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Cancer is an increasing burden on global health. Breast and lung cancers are the two tumors with the highest incidence rates. Te
study shows that early detection and early diagnosis are important prognostic factors for breast and lung cancers. Due to the great
advantages of artifcial intelligence in feature extraction, the combination of infrared analysis technology may have great potential
in clinical applications. Tis study explores the potential application of mid-infrared spectroscopy combined with machine
learning for the diferentiation of breast and lung cancers. Te experiment collects blood samples from clinical sources, separates
serum, trains classifcation models, and fnally predicts unknown sample categories. We use k-fold cross-validation to determine
the training set of 301 cases and the test set of 50 cases. Trough diferential spectrum analysis, we found that the intervals of
1318.59–1401.03 cm−1, 1492.15–1583.27 cm−1, and 1597.25–1721.64 cm−1 have signifcant diferences, which may refect the
absorption of key chemical bonds in protein molecules. We use a total of 24 models such as decision trees, discriminant analysis,
support vector machines, and K-nearest neighbor to train, identify, and distinguish spectra. Te results show that under the same
conditions, the prediction model trained based on fne KNN has the best performance and can perform 100% prediction on the
test set samples. Tis also shows that our model has important potential for auxiliary diagnosis of serum breast cancer and lung
cancer. Tis method may help to further achieve comprehensive screening of associated cancers in underserved areas, thereby
reducing the cancer burden through early detection of cancer and appropriate treatment and care of cancer patients.

1. Introduction

Cancer is a general term for a group of diseases that can afect
any part of the body and refers to many diseases associated with

uncontrolled cell mutations caused by tumor expansion [1].
Cancer is currently the leading cause of death in the country and
an important barrier to extending the average life expectancy in
the country.Worldwide, there are an estimated 19.3million new
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cancer cases and nearly 10 million cancer deaths, based on
GLOBOCAN 2020 cancer incidence and mortality estimates
compiled by the International Agency for Research on Cancer.
Overall, the burden of cancer incidence and mortality is rapidly
increasingworldwide. Scholars predict that by 2040, there will be
an estimated 28.4 million new cancer cases worldwide, an in-
crease of 47% from 19.3 million in 2020 [2].

Breast cancer is the most commonly diagnosed cancer
worldwide. Breast cancer is a disease in which breast epithelial
cells proliferate uncontrollably under the action of various
carcinogenic factors. Breast cancer accounts for 11.7% of new
cases, and its burden has been rising over the past few decades.
Now, breast cancer has replaced lung cancer as the most
commonly diagnosed cancer worldwide [3]. Breast cancer ac-
counts for a quarter of all cancer cases in women, is by far the
most common cancer in women in 2020, and its burden is
increasing in many parts of the world [4]. Te number of newly
diagnosed breast cancers is expected to grow by more than 40%
by 2040, to about 3 million cases per year. At the same time, the
number of breast cancer deaths will increase from 685,000 in
2020 to 1 million in 2040, an increase of more than 50% [5].
Lung cancer, which used to rank frst today, still poses a serious
burden to global health. Lung cancer is a malignant tumor
originating from the bronchial mucosa or glands of the lung,
accounting for 11.4% of new cases. Lung cancer is now the
second most commonly diagnosed cancer in 2020. Lung cancer
is the second most common cancer in men after prostate cancer
and has the highest morbidity and mortality [6, 7].

According to the World Health Organization (WHO),
the number of diagnosed breast cancer patients (7.8 million)
is much higher than the number of breast cancer deaths
(685,000) [2]. Tese data are smaller than that of other types
of cancer, suggesting that breast cancer outcomes can be
improved. Te key lies in the accurate and timely detection
of diseases. Lung cancer, on the other hand, is mostly found
incidentally during radiology tests performed in the pres-
ence of other symptoms. Te disease usually occurs at an
advanced stage when it is detected. Te treatment of lung
cancer is mainly to fnd and remove the tumor through
surgery, supplemented by radiotherapy and/or chemo-
therapy. Scholars estimate that the fve-year survival rate of
lung cancer is 70% in the clinical stage [8]. In general, breast
cancer and lung cancer are the two tumor types with the
largest global health burden. Timely detection and treatment
are of great signifcance for alleviating the status quo of these
two diseases. However, most diagnoses of such diseases rely
on radiological examination, ultrasound and magnetic
resonance imaging (MRI), and tissue biopsy. (Tese
methods are considered the gold standard) [9]. Tere is an
inevitable problem: due to the constraints of cost and ex-
pertise, these technologies are not available in rural and
remote areas for the detection of these cancers. Terefore,
alternative or auxiliary diagnostic techniques that are quick
to detect, easy to operate, low cost, and conducive to uni-
versal screening must have important clinical needs.

Tere are issues related to slow reporting of results and
delays in patient care due to existing medical workfows. As
a result, patient treatment and prognosis are afected, which
will bring potential fnancial burden to medical institutions.

In developed countries, the number of people over the age of
65 is expected to increase by 71% by 2050, and the aging
population and increasing burden of chronic diseases re-
quire higher diagnostic capabilities to diagnose and stratify
patients [10]. Tis will increase the pressure and burden on
the existing medical platform. Te development of novel,
low cost, and rapid diagnostic platforms is the key to
breaking through the current dilemma of diagnosis and
treatment. Te development of novel, low cost, and rapid
diagnostic platforms is the key to breaking through the
current dilemma of diagnosis and treatment. Infrared
spectroscopy (IR) has been used for a long time to char-
acterize compounds, but its suitability in analyzing bi-
ological materials with highly complex chemical
compositions is debatable. Nevertheless, the latest ad-
vancements in infrared spectroscopy have signifcantly
improved its ability to analyze various types of biological
specimens. As a result, more and more research is exploring
the use of IR spectroscopy in the screening and diagnosis of
various diseases [11–13]. In recent two years, Atiqah et al.
developed a fast, noninvasive detection method for early
diagnosis of osteoarthritis (OA) by analyzing blood serum
samples from 15 OA patients and 10 healthy volunteers with
no clinical symptoms of the disease. With support from
chemical quantifcation methods, discriminant analysis was
used to distinguish between the OA and healthy groups,
yielding an overall classifcation accuracy of 74.47% [14]. As
research progresses, the detection limit of infrared spec-
troscopy has also been increased, with some small molecular
metabolic components such as amino acids being detectable
by infrared spectroscopy. Tulya et al. improved the de-
tection limit of low molecular weight amino acids by using
glycine as a model analyte combined with mid-infrared
(MIR) and near-infrared spectroscopy data, with a linear
regression coefcient of determination R2 reaching 0.997.
Tis study successfully expanded the application limits of
infrared spectroscopy technology [15].Te potential of using
biological specimen analysis as a diagnostic tool for cancer
has been recognized for a long time [16]. Ma et al. used
infrared spectroscopy to collect serum sample data from
patients with cervical cancer, CIN I, CIN II, CIN III, and
uterine fbroids and compared various deep learningmodels.
Te results showed that PSO–CNN was the best and the
discrimination accuracy for the fve sample types could
reach 87.2% [17]. Wang et al. collected SERS data from 729
patients with prostate cancer or benign prostatic hyperplasia
(BPH) in their serum and established an artifcial
intelligence-assisted diagnostic model based on convolu-
tional neural network (CNN). Te accuracy of prostate
cancer was 85.14± 0.39%. After adjusting the model based
on patient age and prostate-specifc antigen (PSA), the ac-
curacy of the multimodal CNN could reach 88.55± 0.66%
[18]. In recent research, Alexandra et al. investigated the
application of ATR-FTIR spectroscopy on serum and used
machine learning algorithms to diferentiate between cancer
(n= 92) and healthy controls (n= 88), with a sensitivity of
100% and specifcity of 100%. A receiver operating char-
acteristic (ROC) analysis yielded an area under the curve
(AUC) of 0.95 [19]. Tere has been a recent trend in the use
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of serum infrared spectroscopy in clinical research, with
artifcial intelligence algorithms gradually replacing tradi-
tional, simpler chemical quantifcation methods to achieve
better performing recognition models. Te sensitivity of IR
spectroscopy to chemical changes during the transition from
normal to pathological states or during treatment can lead to
the identifcation of novel biological markers associated with
disease. As a result, IR spectroscopy is a powerful tool with
enormous potential for clinical applications, extending be-
yond cancer screening, diagnosis, and prognosis to con-
tinuous monitoring of treatment responses and disease
progression or regression in personalized medicine [20].

IR is the ability of molecules to selectively absorb in-
frared rays of certain wavelengths.Te result of detecting the
absorption of infrared rays is the infrared absorption
spectrum of the corresponding substance. Te main prin-
ciple is that in organic molecules, the atoms that make up
chemical bonds or functional groups are in a state of
constant vibration, and its vibration frequency is equivalent
to that of infrared light. When a beam of infrared light with
a continuous wavelength passes through a substance, and the
vibration frequency or rotation frequency of a certain group
in the substance molecule is the same as the frequency of the
infrared light, the molecule absorbs energy and transitions
from the original ground state vibration (rotation) kinetic
energy level to energy higher vibration (rotation) kinetic
energy level. Molecules undergo vibration and rotational
energy level transitions after absorbing infrared radiation,
and the light at this wavelength is absorbed by the substance
[21]. Te infrared spectrum is obtained by recording the
absorption of infrared light by the molecule with an in-
strument. Based on the above principles, various materials or
biological samples can be identifed through the unique
energy states of specifc functional groups. For the detection
of vibrational energy states, infrared light can be used, such
as near-infrared or mid-infrared light. Since the mid-
infrared light can resonate with the fundamental fre-
quency vibration, stronger spectral absorption intensity and
more identifcation features can be obtained. Mid-infrared
radiation is usually defned as electromagnetic waves with
a wavelength of 2.5–25 μm or a frequency of 400–4000 cm−1

(the unit is the wave number, and the product of the
constant speed of light is the frequency, the unit is Hz) [22].
Fat, amino acid, protein, sugar, heme, enzyme, hormone, etc.
are all organic compounds in living organisms. Te key
covalent bonds of these compounds are N-H, O-H, C-H, C-
C, C-O, C-N, C≡C, C≡N, C�C, C�O, C�N. Te typical
infrared absorption of chemical bonds is located at
600–4000 cm−1, and both fall in the mid-infrared range.
Based on the above analysis, the application of mid-infrared
spectroscopy to the analysis of clinical biological samples
may have important potential.

Te essence of the infrared spectrum of a substance is
that when infrared light with a continuous wavelength
passes through a substance, the molecular components of
the substance absorb infrared radiation under certain
conditions. Te spectrogram obtained by recording the
absorption of infrared light by a molecule with an in-
strument is the infrared spectrum of the corresponding

substance. Te analysis of infrared spectroscopy has tradi-
tionally relied on the analysis of professional chemometric
software. With the rise of infrared spectroscopy in the
medical feld, the clinical situation is more complicated, such
as the diferences between biological samples, and the
specifc course of the disease of individual patients is also
diferent [23]. Tese problems make infrared-related re-
search still need to solve many problems, such as infrared
data processing requires stronger computing power, and
also need to be “smart” to realize our data processing needs.
Tis has caused the traditional chemometrics software to be
difcult to meet our needs. Te essence of each piece of
infrared spectral data is a collection of thousands of wave
points. Each wave point is a set of data (wave-
number + absorbance). In other words, each infrared
spectrum is a data set consisting of thousands of data.
Artifcial intelligence (AI) is a branch of computer science
aimed at creating computer systems that can think, learn,
reason, and make decisions independently. Te goal is to
simulate various aspects of human intelligence, enabling
computers to perform tasks that typically require human
thought, intellect, knowledge, or skills. AI is a broad feld
that encompasses machine learning, natural language pro-
cessing, image recognition, and intelligent robots, among
others [24]. Machine learning, a subfeld of AI, focuses on
allowing computers to automatically generate models
through the study of large amounts of data, in order to
recognize and predict patterns in the data [25]. Tis aligns
with our requirements for analyzing infrared spectroscopy
data, and the application of machine learning to the analysis
and processing of such complex data may yield satisfactory
results [24]. We have previously used similar approaches to
solve some clinical problems and obtained satisfactory re-
sults [26]. Tis study builds and develops new methods for
assisting in the diagnosis of breast and lung cancers based on
decision trees, discriminant analysis, Bayesian classifcation,
support vector machines, and K-nearest neighbors in ma-
chine learning. It aims to quickly identify and distinguish
breast and lung cancers in the population.

2. Materials and Methods

2.1. Sample Collection. Serum samples were obtained from the
Afliated Hospital of Guizhou Medical University (Guiyang,
China). Tey come from 98 cases of breast cancer patients
diagnosed by clinicians admitted to the Afliated Hospital of
Guizhou Medical University. Te age of the patients ranged
from 24 to 81 years old, with an average age of (50.86±12.04)
years old. Among these patients, there were 93 cases of invasive
ductal carcinoma of the breast, 1 case of invasive ductal car-
cinoma of the breast with intraductal carcinoma, 1 case of in-
vasive ductal carcinoma of the breast with ductal carcinoma
in situ, 1 case of invasive ductal carcinoma of the breast with
eczema-like carcinoma, and 1 case of invasive ductal carcinoma
of the breast with eczema-like carcinoma. Two cases of sex cord-
stromal tumors concurrently with fbroadenomas were ob-
served. Another part of the samples came from 95 patients
diagnosed with lung cancer who were diagnosed by clinicians in
the Afliated Hospital of Guizhou Medical University. Te age
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of the patients ranged from 31 to 83years old, with an average
age of (57.18±9.81) years old including 51 cases of adenocar-
cinoma (ACC), 28 cases of squamous cell carcinoma (SCC), 7
cases of large cell carcinoma (LCC), and 9 cases of small cell lung
cancer. In addition, 158 serum samples were collected from
healthy people in the Afliated Hospital of Guizhou Medical
University in June 2021, aged 26–74years, with an average age of
(47.75±10.49) years. Tis study was approved by the Human
ResearchEthicsCommittee of theAfliatedHospital ofGuizhou
Medical University.

2.2. InstrumentandSoftware. Tis study utilized theTermo
Scientifc Nicolet iS5 Fourier transform infrared spec-
trometer with accompanying iD1 smart transmission ac-
cessory and iD5 attenuated total refectance accessory
(Termo Fisher Scientifc, Waltham, MA, USA). Software
analysis was conducted using the TQ Analyst 9 and OMNIC
8.2 (Termo Fisher Scientifc, Waltham, MA, USA), as well
as MATLAB2019 (MathWorks, Natick, MA, USA).

2.3. Sample Collection and Processing. Te blood is collected
by the clinical nurse, and the fast serum tube is selected for
temporary storage and transferred to the laboratory at 4°
cold chain. After confrming that there is no hemolysis, after
confrming the receipt, let it stand at room temperature for
30minutes. Centrifuge at 3500 r/min for 5minutes to sep-
arate the serum and store at −80°.

2.4.WorkFlowEstablishmentandSerumSpectrumCollection.
Open Omnic software (Omnic 8.2, Termo Nicolet
Corporation, Waltham, MA, USA) creates a new workfow and
sets experimental parameters. Te number of scans set in
“Number of scans” is 16. In the “Resolution” option, ensure that
the resolution of the collected spectra is 4 cm−1. In the “Data
Format” option, confrm that Absorbance is the data format of
the spectrum. Te data interval is 0.482. Te range of scanning
wavenumber is 4000∼400 cm−1.Te detector is DTGS/KBr, and
the beam splitter is KBr. We remove the samples in a −80°C
freezer. Considering that room temperature and relative hu-
midity may afect serum status, we controlled the room tem-
perature at 24°C and 44%humidity.We equilibrated the samples
for 2hours in this environment. Ten, turn on the instrument
(Termo Scientifc Nicolet iS5, USA) to preheat for 0.5h. Prior
to testing, we cleaned the instrument sample pool and per-
formed air zeroing.We then injected 5μL of the sample into the
sample pool using a sampling gun. To eliminate the infuence of
background substances such as water, a solvent blank was in-
dependently prepared [27]. Spectra were collected according to
the set parameters, and spectral data within the range of
550−1800 cm−1 were retained for subsequent analysis. Te
background spectrum was collected as shown in Figure S1-A,
and the collected sample spectrum (S1-B) was subtracted from
the background spectrum to obtain the fnal sample spectrum, as
shown in Figure S1-C. To efectively avoid errors caused by
instrument instability, each spectrum was normalized uni-
formly, as shown in Figure S1-D.

2.5. Spectral Data Analysis and Removing Outlier Samples.
OMNIC 8.2 (OMNIC 8.2, Termo Nicolet Corporation,
Waltham, MA, USA) was used for spectrometer control. TQ
Analyst 9 (Termo Fisher Scientifc, Waltham, MA, USA)
was used for primary analysis of the data. Open the raw
spectrum data with OMNIC and save it as a CSV text fle that
Matlab can recognize. Import the spectrum fle into Matlab
to save a new workspace. Eliminate abnormal spectra caused
by abnormal conditions such as sample addition, operation,
and program error reporting during the experiment.

2.6. Optimization Algorithm

2.6.1. Classifcation of Training and Test Sets. Te key to the
study is the normal division of the dataset. Te classifcation
in this study follows the following principles: the training set
should be mutually exclusive with the test set as much as
possible, and the distribution of training and test data should
be consistent. Combined with the characteristics of the
sample data itself, we choose k-fold cross validation, and the
specifc steps are as follows:

Step 1: Divide the data set into training set and test set
completely randomly. Set aside the test set as validation
data for the trained model.
Step 2: Randomly divide the training set into K mu-
tually exclusive subsets of similar size.
Step 3: Each time use 1 of the k copies as the verifcation
set, and all the others as the training set.
Step 4: After k training and validation, we get k diferent
models.
Step 5: Evaluate the efects of k models, select the
hyperparameters with the best efect, and take the
average of k verifcation results as an index to measure
the accuracy of the model.
Step 6: Use the optimal hyperparameters, and then use
all k data sets as the training set to retrain the model,
and output the fnal model.

2.6.2. Decision Tree. Te decision tree regards a spectrum with
n wave points as a point in n-dimensional space. Te process of
classifcation is to fnd a hyperplane in n-dimensional space or
higher dimensional space and divide these spectra. Decision
trees are supervised learning. Based on the known classifcation
results, a prediction model is obtained by learning the training
set samples, performing feature selection, generating a decision
tree, and pruning the decision tree. Tis decision tree is able to
give the correct classifcation for new spectral data. Decision
trees are a common machine learning algorithm.

2.6.3. Discriminatory Analysis. Discriminant analysis is used
to fnd which category is most similar to the unknown
category spectrum among the known categories. Te anal-
ysis process is to establish a discriminant function by esti-
mating the change of the number of each wave point in the
analysis area with a batch of spectral samples that have been
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clearly classifed, so as to minimize the misjudgment of the
spectrum. On this basis, a given new spectral sample is
discriminated.

2.6.4. Bayesian Classifcation. Bayesian classifcation is
a statistical classifcation method. Its formula is P (Ai|B)� P

(Ai)∗P (B|Ai)/n
j�1P(Aj)P(B/Aj), where P (Ai|B) is the

posterior probability distribution, and P (Ai) is the prior
probability distribution. Te prediction process is based on
the frst training to build a classifer on the spectral data.
Predict the probability that a spectrum belongs to a certain
class by solving the posterior probability distribution.

2.6.5. Support Vector Machine (SVM). SVM is a class of
supervised learning. Te basic idea of learning is to solve
the separating hyperplane that can correctly divide the
training data set and maximize the geometric interval.
Based on this, binary classifcation is performed on the
data. Its learning strategy is to maximize the interval
between diferent categories of spectra, which can be
formalized as an optimization algorithm for solving
convex quadratic programming.

2.6.6. k-Nearest Neighbor (KNN). Te idea of KNN is that in
the feature space, if most of the k-nearest samples near
a sample belong to a certain category, the sample also be-
longs to this category. Te implementation process is that in
a training spectral data set, input unknown spectral data, and
fnd the K samples closest to the spectrum in the training
data set. Most of these K samples belong to a certain class,
and the input instance is classifed into this class.

2.7. Metrics for Evaluation. After the quantitative model is
established, its performance needs to be evaluated. Te main
inspection indicators are accuracy, errorrate, macro pre-
cision (macro-P), macro recall (macro-R), harmonic mean
(F1), and predictive recall (R). Te main calculation formula
is as follows:

P − Accuracy(%) �


n
i�1TPi


n
i�1TPi + FPi

,

P − Errorrate(%) �


n
i�1FPi


n
i�1TPi + FPi

× 100,

macro − P �
1
n
∗ 

n

i�1

TPi

TPi + FPi
,

Ri �
TPi

TPi + FNi
,

macro − R �
1
n
∗ 

n

i�1
Ri,

F1 �
2 × macro − P × macro − R

macro − P + macro − R
.

(1)

Note: TPi (True Positive): the true classifcation i is
correctly predicted as classifcation i; FPi (False Positive): the
wrong prediction of other true classifcations is classifcation
i; FNi (False Negative): the true classifcation i is incorrectly
predicted as other Classifcation. Ri (Recall): the number of
samples correctly predicted as category i accounts for the
actual number of samples of category i. P-Accuracy: the
accuracy of the test set sample prediction. P-Errorrate: the
test set sample prediction error rate.

3. Results and Discussion

3.1. Sample Conditions and Basic Characteristics of Mid-
Infrared Spectra. All collected samples were assayed by
mid-infrared spectroscopy as described in Materials Method
4. A total of 351 spectral samples were analyzed for this
analysis. According to the sample source, the samples were
divided into normal control group, breast cancer group, and
lung cancer group. We randomly split the collected spectra
into a training set (301) and a test set (50). Please refer to
Table 1 for details such as grouping situation and gender
ratio. Tere was no gender diference between the training
set and the prediction set (X2 � 0.567, P � 0.451, P> 0.05).
Tere was no age diference between the training set and the
prediction set (t� 0.91, P � 0.927, P> 0.05). Trough sta-
tistical analysis, the results of random grouping can be used
in subsequent experiments. Te quality of a model depends
on objective evaluation criteria. Existing standards are ba-
sically applicable to a single assessment, which leads to the
randomness of the assessment. We need to increase the
number of training times to solve the contingency problem.
Training a model repeatedly on the same dataset does not
solve this problem. Terefore, the preferred method is to
divide the data set diferently, train multiple models, and
evaluate comprehensively. Te common division methods
are as follows: holdout cross validation, leave one out cross
validation, and k-fold cross validation. Holdout cross vali-
dation is to statically divide the data set into training set,
verifcation set, and test set. Te model corresponding to the
test set may have a large gap compared with the trained
model, the fdelity is low, and there is no better solution.Tis
method is suitable for a large number of samples (ten
thousand, million). Leave one out cross validation is to
divide the training set one by one. Each validation set has
only one sample, and m times of training and prediction are
required. Tis will increase the complexity of training and
increase the computational cost. Tis method is generally
used when the data set is scarce. Static holdout cross vali-
dation is sensitive to data division. k-fold cross validation is
a dynamic validation method [28]. Tis method is not af-
fected by the random sample division method, and the
trained model is very similar to the overall data set model,
which is an ideal division scheme for small data sets. In
summary, combined with the characteristics of the sample
data itself, we choose k-fold cross validation (K� 5). Te
specifc process is shown in Figure 1. Figure 2 is the original
mid-infrared spectrum of the collected samples. Te overall
spectrum is uniform and consistent, which can better refect
the physical and chemical properties of serum. Each
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spectrum consists of 2595 wave points; that is, each spectrum
has 2595 features.

3.2.Diference SpectralAnalysis. Based on the collected mid-
infrared spectra, the training set spectra were divided into
131 normal control spectra, 85 breast cancer spectra, and 85
lung cancer spectra according to the sample source. Convert
the fnal IR spectra to 2595 wave point data using themethod
described in Materials Methods 5. In order to eliminate the

inherent errors in instrument measurement and analyze the
spectra better, we frst normalized each spectrum to obtain
three sets of new data. After that, we calculated the average
value of the 2595 wave point data that constitute the
spectrum in the same group one by one. Finally, we
reconstructed the obtained average result into an average
spectrum, and the result is shown in Figure 3(a). In organic
components, when the vibration frequency or rotation
frequency of atoms constituting chemical bonds or func-
tional groups is the same as that of infrared light, molecules

Table 1: Sample information and its grouping situation.

Number Male/female Normal group (N) Breast cancer (B) Lung cancer (L) Age (Mean± SD) CV
Training dataset 301 146/205 131 85 85 51.19± 11.51 0.22
Test dataset 50 18/32 27 13 10 51.04± 10.95 0.21

Randomly divide the dataset

Training dataset

Randomly divide the data
into k parts

The remainingk-1 parts
as training dataset

1 parts as
validation dataset

After k training get k
models

Evaluate K models to get
the optimal parameters

Use the entire training set to train and output
the final model under the optimal parameters

Test dataset to do the final
evaluation of the model

Test dataset

Figure 1: Dataset partitioning process.
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will undergo vibration and rotation energy level transitions
after absorbing infrared radiation [21]. Based on the above
principles, theoretically specifc functional groups or bio-
chemical components have corresponding absorption in the
frequency range of specifc infrared light (S2).We subtracted
the mean spectra of each group pairwise to obtain their
absolute values and reconstructed them into three diference
spectra. Tey are normal control-breast cancer (∣N-B∣),
normal control-lung cancer (∣N-L∣), and breast cancer-lung
cancer (∣B-L∣), and the diference spectrum is shown in
Figure 3(b). Te spectral intervals with large diferences
between diferent average spectra are marked, and the de-
tailed results are shown in Table 2. Te spectral diferences
between breast cancer and normal population were mainly
concentrated in the ranges of 1492.15–1583.27 cm−1 and
1597.25–1721.64 cm−1. Tis region is mainly the spectral
region of C�C, C�O, C�N, N-H, and O-H absorptions. Tis
result may be related to the absorption of the amide structure
of the protein with the α-helical structure. It refects the
diference in protein content and its secondary structure,
which is consistent with the fndings of Zelig and Yang
[29, 30]. Te spectral diference between lung cancer and
normal people not only refects the amide I region
(1398.62–1543.74 cm−1) [31–33] corresponding to protein
absorption but also refects the phosphate group region of
RNA and DNA (1172.99–1319.55 cm−1). Spectral diferences
between breast and lung cancers were also signifcant in the
range 1318.59–1515.77 cm−1, a region containing the ab-
sorption of key structures of lipids and phospholipids
[30, 34]. In general, the spectra of the diferent populations
are signifcantly diferent or can be efectively distinguished.
Tis suggests that spectroscopy has the potential for im-
portant clinical applications. From a clinical perspective,

modern clinical practice requires a simple, fast, and accurate
auxiliary diagnostic method. Te sample drying process is
cumbersome and does not meet the practical needs of
clinical practice. Related research reports in the past year
have also shown that satisfactory results can be obtained
from serum samples [15, 17–19]. It should be noted that
although biochemical components require relatively high
concentrations to prevent their biochemical characteristics
from being masked, this study’s results show that the dif-
ferences between spectra are mainly concentrated in the
wavenumber range (1700 cm−1∼1500 cm−1) that refects key
protein structures. Tis means that distinguishing diferent
categories based on spectra may still depend on diferences
in protein abundance. Tis result also coincides with the
marked diferences in protein content between cancer pa-
tients and the normal population in clinical practice. At the
same time, this is consistent with similar studies in the same
category [29, 30, 32, 33]. Tis further demonstrates the
important clinical application potential of spectroscopy.

3.3. Model Results and Partial Model Performance
Verifcation. On the basis of diferential spectrum analysis,
diferent classifcation models are used for training in
combination with the characteristics of diferent groups of
spectra. For the complex spectral data composed of 2595
wave points, it is necessary to reduce the dimensionality of
the data. Tis study uses the commonly used PCA di-
mensionality reduction. Since the feature score after di-
mensionality reduction is determined by the principal
component score after dimensionality reduction, this will
directly afect the model training efect. Terefore, the de-
termination of the principal components is an important
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Figure 3: Analysis of the overall characteristics of the spectrum (550 cm−1≤wavenumber≤ 1800 cm−1): (a) average spectrum after spectral
normalization and (b) the diference between the mean spectra.
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parameter for model establishment. In our research, we
mainly use models including decision trees, discriminant
analysis, SVM, kNN, and related subalgorithms, a total of 24
models. Diferent algorithm models and diferent principal
component numbers are selected, and the accuracy results of
the training model are shown in Figure 4. Output part of the
model and use the test set that did not participate in the
model training to make predictions. Tis was used to check
the performance of the trained model, and the relevant
results are shown in Table 3. When further analyzing the
results, an overall improvement in the training performance
of the model was observed with the increase of principal
components. However, the accuracy of fne Gaussian SMV
and linear discriminant increases frst and then gradually
decreases, which means that there is a limit to model op-
timization, and model performance will not increase in-
fnitely with the increase of principal components. Second,
the higher the model accuracy, usually the better the model
performance. However, we believe that models trained by
cross validation may not be able to completely avoid
overftting. Terefore, in order to more objectively evaluate
the performance of the trained model, a set of data from the
same source but not involved in training is needed as a test
set for further verifcation.Te results show that boosted tree
has the worst training efect among the 24 algorithms, and
the test set is all identifed as “N,” which means that not all
algorithms can adapt to such spectral data, so it is necessary
to choose an appropriate algorithm to obtain performance
relatively best model. It should be noted that due to the
reduction of the spectral range, some information is lost, and
the performance of the model is afected to a certain extent.
Although it was found during the training process that the
accuracy of the model increases with the increase of prin-
cipal components, pursuing only the improvement of ac-
curacy inevitably requires more principal components,
resulting in an increase in computation and complexity of
the model. Terefore, we believe that before making a de-
cision, these issues need to be considered comprehensively
to balance the model’s predictive performance, accuracy,
computational complexity, and other parameters. Te ex-
perimental results (Table 3) show that the training model
and prediction model of quadratic discriminant, cubic SMV,
and fne KNN have achieved relatively good results. In the
case of similar accuracy, we consider the computational cost
and efciency of the model and believe that the fne KNN
model with a principal component of 3 is superior to other
algorithms. In other similar studies, researchers included
approximately 29–74 patient samples, with accuracy rates
ranging from 72% to 95.7% [29, 31, 34, 35]. In fact, for
machine learning, sample size is a key factor afecting the

quality of model training. After we increased the training set
and test set, it also refected a relatively good efect. In the
future, we plan to further expand the sample size to correct
the model and lay a preliminary experimental foundation for
further clinical applications in the future.

3.4. Preferred Model. Comprehensive analysis of the fne
KNN model based on 3 principal components has relatively
the best performance. Trough the prediction of the test set,
P-Accuracy is 98.00%, and Macro-P, Macro-R and Macro-
F1 are 98.80%, 97.43%, and 98.06%, respectively. PCA
dimensionality reduction is performed on the data, and
the data are distributed in three-dimensional space. It can
be seen that the spectral data points of diferent categories
show a discrete trend, and the spectral data points of the
same category show a trend of aggregation, as shown in
Figure 5(a). Te spectral data points are shown in the 2D
plane that was correctly classifed during training. Te re-
sults show that each spectral data is correctly classifed, and
the training efect is good. Te results are shown in
Figure 5(b). Export the trained model for prediction on the
test set. Te predicted spectral results of each group were
almost always correctly classifed. Te results show that the
model is not overftting, and the results are shown in
Figure 5(c). We usually use the receiver operating charac-
teristic curve (ROC) to measure the method’s ability to
identify diseases. Te area under the ROC curve (AUC) is
between 0.5 and 1. In the case of AUC> 0.5, the closer the
AUC is to 1, the better the diagnostic efect. AUC has lower
accuracy when it is 0.5–0.7. AUC has a certain accuracy
when it is 0.7–0.9. Te accuracy is higher when the AUC is
above 0.9. In this study, AUC� 0.98, indicating that the
model has excellent accuracy, and the results are shown in
Figure 5(d). Te KNN method is a simple but efective
classifcation method that classifes examples based on the
intuitive premise and similar data points in close proximity
in the feature space [36]. In this study, the fne KNN per-
formed very well in the spectral discrimination of related
diseases, which has important potential for clinical appli-
cation. Cancer patients are usually tested with x-rays. Ad-
ditional evaluation with ultrasonography or magnetic
resonance imaging is usually required for high-risk patients
with suspicious radiographic fndings [37]. Tis requires
medical institutions to provide corresponding equipment
and relevant imaging specialists. Equipment costs and
personnel costs are unafordable in some areas. Alternatives
such as thermography, transillumination, and positron
emission tomography have not been shown to be more
sensitive or specifc than radiography. Terefore, the mid-

Table 2: Te interval with more signifcant diference in diference spectrum.

N-B N-L B-L
Wavenumber range Diference value Wavenumber range Diference value Wavenumber range Diference value

Interval1 1305.57–1401.03 cm−1 0.0077± 0.0016 1398.62–1543.74 cm−1 0.0298± 0.0085 1024.49–1254.95 cm−1 0.0458± 0.0028
Interval2 1408.26–1482.99 cm−1 0.0121± 0.0030 1632.93–1656.53 cm−1 0.0164± 0.0042 1318.59–1401.03 cm−1 0.0396± 0.0033
Interval3 1492.15–1583.27 cm−1 0.0142± 0.0048 1677.28–1702.84 cm−1 0.0203± 0.0058 1414.53–1515.77 cm−1 0.0466± 0.0026
Interval4 1597.25–1721.64 cm−1 0.0199± 0.0064 1172.99–1319.55 cm−1 0.0368± 0.0031 1672.95–1752.01 cm−1 0.0474± 0.0087
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infrared spectroscopy with simple operation, rapid de-
tection, no damage to the sample, and no reagent addition is
a promising alternative. Mid-infrared spectrometers, on the
other hand, can produce unique spectral “fngerprints” by
detecting the absorption of infrared light by organic com-
pounds at energies (wavenumbers) that correspond to the
properties of the bonds between their atoms. In fact, water in
serum accounts for about 90%, and the solvation of water

and the change of cluster structure have a great infuence on
the structure of solute, and the two infuences each other.
Terefore, the essence of this spectral “fngerprint” is the
infrared spectrum of solvent water that contains a large
amount of information about the solute in the solution,
which is also the theoretical basis of aquaphotomics [38–40].
So we think that by measuring serum spectra, it is theo-
retically possible to identify biochemical diferences in
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Figure 4:Te training results of each model: (a) decision trees models, discriminant analysis models, Naive Bayes models, (b) SMVmodels,
(c) KNN models, and (d) other models.

Table 3: Partial model performance verifcation.

PLS Accuracy (%) P-Errorrate (%) P-Accuracy (%) Macro-P (%) Macro-R (%) Macro-F1 (%)
Kernel näıve Bayes 1 68.10 28.00 72.00 76.31 73.20 73.98
Coarse tree 3 76.40 18 82.00 85.00 87.55 84.52
Subspace discriminant 5 87.00 10.00 90.00 89.27 91.16 90.13
Cubic SMV 7 99.00 2.00 98.00 98.80 97.43 98.06
Quadratic discriminant 9 99.30 2.00 98.00 98.80 97.43 98.06
Fine KNN 3 98.00 2.00 98.00 98.80 97.43 98.06
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patient samples that are associated with disease. On this
basis, combining the spectral “fngerprint” with the fne
KNN model may be able to assist clinical screening of
high-risk breast and lung cancer patients in the general
population at a lower cost and higher sensitivity in the
future.

4. Conclusion

Te burden of cancer in the global society is increasing.
Breast cancer and lung cancer are the top two cancers
worldwide. New cases account for the majority of cancer
patients worldwide. At present, breast cancer and lung
cancer are the two tumors with the largest health burden in
the world. Early diagnosis is an important prognostic factor.
Timely detection, diferentiation, and treatment are of great
signifcance for alleviating the status quo of these two dis-
eases. Infrared spectroscopy is generally considered a simple,

reagent-free, inexpensive, noninvasive, and nondestructive
technique. Terefore, it has been widely used in pharma-
ceutical, food, environmental, and forensic industries. In
fact, infrared technology has begun to show great potential
in clinical application.

Tis study established a simple, noninvasive rapid
screening method for the auxiliary diagnosis of breast cancer
and lung cancer. First, in a pilot experiment, we developed
the model using TQ Analyst 9 (Termo Fisher Scientifc,
Waltham, MA, USA) using the traditional method. Te pre-
experimental results show that the model established di-
rectly with the original spectral data as a variable is not
efective and cannot meet the research needs. To do this, we
convert the spectrum into a matrix of numbers. We train the
spectral data based on diferent algorithms and output the
corresponding prediction models. At the same time, com-
bined with the characteristics of the data itself, k-fold cross
validation and random algorithm are used to divide the
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training set and test set to solve the problems of chance and
overftting. From the diference spectrum results, there are
signifcant diferences in the mid-infrared spectra between
diferent types of sera. Tese diferences may mainly refect
protein abundance expression. Tis has an important
prompting efect for the subsequent exploration of cancer
classifcation. We compare decision trees, discriminant
analysis, SVM, kNN and other 24 models, and fne KNN,
which is superior to other models in terms of training model
accuracy, calculation cost, and prediction accuracy, trains
the data, and outputs the predictionmodel. In summary, this
study established a rapid screening method for the auxiliary
diagnosis of breast cancer and lung cancer based on serum
mid-infrared spectroscopy. Under the same conditions, the
fne KNN model is superior to the classifcation algorithm
model. In addition, compared with traditional cancer de-
tectionmethods, this nondestructive rapid detectionmethod
has obvious advantages, or it can realize rapid screening of
serum breast cancer and lung cancer. Tis may provide new
ideas for the development of new detection methods in the
medical feld. It also allows us to see the important potential
of identifying many diferent cancers simultaneously from
a single serum. Tis is also the direction of our later eforts,
but it requires more clinically diagnosed samples of diferent
categories to train the model.
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