The Edgerton Structure: A Possible Meteorite Impact Feature in Eastern Kansas

Daniel F. Merriam, Jianghai Xia, and John W. Harbaugh

1 University of Kansas, 1930 Constant Avenue, West Campus, Lawrence, KS 66047, USA
2 Kansas Geological Survey, University of Kansas, Lawrence, KS 66047, USA
3 Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305, USA

Correspondence should be addressed to Daniel F. Merriam, dmerriam@ku.edu

Received 18 March 2009; Accepted 18 October 2009

Recognized meteorite impact features are relatively rare in the U.S. Midcontinent region, but recently with increased interest and research, the number has increased dramatically. We add another possibility to the growing list, the Edgerton structure in northwestern Miami County, Kansas. The feature is elliptical (∼5.5 × 6.5 km, slightly elongated east-west) with radial surface drainage. The feature was first observed on hillshade maps of digitized topography of 7.5 minute quadrangles. Subsequent magnetic profiles show a higher magnetic value in the center of the ellipse with higher values around the edges; this shape is characteristic of an impact feature. Depth to the anomalous body is estimated to be about 1 km, which puts it in the Precambrian crystalline basement under a cover of Paleozoic sediments. There are no deep boreholes in the vicinity and no seismic profiles are available. If it is an impact structure, it will be the second such feature documented in Kansas, the first being the Brenham meteorite crater at Haviland in Kiowa County in southwestern Kansas. It would be older than the other impact structures identified in the Midcontinent—Manson in Iowa, Ames in Oklahoma, Haswell Hole in Colorado, and possibly Belton in Missouri and Merna in Nebraska. There are at least two other prospective impact features in Kansas: the Goddard ring west of Wichita and Garden City ellipse north-west of Garden City.

Copyright © 2009 Daniel F. Merriam et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Circular, oval, or elliptical features, observed on airphotos, remote-sensed images, topographic quadrangle maps, hillshade maps, or on the ground in the field, may be the result of several independent or combination of factors. The most obvious and spectacular features are sinkholes that form relatively quickly and “buffalo wallows,” shallow depressions present in large numbers on the High Plains. More recently, some circular features have been attributed to meteorite impact.

There are at least five causes of physiographic circular features:

(1) erosion widens a valley and then closes the open end giving an illusion of a circular feature, for example, Cheyenne Bottoms in Barton County,

(2) solution of material and collapse of overlying material to form a sinkhole, for example, Old Maids Pool in Wallace County,

(3) meteorite impact feature, for example, Haviland crater (the term crater is used here in the sense of a meteorite impact feature and does not necessarily imply a surface depression) in Kiowa County,

(4) buffalo wallows—formed by animals and enlarged by wind, with many examples on the High Plains [1],

(5) dish-shaped structure with compaction of overlying sediments.

We are interested here only in the meteorite impact features.

There have been speculations for years of possible meteorite impact features in Kansas. In fact, Big Basin and
Little Basin in Clark County in the southwestern part of
the state have been cited as examples (e.g., [2]). Several
impact features have been identified and verified in the U.S.
Midcontinent, for example, Manson in Iowa (Cretaceous;
[3, 4]), Ames in Oklahoma (Cambrian; [5]), Haswell Hole in
Midcontinent, for example, Manson in Iowa (Cretaceous;
[5]), Haswell Hole in
Midcontinent, for example, Manson in Iowa (Cretaceous;
[6]), Ames in Oklahoma (Cambrian; [5]), Haswell Hole in
Colorado (Precambrian; [6, 7]), and possibly Belton Ring-
Fault Complex in Missouri (post-Pennsylvanian; [8]) and
Merna in Nebraska (Recent; [9]). So why not in Kansas?
Although many meteorites have been found and catalogued
in the state, only one meteorite feature has been identified
and recorded, the Brenham crater near Haviland in Kiowa
County in southwestern Kansas [10].

It is known that some drainage patterns reflect features
at depths to the Precambrian basement. Long, straight river
valleys follow fractures/faults; for example, segments of the
Neosho River Valley and the zigzag course of the Arkansas
River are good examples [11]. Therefore, circular and radial
drainage patterns on the surface may reflect circular features
in the subsurface in Kansas [12]. We suggest that there are
several intriguing such features in Kansas recognizable on
topographic, hillshaded, and other maps that with detailed
study may prove to be impact features (Figure 1; [13]).

We have named the feature described here Edgerton (for
the small town nearby) in northwestern Miami County in
eastcentral Kansas (Figure 1). Edgerton was recognized by
its circular nature and surface drainage pattern. A follow-
up magnetic profile is highly suggestive of a circular feature
with a rim and central high, which could indicate that it is an
impact feature. Unfortunately, no subsurface data or seismic
profiles are located close enough to confirm our preliminary
identification.

2. Local Geology

Surface rocks are the lower part of the clastic Douglas
Group and alternating limestone and shale units of the
Lansing/Kansas City groups (upper Pennsylvanian) thinly
covered by Recent and Pleistocene deposits. Surface geology
of Miami County was mapped and described by Newell in
1935 [14] and for Franklin County by Ball et al. in 1963 [15].
Neither study reports anything out of the ordinary in the
area of the Edgerton feature. Overlying sedimentary rocks are
relatively flat and have relatively low magnetic susceptibility
[16].

Two wells drilled in the area in 1944 and 1965, neither
reaching the Precambrian surface, reported a normal strati-
graphic section for this part of the state. The Pennsylvanian
section is underlain by Mississippian limestones and Kinder-
hook Shale, Viola Limestone and Simpson Group (Orдови-
cian), and Cambro-Ordovician Arbuckle Group carbonates.
The total section to the Arbuckle is about 480 m and the
thickness from top of Arbuckle to Precambrian should be
about 240 m [11]; total sedimentary section, then, is on the
order of about 700 m to 800 m.

The interpretation of the Precambrian basement by [17]
is that the basement in this part of the state is composed
mainly of granite (1.6 Ga) with younger intrusive granite
bodies (1.35 Ga).

![Figure 1: Suggested or suspected impact features in Kansas.](image-url)
Figure 2: Surface topographic expression (a circle with a dash line) and location of magnetic profiles (two solid lines).
3. Edgerton Ring Surface Expression

It was the topographic ring or elliptical shape on the hillshade map near Edgerton that attracted attention. The slightly elongated east-west feature is approximately 5.5 × 6.5 km. The features are emphasized by radial drainage with Rock Creek and Bull Creek forming the southern and eastern boundaries (Figure 2).

4. Geophysical Magnetic Survey

In December of 2004 surface east-west and north-south magnetic profiles, based on accessibility of county roads, were made across the feature (Figure 2). Total magnetic field was recorded with a Geometrics G858 cesium magnetometer. Data were acquired along a 12.8-km-long east-west line (longitude −95.0281 degrees) at the latitude 38.7229 degrees from the longitude −95.0914 to −94.9441 degrees and a 12.8-km south-north line near the center of the east-west line from latitude 38.65 to 38.7821 degrees. Another Geometrics G856 Proton magnetometer was used to measure the diurnal changes of the Earth’s field every 10 minutes at a fixed station at the center of the two lines. The maximum diurnal changes during the survey period of time were about 20 nT. The normal geomagnetic field in Miami County is 53,505 nT.

The field measurements were corrected for diurnal variation. Magnetic spikes in the field measurements resulting from a highway overpass, a railroad, and utility lines were removed and replaced by the normal earth field value (53,505 nT). Small spikes resulting from culture noises were removed by the wavelet analysis [18]. A regional magnetic field was removed by a linear trend and Figure 3 is the final results of the ground magnetic feature. The maximum change along the line is approximately 80 nT. It is interesting to note that there are almost identical anomaly highs (40 nT) at positions −94.9649 and −95.0593 degrees and a weak high at the center of the line (−6 km).

If we use the horizontal cylinder formula to estimate the depth to an anomalous body [19], a maximum depth of about 1 km is computed for locations of −94.9649 and −95.0593 degrees. These locations suggest edges of the feature.
To verify the ground survey results, an east-west line of an aeromagnetic survey (750 m above the sea level, about 450 m above the ground surface) along the latitude about N 38.7382 degrees was processed (from [20]). The location of this line is approximately 1.6 km north of the ground east-west line. Figure 4(a) shows the aeromagnetic data with a straight line representing the regional magnetic field. After removing this regional magnetic field, a residual magnetic anomaly was obtained (Figure 4(b)). The shape of this residual anomaly mimics the ground survey results (Figure 3).

The magnetic field surrounding Edgerton is fairly consistent with no other anomalous pattern (e.g., oscillations) evident from available data [21].

The same data-processing procedure was applied to data acquired along the south-north line. The main shape of the residual field (Figure 5) is similar to residual anomalies of the west-east line (Figure 3). There are two anomaly highs: 12 nT at 38.6911 and 38.7446 degrees and a weak high at about the center of the line (38.7138 degree). With the horizontal cylinder formula [19], estimated maximum depths to anomalous bodies are about 1 km at a location of 38.7138 and 1.6 km at a location of 9.2 km, respectively.

5. Geologic Interpretation

The geological and geophysical evidences suggest the feature is at or near the buried Precambrian surface. From the size of the surface topographic expression and the amount of sediment overburden, it is suggested that the relief on the Precambrian surface is on the order of 90 m [12]. A diagrammatic geologic interpretation based on the magnetic survey is given in Figure 6.

The geophysical signature between Edgerton and Haswell Hole and Ames, which is a presumed and a known meteorite impact feature, is similar (Table 1). The size and shape of Merna and Big Basin, which are depressions, suggest that they are solution features. Manson, Ames, and Haviland are in a class by themselves as known meteorite impact features. Edgerton and Belton, both unproven impact features, more resemble impact than solution features in their topographic expression. Haswell Hole and Edgerton both are domed and have radial drainage, but many features in eastern Kansas have this shape and are not thought to be impact features. For example, the Big Springs anomaly in northwestern Douglas County is attributed to a Precambrian granite intrusive as is the Beagle anomaly in southwestern Miami County [12]. Both of these anomalies have magnetic highs.

There are a few known intrusive igneous plugs located in Riley and Woodson counties. These small features have been investigated in detail, and their surface expression, size, and age are not similar to Edgerton [11].
6. Summary

There are two possible scenarios that can be made on the limited amount of data: (1) the impact on the Precambrian surface could have created the topographic relief on the surface, or (2) the impact feature could have been beveled and an intrusive body could have been emplaced in the crust weakened by the impact causing the relief. At this time there is no way to tell which scenario is the correct one although we support the second one (2).

Unfortunately, no boreholes have been drilled in the Edgerton and no seismic profiles are available across the feature. So, an interpretation on whether it is an impact feature will have to await further data.

References

Table 1: Comparative data on features discussed here.

<table>
<thead>
<tr>
<th>Feature</th>
<th>State</th>
<th>Size (diameter in km)</th>
<th>Magnetics</th>
<th>Gravity</th>
<th>Recognized as</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manson</td>
<td>IA</td>
<td>38</td>
<td></td>
<td></td>
<td>impact</td>
<td>K</td>
</tr>
<tr>
<td>Haswell</td>
<td>CO</td>
<td>35</td>
<td>low</td>
<td>negative</td>
<td>impact</td>
<td>PC</td>
</tr>
<tr>
<td>Ames</td>
<td>OK</td>
<td>14</td>
<td>low</td>
<td>negative</td>
<td>impact</td>
<td>Ord</td>
</tr>
<tr>
<td>Belton</td>
<td>MO</td>
<td>3</td>
<td></td>
<td></td>
<td>solution</td>
<td>post-Penn</td>
</tr>
<tr>
<td>Edgerton</td>
<td>KS</td>
<td>5</td>
<td>low</td>
<td></td>
<td>impact</td>
<td>PC</td>
</tr>
<tr>
<td>Merna</td>
<td>NE</td>
<td>1</td>
<td></td>
<td></td>
<td>wind erosion</td>
<td>Recent</td>
</tr>
<tr>
<td>Big Basin</td>
<td>KS</td>
<td>1.3</td>
<td>solution</td>
<td></td>
<td>Placio</td>
<td></td>
</tr>
<tr>
<td>Haviland</td>
<td>KS</td>
<td>0.4</td>
<td></td>
<td></td>
<td>impact</td>
<td>Recent</td>
</tr>
</tbody>
</table>

6 International Journal of Geophysics
Submit your manuscripts at http://www.hindawi.com