster
algorithm developed by Hackenberg et al. [8] to identify CpG
clusters. In this study, we integrated the use of both CpG
islands and CpG clusters because of their expected similar-
ities in terms of their service as gene markers and measure-
ment of methylation status. To identify comparable numbers
of CpG clusters and CpG islands in the whole genome, we
used median distance of each as the cutoff value and the P
value < 10−15 or < 10−20, respectively. These two P value cut-
offs allowed us to obtain two sets of CpG clusters for com-
parison. We then downloaded CpG islands annotated by the
UCSC Genome Browser (http://genome.ucsc.edu/), which
were screened from the human genome by the following
criteria: length > 200 bp; GC content ≥ 50%, and CpG O/E
ratio > 0.6. Moreover, the UCSC algorithm searches the
reference sequence one base at a time, scores each dinu-
cleotide (+17 for CpG and −1 for others), and identifies
maximally scored segments.

2.2. Sequence Data and Gene Annotation. We downloaded
the assembled human genome sequence from the National
Center for Biotechnology Information (NCBI, build 36,
ftp://ftp.ncbi.nih.gov/genomes/). We also extracted the Tran-
scriptional Start Sites (TSS) for human Refseq genes from
the UCSC Genome Browser (http://genome.ucsc.edu/). The
promoter region was defined as −1,500 to +500 bp around
the TSS, as previously described [10].

2.3. Base-Resolution Methylation Data in the Human Genome.
To evaluate the methylation status in CpG islands and CpG
clusters, we downloaded the base-resolution methylation
data for H1 and IMR90 cell lines in the human genome
reported in Lister et al. [25], which are the first human
DNA methylomes at base resolution (http://neomorph.salk
.edu/human methylome/data.html). Here, we used methy-
lation broadness [26] to evaluate the methylation level in
a CpG island. The methylation broadness represents the
fraction of cytosine sites detected as methylated in a given
DNA segment. It can be calculated as the proportion of
methylated CpG sites over the total sites in a sequence (i.e.,
number of methylated CpG sites/total CpG sites) [26]. A
methylated CpG site is defined as the CpG site with at least
one methylated read. Additionally, we obtained the meth-
ylation data in the promoter regions in the human H1 cell
line from Bock et al. [27].

2.4. Gene Expression in the Human Genome. Human gene
expression data in the second version of the Gene Expression
Atlas reported in Su et al. [28] was directly obtained from
the author Andrew Su. There were 79 human tissues studied.
Defining the expression of a gene in a specific tissue was
described in previous work [29, 30]. Briefly, the average
difference (AD) value was required at least 200. Then, each
gene was classified according to one of four groups: (1)
housekeeping genes (expressed in all 79 tissues), (2) widely
expressed genes (expressed in more than 80% but less than
100% of tissues), (3) moderately expressed genes (expressed
in 20%–80% of tissues), and (4) narrowly expressed genes
(expressed in less than 20% of genes) [31]. The expression
strength was calculated by the average expression value
among all 79 tissues followed by the logarithm transfor-
mation. Furthermore, we obtained separate gene expression
datasets that are specifically for the human H1 and IMR90
cell lines from Lister et al. [25] and a gene expression dataset
for H1 cell line from Bock et al. [27].

3. Results and Discussion

3.1. Features of CpG Islands Identified by Different Algorithms.
Our previous studies showed that the number of CpG islands
identified by the different algorithms (e.g., Gardiner-Garden
and Frommer (1987) [2], Takai and Jones (2002) [4], and
CpG clusters [8]) varies greatly, either in the human genome
or other vertebrate genomes [10, 13, 14]. Particularly, CpG
clusters have several unique features (e.g., the greater number
of CpG clusters identified in the human genome) that are
largely dependent on the P value assigned and the length
cutoff value [11]. To attain a comprehensive comparison of
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Table 1: Summary of the CpG islands (CGIs) or CpG clusters (CGCs) identified by different algorithms in the human genome.

Method∗
Whole genome CGIs Promoter-associated CGIs

# CGIs
Length
(bp)

GC content
(%)

CpG
O/E∗∗

# CGIs
Proportion
(%)

# genes CGIs/gene
Length
(bp)

GC content
(%)

CpG
O/E∗∗

TJ-CGIs 37, 729 1089 60.6 0.717 13,207 35.0 12, 521 1.05 1477 62.2 0.759

CGCs-15 37, 184 605 68.7 0.855 14,419 38.8 11, 292 1.28 694 70.1 0.885

CGCs-20 25, 454 727 70.3 0.853 12,115 47.6 10, 245 1.18 767 70.6 0.885

UCSC-
CGIs

27, 639 763 66.1 0.862 12,297 44.5 11, 744 1.05 964 69.3 0.862

∗
The methods/algorithms for screening CpG islands or CpG clusters are described in Section 2.

∗∗CpG O/E: the ratio of the observed versus expected number of CpG dinucleotides in a sequence.

the performances of the major existing algorithms, in this
study, our design utilized the parameters of these key al-
gorithms so that the number of CpG islands (or clusters)
would be similar and then applied this strategy to the human
genome. The underlying rationale is that methylation regu-
lation often lies in the promoter regions of genes where CpG
islands are representative. Accordingly, we assigned P value
10−15 as the cutoff to identify 37,184 CpG clusters, which
is close to the number of CpG islands (37,729) identified
by Takai and Jones’ algorithm. Moreover, we assigned the P
value 10−20 as the cutoff to identify 25,454 CpG clusters, and
this number is similar to the one identified by the UCSC
Genome Browser (27,639) (Table 1). To save space, we ab-
breviated the CpG islands identified by Takai and Jones’
algorithm as TJ-CGIs, CpG islands identified by the USCS
Genome Browser as UCSC-CGIs, CpG clusters by P value
cutoff 10−15 as CGCs-15, and CpG clusters by P value cutoff
10−20 as CGCs-20. We further examined how the CpG clus-
ters were associated with the promoter regions after applying
these stringent P value cutoffs. Remarkably, the proportion
of promoter-associated CpG clusters increased dramatically:
38.8% of all CGCs-15 and 47.6% of all CGCs-20 were
promoter associated, but only 14.7% displayed association by
using the default cutoff value [10]. This increase was similarly
shown in Hackenberg et al. [11]. Therefore, we could obtain
not only a similar number of CpG islands/clusters but also
more promoter-associated CpG islands/clusters for a sys-
tematic investigation of the features of CpG islands/clusters,
methylation, and gene expression in the human genome.

The average length of TJ-CGIs was 1089 bp, which was
much longer than the average length of CGCs-15 (605 bp),
CGCs-20 (727 bp), and UCSC-CGIs (763 bp) (Table 1).
Conversely, TJ-CGIs had weaker CpG island features. For
example, they had a lower GC content (60.6%) and a lower
CpG O/E ratio (0.717) than those of CGCs-15 (GC content =
68.7%, CpG O/E = 0.855), CGCs-20 (GC content = 70.3%,
CpG O/E = 0.853), and UCSC-CGIs (GC content = 66.1%,
CpG O/E = 0.862) (Table 1). In addition, we used box
plot (with the values for maximum, minimum, median,
75% quantile, and 25% quantile) to display the distribution
and features of CpG islands identified by each algorithm
(Figure 1). Overall, the difference was largely due to the
Hackenberg CpG cluster algorithm’s tendency to identify
short regions with strong CpG island features [8, 10]. This
comparison indicated that features of CpG islands or clusters

relied on their length—the longer they are, the weaker the
features they would have.

CpG islands are often located in the 5′ end of genes; thus,
they are considered to be gene markers [3, 32]. Our previous
studies showed that the features of CpG islands are different
in the promoter and other regions [13, 31]. Therefore, the
features of promoter-associated CpG islands are more im-
portant than other genomic regions when evaluating the
performance of differing CpG island/cluster algorithms.
Among the 37,729 TJ-CGIs, we found 13,270 (35.0%)
mapped to the promoter regions of 12,521 known genes
and, on average, 1.05 TJ-CGIs per gene. Similarly, we found
14,419 (38.8%) of CGCs-15 mapped to 11,292 genes and,
on average, 1.28 CGCs per gene, 12,115 (47.6%) of CGCs-
20 mapped to 10,245 genes and, on average, 1.18 CGCs per
gene, and 12,297 (44.5%) of UCSC-CGIs mapped to 11,744
genes and, on average, 1.05 UCSC-CGIs per gene (Table 1).
We observed more CpG clusters than TJ-CGIs and UCSC-
CGIs in the promoter regions of genes. One main reason
for this finding is that multiple CpG clusters are more likely
to be identified within the same promoter region than TJ
and UCSC algorithms, and several CpG clusters are often
embedded within one single CpG island [10, 11].

While the total number of CpG islands or CpG clusters
varied among the four algorithms (ranging from 25,454
CGCs-20 to 37,729 TG-CGIs, 1.48-fold difference, Table 1),
the number of promoter-associated CpG islands identified by
these algorithms was actually similar (ranging from 12,115
CGCs-20 to 14,419 CGCs-15, 1.19-fold difference), confirm-
ing that CpG islands are the most important features in the
promoter regions. Notably, there would be approximately
5.3-fold difference between the number of TJ-CGIs and
CpG clusters when the default parameters are used in these
algorithms [10]. The proportion of promoter-associated
CpG islands was also very similar, that is, in a range of
35.0% (TJ-CGIs) to 47.6% (CGCs-20), 1.36-fold difference
(Table 1). Compared to the features of CpG islands at the
whole genome level, the promoter-associated CpG islands
showed stronger features, for example, increased length,
higher GC content, and larger CpG O/E ratio (Figure 1).
These observations are consistent with the previous studies
[6, 31], but here, we focused on a specific group of CpG
clusters identified by CpG cluster algorithms using stringent
criteria that are comparable to a CpG island search.
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Figure 1: Distribution of features of CpG islands identified by different algorithms. (a) Length. (b) GC content (%). (c) CpG O/E.

3.2. Methylation Status of CpG Islands or Clusters. The meth-
ylation level varies within CpG islands [11]. Bock et al. [33]
suggested that it should be sufficient to measure average
methylation level rather than assaying every single CpG
dinucleotide in a genomic region. Considering that sugges-
tion, it would be interesting to evaluate methylation at the
whole CpG island or cluster level using the highest resolu-
tion methylation data, that is, the base-resolution human
methylome data, as previous studies largely relied on lim-
ited microarray-based low resolution methylation data or
computational prediction [24]. Here, we applied methylation
broadness, which we recently proposed and was described
in Su et al. [26] to evaluate the methylation level in a CpG
island or cluster. The methylation broadness is calculated as
the proportion of methylated CpG sites over the total sites in
a sequence (i.e., number of methylated CpG sites/total CpG
sites) [26]. Since the methylation status is dynamic among

different types of cells, we evaluated the methylation level in
both the H1 and IMR90 cell lines in the human genome.

At the genome level, our results showed that TJ-CGIs had
a higher average methylation level (mC/C ratio = 0.403) than
CGCs-15 (mC/C ratio = 0.266), CGCs-20 (mC/C ratio =
0.205), and UCSC-CGIs (mC/C ratio = 0.297) in the H1
cell line. Here, mC/C denotes the ratio of methylated over
unmethylated nucleotides C at the CpG sites. A similar
pattern could be observed in the IMR90 cell line, as shown
in Figure 2.

Promoter-associated CpG islands are thought to be
mostly unmethylated or to maintain a low methylation level
[18]. Compared to CpG islands across the whole genome,
the methylation level of promoter-associated CpG islands
decreased dramatically. In the human H1 cell line, promoter-
associated TJ-CGIs had, on average, an mC/C ratio 0.177,
while this ratio was 0.100 for CGCs-15, 0.084 for CGCs-20,
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Figure 2: Methylation level of the CpG islands or clusters in the whole genomic regions or associated with the promoter regions. (a)
Methylation data was based on human methylome from H1 cell line. (b) Methylation data was based on human methylome from IMR90
cell line.

and 0.108 for UCSC-CGIs (Figure 2(a)). Similar to our
observation of the methylation pattern in CpG islands or
clusters across the whole genome, promoter-associated TJ-
CGIs had the highest average methylation level measured by
mC/C ratio, while CpG islands or clusters identified by the
other three algorithms had similar methylation levels. This
difference could be related to the fact that TJ-CGIs cover
longer genomic regions, some of which bear a higher meth-
ylation level. We observed a similar pattern when the meth-
ylation data in the IMR90 cell line was used (Figure 2(b)).
By this measurement, our comparison suggested that the
algorithm using the assigned P value cutoff 10−20 in Hack-
enberg et al. [8] had the best performance to identify CpG
islands or clusters with a low methylation level.

3.3. Methylation of Promoter-Associated CpG Islands and Gene
Expression. Methylation plays an important role in the reg-
ulation of gene expression [18, 34]. Previous studies showed
that DNA methylation typically represses gene expression
[15, 16]. Lister et al. [25] first displayed the correlation be-
tween the gene body methylation level and gene expression
strength at the single base resolution. Here, we further
analyzed the correlation between the methylation level of
promoter-associated CpG islands and genes expression
strength based on Lister et al. data [25]. For those genes
having both expression data and methylation data in their
promoter-associated CpG islands, we found a very weak
negative correlation (Table 2). Moreover, we calculated Pear-
son’s correlation coefficient between methylation of pro-
moters and gene expression strength using Bock et al.’s [27]
expression profile and methylation profile in the promoter
regions across the genome in the human H1 cell line. We
found a weak negative correlation between gene expression
strength and methylation of promoter regions in the H1 cell

Table 2: Pearson’s correlation coefficient between methylation level
of promoter-associated CGIs and gene expression strength.

Method∗
H1 IMR90

r P r P

TJ-CGIs −0.016 0.128 −0.021 0.0419

CGCs-15 −0.037 4.78 × 10−4 −0.036 7.52 × 10−4

CGCs-20 −0.037 9.47 × 10−4 −0.040 3.33 × 10−4

UCSC-CGIs −0.045 1.40 × 10−5 −0.038 2.89 × 10−4

∗
The methods/algorithms for screening CpG islands or CpG clusters are

described in Section 2.

line (Pearson correlation coefficient = −0.242, P < 2.2 ×
10−16). One possible reason for the observation of this weak
correlation is that some promoter-associated CpG islands, or
some promoters with methylation levels across different tis-
sues, are negatively correlated with gene expression strength,
while some others are positively correlated [35]. Following
this observation, we investigated the correlation between the
expression strength and methylation of promoter-associated
CpG islands according to different genes categorized by their
tissue expression.

We first investigated the correlation between promoter-
associated CpG islands and broadness of expression. In
the human H1 cell line, the average methylation level in
promoter-associated TJ-CGIs in housekeeping genes was
0.125, compared to 0.139, 0.149, 0.184 in widely expressed
genes, moderately expressed genes, and narrowly expressed
genes, respectively (Figure 3(a)). The methylation level of
CGCs-15, CGCs-20, and UCSC-CGIs was much lower than
in that of TJ-CGIs. For example, the average methylation
level in CGCs-15 in housekeeping genes, widely expressed
genes, moderately expressed genes, and narrowly expressed
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Figure 3: Relationship between methylation level of promoter-associated CpG islands and the number of expressed tissues. (a) H1 cell line.
(b) IMR90 cell line.

genes was 0.054, 0.066, 0.077, and 0.113, respectively
(Figure 3(a)). Overall, at the genome level, there was a
trend that genes whose methylation level at the promoter-
associated CpG islands or clusters was lower tended to ex-
press in more tissues, regardless of which specific algorithm
was used. Aside from the pluripotent H1 cell line, we also
examined the methylation level in the IMR90 cell line, and
the conclusion remained the same (Figure 3(b)).

To further study the correlation between the methylation
of promoter-associated CpG islands and gene expression
strength, we used the average expression level across the
79 human tissues in the second version of the Gene Atlas
dataset to represent the expression strength of a gene. In the
human H1 cell line, the methylation level of the promoter-
associated CpG islands in the genes with a strong expression
strength (log2 expression value > 9) was much lower than
those with a weak expression strength (log2 expression value
< 6) (Figure 4(a)). One should note that the methylation
level of promoter-associated CpG islands in genes whose
expression strength values are in the range of 9–12 is similar
to that of genes whose expression strength values are greater
than 12. Again, a similar trend was observed when we used
the methylation data from the IMR90 cell line (Figure 4(b)).
Furthermore, we found a significant positive correlation
between broadness of expression and expression strength
(Pearson correlation r = 0.859, P < .2 × 10−16, Figure 5).
This finding explained the consistency between broadness of
expression and strength of expression.

In summary, genes with a lower methylation level at the
promoter-associated CpG islands tend to express in more
tissues and have stronger expression strength, while genes
with a higher methylation level at the promoter-associated
CpG islands tend to express in fewer tissues and have weaker
expression strength.

4. Conclusion

In this study, we systematically investigated the features of
CpG islands or clusters identified by several major algorithms
in the human genome, taking advantage of recently released
single-base human methylome and gene expression Atlas
datasets. Because many more CpG clusters were previously
found compared to the number of genes, in this study, we
applied stringent criteria to generate a comparable number
of CpG islands identified by the traditional Takai and Jones
algorithm, or a similar number of protein-coding genes in
the human genome. Our results show that Takai and Jones’
algorithm tends to identify longer CpG islands, yet weaker
CpG island features as well as a higher methylation level.
However, this algorithm typically identifies one unique pro-
moter-associated CpG island for a gene. Conversely, Hacken-
berg et al.’s algorithm is likely to identify multiple promoter-
associated CpG clusters for a gene, but its CpG clusters tend
to have stronger CpG island features, such as a higher GC
content, higher CpG O/E ratio, and lower methylation level.
This comparative study indicated that, with the appropriate,
stringent cutoff value, we may identify CpG clusters that are
more representative of the gene markers by uniquely map-
ping to the promoter regions of genes, maintaining a low
methylation level, and strongly correlating gene expression
among tissues. These CpG clusters may be more functional
among all the CpG clusters and would be identified by the
default parameters; thus, we may denote them as core CpG
clusters.

Although DNA methylation has been widely thought to
suppress gene expression, largely through its methylation
regulation at the gene’s promoter region [15, 16], we found
only a weak correlation between DNA methylation and gene
expression strength across the whole human genome. Our
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Figure 4: Relationship between methylation level of promoter-associated CpG islands and expression strength. (a) Methylation data was
based on human methylome from H1 cell line. (b) Methylation data was based on human methylome from IMR90 cell line.
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results based on the gene expression broadness categories
(housekeeping, widely expressed, moderately expressed, and
narrowly expressed) showed that genes with a lower methy-
lation level at the promoter-associated CpG islands tend to
be expressed in more tissues and have stronger expression
strength. Our results validated that the DNA methylation
of promoter-associated CpG islands suppresses gene expres-
sion.

In this study, we did not take into account the missing
data in the methylomes. That is, if a CpG site was not
sequenced, it might be implicated as unmethylated. Accord-
ing to Lister et al. [25], their methylome sequencing covered
94% of the cytosines in the human genome. Considering that
sequencing of gene regions has generally more coverage and
higher quality than noncoding regions and our measure is
the broadness of methylation in the gene regions, the effect
of data missingness on our conclusions is expected to be
minor. Furthermore, we applied the broadness measurement

to assess methylation level in a genomic region. In this mea-
surement, methylation of each CpG site is either methylated
or unmethylated. It would be more informative by taking
into account the extent of methylation at each CpG site, as
such data is available from next generation sequencing. We
recently proposed a deepness measurement [26], which can
be combined with the broadness measurement in our future
analysis.
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