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Currently, hand motion recognition of single-modality data has been extensively explored for the analysis of various contact and
noncontact sensors, and it is recognized that all the existing technologies have both strengths and limitations. As a signifcant
motor symptom, hand tremor is usually utilized for the diagnosis and evaluation of Parkinson’s disease; furthermore, a mul-
timodal analysis of the handwriting pattern of the patient has made up for the one-sided way of learning the hand movement in
a single measurement dimension. Especially, considering a variety of measurement resources, it shows promising performance in
recognizing handwriting patterns of Parkinson’s disease. In this work, a novel Spatio-temporal Siamese neural network (ST-
SiamNN) is proposed to learn the handwriting diferences between healthy individuals and patients with Parkinson’s disease,
process data onto multiple sensors, and enhance the characteristics of handwriting in Parkinson’s disease. Uniquely, it is
a discriminative model of multilabel and multinetwork constructed by a Siamese network, which consists of four modules:
a preprocessor for handwritten data enhancement, a Siamese bidirectional memory neural network (SiamBiMNN) for temporal
and texture feature extraction and diference enhancement, a Siamese octave convolutional neural network (SiamOctCNN) for
spatial feature extraction and diference enhancement, and a decision-making layer to rejudge the output features of the Siamese
networks to obtain more accurate auxiliary diagnosis results. Te framework proposed in this article is verifed on two
handwritten datasets of multiple modalities, i.e., images, smart pen signals, and graphics tablet signals, which are compared with
several state-of-the-art studies.

1. Introduction

1.1. Background. Parkinson’s disease (PD), also known as
tremor paralysis, is a common neurodegenerative disease in
the middle-aged and elderly. Tremor, myotonia, and de-
creased movement are the main clinical features of the
disease. Because the fexion and extension of the upper limb
are regulated by the central nervous system, the hand
movements of patients with Parkinson’s disease will be
abnormal due to the degeneration of motor neurons.
Terefore, the analysis of handwriting parameters is very
valuable for better understanding the mechanism of hand
dyskinesia and the development of Parkinson’s disease.
Patients with Parkinson’s disease of diferent severity have
their own unique writing modes. With the development of
the disease, the writing data became more irregular [1, 2].

Te hand tremor of PD patients is characterized by a static
and obvious tremor, which is aggravated when nervous or
excited, and the tremor is reduced or stopped during ran-
dom exercise. Additionally, PD patients have small fnger
movements, usually showing the thumb and index fnger as
a “pill rubbing action,” which is a potential factor leading to
abnormal handwriting. Terefore, as one of the most ef-
fective detection methods of early Parkinson’s disease,
handwriting has been widely used in clinical diagnosis.
Moreover, the hand movement away from PD patients with
diferent severities has distinguished features, which can be
evaluated by the unifed Parkinson’s disease score scale
(UPDRS) and the Hoehn and Yahr score scale (H & Y) [3].
Tis article proposes an automatic learning framework that
detects the potential for Parkinson’s disease based on
handwriting characteristics.
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1.2. Prior Technologies and Limitations. Previously, there
were a number of machine learning methods and tech-
nologies applied in the feld of data classifcation [4–6]. With
regard to the challenging PD diagnosis problem, these
methods provide superior specifcations. Examples of such
classifers are support vector machines (SVMs) [7], random
forest [8], decision trees [9], naive Bayes [10], artifcial neural
networks (ANNs) [11–13], the sequential minimal optimi-
zation (SMO) method [14], and convolutional neural net-
works (CNNs) [15–19]. However, these methods ignore the
temporal and spatial changes of handwriting, especially the
signals. For example, the hand activity signals collected by
a pressure pen that change with time are time series. Te
emerging models such as long short-term memory (LSTM)
and gated recurrent unit (GRU) can successfully capture
these microchanges and better describe and interpret the
handwriting data of a single modality [20–23].

Several studies focus on the automated hand motion
analysis using the handwriting data collected by multisensor;
various dynamic attributes of handwriting, such as pen
pressure, stroke speed, and in-air time, have been analyzed
and evaluated for PD detection [15, 20, 24]. Previous studies
have reported that using one of these data resources results
in promising detection and diagnosis of PD by handwriting
recognition. For instance, using handwriting data in a time
series, the authors in [20] investigated the distinction be-
tween healthy controls and PD patients via one-dimensional
convolutions and BiGRUs. However, handwriting recog-
nition requires rich, fne-grained features because the dif-
ferences between multiple handwriting patterns are usually
much more subtle than those between common action
categories. In order to capture subtle features without losing
other key biomarkers, we chose multimodal handwritten
data to describe multimodal hand motion features.

1.3. Research Motivation. A novel Spatio-temporal Siamese
neural network (ST-SiamNN) is designed here to discover
relevant and decisive attributes of signals or images of
handwriting, which can integrate spatial and temporal de-
scriptors, enhance the unique feature of the original data,
and amplify the diference between healthy people and PD
patients. Te motivation for designing this structure is to
match the input data in pairs and to increase the diference
between the dissimilar data by comparing the distance
between the output vectors of the Siamese network. In order
to ensure the accuracy of classifcation, we add a similarity
label to mark whether the paired data are similar or not,
which is another attribute of the input data.

Te ST-SiamNN is a discriminative model constructed
by two Siamese networks, which consists of four modules:
a preprocessor for handwritten data enhancement, a Siamese
bidirectional memory neural network (SiamBiMNN) for
temporal feature extraction and diference enhancement,
a Siamese octave convolutional neural network (Sia-
mOctCNN) for spatial feature extraction and diference
enhancement, and a tree-type decision-making layer for
feature classifcation.Te curvature and signal-to-noise ratio
(SNR) of the data are calculated to distinguish the

handwriting of participants.Weight is added to the data with
a large curvature and a small signal-to-noise ratio to improve
the signifcance of the feature so that it can be trained by the
Siamese network. Te proposed recurrent cell in the
SiamBiMNN can be able to capture the texture information
of handwritings, which is a supplement to the original gated
recurrent unit.

Te three groups of data used in this article are shown in
Figure 1, i.e., images, smart pen signals, and graphics tablet
signals. It can be distinctly seen that the handwriting image
of PD patients is disordered and unsmoothed, and the
fuctuation range of handwritten signals in PD patients is
also quite diferent from that of healthy people, e.g., the
amplitude of fnger grip strength in PD patients is signif-
cantly greater than that in healthy people. In order to achieve
more precise recognition results, the handwriting data with
diverse types need to be jointly exploited rather than in-
dividually handled. Te motivation behind the proposed
multimodal data analysis framework is that it plays a crucial
role in processing multimodal data and generating joint
predictions for handwriting recognition.

Supplementarily, there is a major challenge in the
process of recognizing the handwriting of patients with PD.
When the hand movement of patients with mild Parkinson’s
disease is only slight, which is very close to the handwriting
of healthy subjects, the model will be misdiagnosed and
afect the overall recognition rate. Terefore, it is very sig-
nifcant to enhance the diference between healthy subjects
and PD patients and preprocess the data before training.

1.4. Main Contributions. Te main contributions of our
work are summarized as follows:

(i) Two Siamese neural networks, i.e., a Siamese bi-
directional memory neural network (SiamBiMNN)
and a Siamese octave convolutional neural network
(SiamOctCNN), are proposed for Spatio-temporal
and texture feature extraction, which can use the
similarity label and the classifcation label to de-
scribe the input handwritings of healthy individuals
and PD patients and enhance the feature saliency via
two loss functions.

(ii) We design a data preprocessor for image binar-
ization and weight calculation, including binariza-
tion, curvature, and SNR calculation of the original
handwritten data. Binarization is to remove other
interference factors from the handwritings, and the
weight calculation of curvature and SNR is to en-
hance the feature saliency of handwritings.

(iii) We set up a tree-type classifcation classifer in the
decision-making layer to evaluate the output fea-
tures of the Siamese network and output accurate
diagnosis results. Te proposed hybrid model can
enhance the signifcance of features as well as extract
critical Spatio-temporal and texture information
from handwritings for PD detection.

Te rest of this article is organized as follows: Section 2
reviews the related work in recent years. Section 3 introduces
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the internal structure and parameters of the proposed ST-
SiamNN model. Section 4 provides the evaluation results of
the system.Te conclusion discusses the fnal results and the
future work in Section 5.

2. Related Work

In this section, handwriting recognition methods in recent
fve years have been explored, including some of the latest
classifcation methods, deep neural networks, and fusion
algorithms.

To the best of our knowledge, biomarkers of Parkinson’s
disease can be analyzed through various forms of human-
machine interaction, including precise grip strength, fnger
tapping test (FTT), and handwriting. Several traditional
machine learning approaches [25–27] can be used to dis-
tinguish the individual writing patterns between diferent
handwritings. For instance, support vector machines
(SVMs), k-nearest neighbor (KNN), and neural networks
have been evaluated to be efective on handwritten data from
paper documents, photographs, touch screens, and other
devices [25]. Apart from the independent method, the fusion
of random forest (RF) and histogram of oriented gradient
(HOG) was proposed to extract the impactful information of
the image and reduce the input dimension [26]. Similarly,
the CNN and SVM were also combined and utilized in the
process of handwritten numeral recognition [27].

However, these studies only analyze the global handwriting
diferences at a macro level and ignore the local subtle changes
in the assessment of hand movement disorders, such as the
frequency of hand tremors, the force changes during hand

movement, and theminor deviations in handwriting testing. In
this article, the output of diferent forms of the handwriting of
PD patients will be comprehensively considered to identify and
evaluate the disease status. Due to the fne-grained feature
learning and dual label contrast training of the fusion method,
these subtle diferences can be easily captured and quantifed,
which can be used as a reliable basis for the fnal distinction
between PD patients and healthy controls.

On the other hand, with the rapid development of deep
learning-oriented handwriting recognition algorithms, it has
become the mainstream trend in the academia and industry
[28, 29]. Te handwriting test has multiple types and out-
puts, e.g., images and pressure signals. Te convolutional
neural network (CNN) model is often used to extract spatial
information from images [30, 31]. Gazda et al. presented an
end-to-end CNN-based method for PD diagnosis on
handwriting images [30]. Te ALexNet with the CNN ar-
chitecture was utilized to refne the diagnosis of PD [31]. A
new, improved CNN was proposed for handwritten char-
acter recognition, including a batch normalization layer and
a residual network structure [28]. Te handwriting signals
collected by the pressure pen have continuity and contain
temporal and spatial features. Using time series data, the
long short-term memory (LSTM) can obtain the micro-
motion information of PD patients’ hands by using con-
tinuous and variable time-series data so as to improve the
detection sensitivity and objectively analyze the complexity
and diversity of motion behavior. Voigtlaender et al. pro-
posed a multidimensional recurrent neural network
(MDRNN) to process videos (3D) and images (2D) for
handwriting recognition tasks [32].

Data 1: Images

Data 2: Smart pen signals Data 3: Graphics tablet signals
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Figure 1: Te multimodal handwriting data applied in this project: we evaluate the proposed network over three data types, i.e., images,
smart pen signals, and graphics tablet signals, and we fuse the three modalities of the handwriting data for PD detection.
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Moreover, several hybrid models also consider the ad-
vantages of the CNN and LSTM, which contribute to
handwriting recognition. Te CNN and the bidirectional
LSTM (BiLSTM) were cooperatively utilized to process
handwriting data for PD detection [15]. Te combination of
one-dimensional convolutions and the bidirectional gated
recurrent units (BiGRUs) was proposed to learn the po-
tential information and pattern of handwriting in identifying
Parkinsonian symptoms [20]. Learning invariant feature
representations of handwritings, a CNN- and RNN-based
method to incorporate pixel-level rectifcation was presented
for handwriting recognition [29]. Even though these
methods have made up for the shortcomings of traditional
machine learning by integrating diferent deep models based
on big data, they still lack the ability to track and analyze the
texture of handwritten data and detect slight abnormalities
in handwritten data of patients with mild Parkinson’s dis-
ease. We compared two misclassifed samples: one from
healthy people and one from patients with mild Parkinson’s
disease. Te results are shown in Figure 2. We can see that
the handwriting of PD patients is similar to that of healthy
subjects, and the degree of curvature of the handwriting
curve is also similar. Te handwriting of PD patients par-
tially deviates from the standard test line. Tis situation of
similar samples increases the difculty of identifcation.

Inspired by the advantages of existing advanced
methods, this article reports a Spatio-temporal Siamese
neural network to learn the pattern of diferent handwrit-
ings. Te experimental results show that the proposed
method is superior to the existing state-of-the-art machine
learning approaches.

3. Spatio-Temporal Siamese Neural Network

For achieving successful handwriting recognition of PD
patients and healthy controls in the real environment, we
here propose a hybrid multilevel network, a Spatio-temporal
Siamese neural network (ST-SiamNN), for image en-
hancement, feature extraction, and classifcation. Firstly, we
introduce the preprocessor for image enhancement. And
then, we describe the architecture of the SiamBiMNN and
the SiamOctCNN for interclass similarity minimization and
Spatio-temporal feature extraction, followed by detailed
discussion on the individual components. Finally, we in-
troduce the tree-typedecision-making layer for dis-
tinguishing and scoring the fused Spatio-temporal features
before supplying the fnal diagnostic result.

3.1. Te Overall Structure. Our proposed hybrid model is
shown in Figure 3. In this framework, the handwriting data
are fed into the preprocessor frst, which consists of
binarization, signal-to-noise ratio (SNR) calculation, and
curvature calculation to handle the input for enhanced data
generation. Afterward, the binarized image or the signal is
multiplied by the reciprocal of the SNR to highlight the
noise. Te calculated curvature map is added to form fusion
data and input to the feature extractor for training. For the
feature extraction module, a Siamese bidirectional memory

neural network (SiamBiMNN) is utilized for analyzing the
temporal dynamic changes and adding the texture in-
formation of the handwritten data, while a three-layer Si-
amese octave convolutional neural network (SiamOctCNN)
is designed to consider the spatial features in the high- and
low-frequency ranges of the input data. Te twin network
uses two loss functions and two types of labels (a similarity
label and a classifcation label) to distinguish the hand-
writing of normal people and PD patients. After obtaining
the features from the SiamBiMNN and SiamOctCNN, we
create a tree-type decision-making layer to describe multiple
classifcation outcomes. As illustrated in Figure 3, the
Siamese-based network is a discriminant framework with
detection outputs to train the handwriting recognition
network.

First, we formulate the problem for handwriting rec-
ognition. Te image sequences are defned as
X � xi ∈ RW∗H, i � 1, 2, 3, . . . , N􏼈 􏼉 with corresponding 2-
class label sequences. L and N are the sample numbers of
the input data, and W and H are the width and height of
each frame of the image. For the signal data, it will be divided
into several training samples; each sample contains the
signal value in a period of time, where W is the characteristic
number of each frame signal, H is the length of time series,
and W∗H is the dimension of a training sample.

3.2. Data Enhancement. As shown in Figure 4. All the
handwritten images are binarized frst, the noise is removed,
and the image feature is enhanced. Te curvature is
a measure of how much a point on a curve bends. Te more
curved curve has the larger curvature. For two-dimensional
discrete digital images, the mean curvature (Figure 5) is
calculated using the following formula:

I
′

�
1 + I

2
x􏼐 􏼑Iyy − 2IxIyIxy + 1 + I

2
y􏼐 􏼑Ixx

2 1 + I
2
x + I

2
y􏼐 􏼑

(3/2)
, (1)

where I is the input image, x and y are the coordinates of the
image, and Ix and Iy are the component sets of the input
image in two dimensions. Generally, the average curvature is
calculated by discretizing the formula. Another method is to
avoid discretization by quadric surface ftting:

I
′
(x, y) ≈ f(x, y) � C5x

2
+ C4y

2
+ C3xy + C2x + C1y + C0.

(2)

Ten, the coefcient Ci is determined by the least square
method. After that, we substitute Ci into the above formula
to get the fnal processed image I′, as shown in the following
equation:

I
′ ≈

1 + C
2
2􏼐 􏼑C4 − C2C1C3 + 1 + C

2
1􏼐 􏼑C5

1 + C
2
1 + C

2
2􏼐 􏼑

(3/2)
. (3)

For data enhancement, we also calculate the signal-to-
noise ratio (SNR) of the image to highlight the more dis-
ordered signal in PD patients. Te SNR refers to the ratio of
the original test-question image and the answer result image
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(handwriting image). Te smaller SNR means the greater
noise, illustrating that the testing signal has a greater
probability of coming from PD patients. Te calculation
process of the SNR is as follows:

SNR � 10∗ log10
􏽐

W
x�1􏽐

W
y�1(f(x, y))

2

􏽐
W
x�1􏽐

W
y�1(g(x, y))

2
⎡⎢⎢⎣ ⎤⎥⎥⎦, (4)

where H and W are the number of pixels on the height and
width of the image, respectively, and f(x, y) and g(x, y) are
the pixel values of the original image and the noise image at

the points (x, y), respectively. Afterward, we multiply the
binary image by the SNR and add the curvature image to get
the fnal fusion image as the input of the Siamese network.

3.3. SiamBiMNN. Te Siamese neural network is a coupled
framework, which consists of two neural networks with the
same structure and weights. It takes two samples as input
and outputs a representation embedded in high-dimensional
space to compare the similarity of the two samples. Each
neural network usually has a deep structure, which can be
composed of convolutional neural networks, recurrent

(a) (b)

Figure 2: Comparison of handwriting of PD patients and healthy subjects. (a) PD sample (mild). (b) Non-PD sample.
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neural networks, and so on. Terefore, we design two dif-
ferent Siamese networks and add similarity labels on the
basis of retaining the original labels to compare the similarity
of data features to complete the task of handwriting
recognition.

We start from the SiamBiMNN for framework details
description.

To model nonlinear dynamic processes, long-short term
memory (LSTM) is widely used to describe the temporal
dynamic behavior of time series with scalable memory cells
and three nonlinear gates (input, forget, and output) [33].
Although LSTM networks are efcient at learning long-term
temporal dependencies, they cannot be sensitive to subtle
texture diferences when processing data in a single sample
spatial domain. For 50 ∗ 50 size of the handwritten images,
we chose the simplest GRU-like gating mechanism, which is
suitable for handling short sequences.

Te overall framework of the SiamBiMNN is illustrated
in Figure 6. Two groups of data (one group is only healthy
controls, and the other group includes all the data) are input
into two networks. Te frst network is the reference net-
work, and only the contrastive loss is used to train the
similarity of CO vs. CO and CO vs. PD.Te second network
is the experimental network. In addition to training the
similarity of CO vs. CO and CO vs. PD with contrastive loss,
the cross-entropy loss is also used to complete the task of

feature extraction. Finally, we choose the output features of
the experimental network as the output of the decision-
making layer.

Te two groups of the data reach the two networks with
T expanded nodes in the SiamBiMNN. As the forwardMNN
and the backward MNN are combined to form the BiMNN,
the BiMNN is composed of the forward MNN and the
backward MNN, which can consider the feature inputs of
t + 1 and t − 1 at the same time. Because the output of the
forward and backward MNNs contains the context in-
formation, we take the fnal output O2T as a part of the fusion
feature. Te outstanding point is that the MNN expanded
unit can extract temporal features, as well as analyze texture
information, which makes the expanded unit have more
abundant and enhanced output.

3.3.1. Te SiamBiMNN Cell. Before introducing the novel
memory cell, we will briefy review the internal structure of
the GRU [34]. Tomodel nonlinear dynamic processes, GRUs
are widely used to describe the dynamic behavior of time
series. Te scalable memory cell of the GRU consists of two
nonlinear gates, i.e., the update gate and the output gate. It
can efectively learn long-term dependence because memory
cells in GRU can maintain their state for a long time and
regulate the incoming and outgoing information fow.

Figure 4: Te handwriting data after binarization.

Figure 5: Te handwriting data after curvature calculation.
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Unlike the original GRU cell, we build a path (ctemp) before
the output Ot so as to extract more discriminative features.
We witness that the new path in the multigated memory cell
can capture the state of the previous node and the input of
the current node at the same time. ctemp restricts these two
states to [−1, 1], which highlights the diference in feature
changes.

Figure 7 illustrates the internal structure of the proposed
memory unit and the operations of all the gates. Te outputs
and inputs in each unit are demonstrated in the following
equation:

Equation Group

zt � σ Wz · Ot−1, xt􏼂 􏼃( 􏼁,

rt � σ Wr · Ot−1, xt􏼂 􏼃( 􏼁,

􏽥ht � tanh W · rt ⊙Ot−1, xt􏼂 􏼃( 􏼁,

ctemp � tanh Wctemp · Ot−1, xt􏼂 􏼃􏼐 􏼑,

ct � 1 − zt( 􏼁⊗ 􏽥ht + zt ⊗Ot−1,

Ot � ct ⊗ σ(ctemp),

Ot
′ � g W Ot

�→
, ⃖ Ot􏼔 􏼕 + b􏼒 􏼓,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where Wz, Wr, W, and Wctemp, are the weight parameters
that need to be learned in the training process. xt and Ot are
the current input and output of the hidden unit at time
t ∈ 1, 2, 3 . . . , T{ }. σ and tanh are the activation functions. zt

and rt indicate the output of the update gate and the reset
gate at time t, which determine whether or not the previous
hidden state should be ignored and updated. ctemp rep-
resents the temporary state in order to determine xt and

Ot−1, while ct denotes the fnal state of the SiamBiMNN. We
then extract features from ct. Ot

′ is the fnal output of the
SiamBiMNN, including the output (Ot

�→
, Ot

⃖
) of two uni-

directional models.
After obtaining the temporal features, we combine them

with the output of the preprocessor to get the fusion vectors
of three features and then classify them by the softmax
classifer to obtain the detection results.

3.4. SiamOctCNN. Te structure of the SiamOctCNN is
illustrated in Figure 8, which includes one octave convo-
lution layer and two ordinary convolution layers.
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3.4.1. Octave Convolutional Layer. Unlike the convolution
operation, octave convolution (Octconv) [35] is used to store
and process feature maps with low spatial resolution and
slow spatial change so as to reduce the cost of memory and
computation. Diferent from the existing multiscale
methods, Octconv is a single, general-purpose, plug-and--
play convolution unit that can directly replace ordinary
convolution without any adjustment to the network struc-
ture. It also proposes orthogonal and complementary
methods for better topology or reducing redundant image
groups or deep convolution channels. For processing
multisensor data, the convolution feature map is decom-
posed into two sets of diferent spatial frequencies: fne detail
coding is usually used at a higher frequency, and global
structure coding is usually used at a lower frequency.

Equation (6) shows the calculation process of the Oct-
conv unit. Te input of Octconv consists of high-frequency
feature XH and low-frequency feature XL, with the two
outputs Y � YH, YL􏼈 􏼉. Te high-frequency output YH is the
sum of the feature YH⟶H obtained by convolution of the
high-frequency input feature itself and a mutual feature
YL⟶H of the low frequency. Te high- and low- frequency
output features are derived as follows:

Y
H

� f X
H

; W
H⟶H

􏼐 􏼑 + upsample f X
L
; W

L⟶H
􏼐 􏼑, 2􏼐 􏼑,

Y
L

� f X
L
; W

L⟶L
􏼐 􏼑 + f pool X

H
, 2􏼐 􏼑; W

H⟶L
􏼐 􏼑,

⎧⎪⎨

⎪⎩

(6)

where f(XH, W) is a convolution operation with parame-
ters W, pool(XH, k) is an average pooling operation with
kernel size k × k and stride k, and upsample(XH, k) is an up-
sampling operation by a factor of k via nearest interpolation.

Although octave convolution has two inputs, we cannot
manually distinguish the frequency of the input data, so the
frst input data is all high-frequency information by default,

the middle convolution layer outputs the feature map, which
contains low- and high-frequency information, and the last
layer convolution restores the normal feature map. Te
output of the Octconv is demonstrated in Figure 9, and we
use the Fast Fourier Transform to represent the spectral low-
and high-frequency features. High-frequency features rep-
resent places where gray-scale changes quickly, and low-
frequency features represent places where gray-scale changes
slowly.

3.5. Loss Function. In the Siamese network, the loss func-
tions of cooperative training are used to reduce two losses:
similarity loss (contrastive loss) and classifcation loss
(cross-entropy loss), which will be described in detail below.

3.5.1. Contrastive Loss. In the Siamese network, the loss
function used is a contrastive loss, which can efectively
handle the relationship between paired data in the Siamese
neural network. In our designed model, images are sent to
the Siamese network in pairs, with similar pairs marked as
negative pairs and dissimilar pairs marked as positive pairs.
By minimizing the contrast loss between the reference
network and the experimental network, the diference be-
tween dissimilar pairs is widened, thereby achieving the
efect of expanding the distance between classes.

Te loss function is mainly used for dimensionality
reduction, that is, after dimensionality reduction (feature
extraction), the two samples are still similar in the feature
space; however, the original samples after dimensionality
reduction are still diferent in the feature space. Likewise, the
loss function can be a good representation of how well a pair
of samples match.

Tis loss function can efectively handle the relationship
between paired data in a dual neural network. Te com-
parative loss is expressed as follows:
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SiamOctCNN
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Figure 8:Te structure of the SiamOctCNN.Te input layer of the SiamOctCNN is divided into two entrances, corresponding to two octave
convolutional neural networks in the feature extraction layer. Each convolution network in the SiamOctCNN consists of three layers: one
octave convolution layer and two ordinary convolution layers. Te output features include high- and low-frequency spatial features of
handwriting data.
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where DW � ‖X1 − X2‖2 � (􏽐
N
i (Xi

1 − Xi
2)

2)(1/2). It repre-
sents the Euclidean distance of two sample features X1, X1
and X2, X2; Y is the label of whether the two samples match;
Y � 1 represents that the two samples are similar or match;
Y � 0 represents that they do not match; and m is the set
threshold.

By observing the expression of comparative loss, we can
fnd that this loss function can well express the matching
degree of paired samples and can also be used to train
a feature extraction model.

When Y � 1 (i.e., the samples are similar), the loss
function is only LS � 1/2N􏽐

N
n�1YD2

W. If the Euclidean dis-
tance of the original similar samples in the feature space is
large, the current model is not good, so the loss is increased.

When Y � 0 (i.e., the samples are not similar), the loss
function is LD � (1 − Y)max(m − DW, 0)2; that is, when the
samples are not similar, the Euclidean distance of the feature
space is smaller and the loss value will become larger.

Setting a threshold margin means that we only consider
the dissimilar features whose Euclidean distance is between
0 and margin. When the distance exceeds margin, the loss is
regarded as 0; however, for similar features that are close to
each other, we need to increase their loss so as to constantly
update the matching degree of paired samples.

3.5.2. Cross-Entropy Loss. Cross-entropy describes the dis-
tance between two probability distributions. Te closer the
cross-entropy is, the closer they are. While cross-entropy
describes the distance between two probability distributions,
the output of a neural network is not necessarily

a probability distribution. Terefore, softmax regression
converts the result of forwarding propagation of the neural
network into a probability distribution. Softmax is often
used in multiclassifcation processes. It normalizes the
outputs of multiple neurons to the (0, 1) interval, enabling
multiclassifcation. Te calculation process of cross-entropy
loss is as follows:

L2 � −
1
N

􏽘

N

i�1
y

(i) log 􏽢y
(i)

+ 1 − y
(i)

􏼐 􏼑log 1 − 􏽢y
(i)

􏼐 􏼑􏽨 􏽩, (8)

where L2 represents the classifcation loss of the handwriting
data. During optimization, we use the Adam optimizer to
process the frst and second moments of the gradient to
quickly reduce the loss. y(i) denotes the ith true label of
a training batch in the temporal data, while 􏽢y(i) represents
the ith predicted label.

3.6. Decision-Making Layer. Te gradient boosting decision
tree (GBDT) generates weak classifers through multiple
iterations and trains each classifer based on the residuals of
the previous classifer. Te training process of the GBDT is
shown in Figure 10.Te requirements for weak classifers are
usually simple enough, low variance, and high bias because
the training process is intended to continuously improve the
accuracy of the fnal classifer by reducing the bias.

Generally, the cart tree is chosen as the weak classifer.
Due to the high bias and requirements mentioned above, the
depth of each classifcation regression tree will not be very
deep. Te fnal overall classifer is a weighted sum of weak
classifers from each round of training. Te model can be
described as follows:

Fm(x) � 􏽘
M

m�1
T x; θm( 􏼁. (9)
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Figure 9: Te (a) high- and (b) low-frequency features of the handwriting data.
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Te model trains m rounds in total, and each round
produces a weak classifer T(x; θm). Te loss function of
weak classifer is as follows:

􏽢θ � argmin
θm

� 􏽘
N

i�1
L yi, Fm−1 xi( 􏼁 + T xi; θm( 􏼁( 􏼁.

(10)

4. Experiments

Tis section presents our experimental settings and the
performance of the proposed ST-SiamNN, compared
against several state-of-the-art methods on two challenging
handwriting datasets.

Te state-of-the-art technologies compared in this article
are as follows:

(i) LSTM (long short-term memory) is a scalable
model suitable for temporal data

(ii) BiLSTM (bidirectional long short-termmemory) is
a combination of forward and backward LSTMs

(iii) GRU (gate recurrent unit) is a lightweight variant
of LSTM with fewer variables

(iv) CNN (convolutional neural network) is a feed-
forward neural network with a deep structure and
convolutional computation

(v) CRNN (convolutional recurrent neural network)
[36] combines CNN and RNN networks, jointly
trained to achieve end-to-end handwriting de-
tection and recognition

(vi) TS-LSTM (temporal sliding LSTM) [37] contains
short-term, medium-term, and long-term
TS-LSTM networks

(vii) HiGRU (Hierarchical Gated Recurrent Unit) [38]
has a lower-level GRU to model word-level input
and a higher-level GRU to capture the context of
utterance-level embeddings

(viii) EfcientNet [39] proposes a network scaling
method that creatively uses composite coefcients

to change network dimensions in network re-
construction, including network width, network
depth, and image resolution

(ix) Vision Transformer (ViT) [40] and MobileViT
[41] are lightweight universal visual transformers

(x) ConvNeXt [42] builds a pure convolutional net-
work that outperforms the advanced transformer-
based models

(xi) MobileNetV2 [43] has a deep separable convolu-
tion and adds linear bottleneck and inverted
residual

4.1. Dataset Specifcations. In this section, we give a brief
description of the NewHandPD dataset [44] and the
PARKINSON_HW dataset [45, 46] used in our experiment,
which is shown in Figure 1.

4.1.1. NewHandPD Dataset. Te NewHandPD dataset in-
cludes images acquired from two groups of individuals (i.e.,
the healthy group and the PD patient group) during
handwritten exams, which aim at describing the individual
skill when flling a form.Te handwriting data were collected
at Botucatu Medical School, São Paulo State University,
from Brazil, and were intended to ask a person to perform
some specifc tasks that were supposed to be nontrivial to PD
patients, i.e., drawing “spirals,” “meanders,” and “circles”
(Figure 1).

Tis dataset was composed of 66 individuals (35 healthy
controls and 31 PD patients). Each individual was asked to
complete 12 exams, including 4 spirals, 4 meanders, and 2
circled movements (one circle in the air and another on the
paper), and left and right-handed diadochokinesis. Totally,
there were 9 images for each individual after the exam.

In addition to images, the dataset also included part of
the signal data. Te subjects also performed the so-called
diadochokinese test, which was basically a test where the
subjects held the pen with straight arms and performed
hand-wrist movements. Since there were no drawings in-
volved, only the signal generated though these movements
was recorded by the pen.Te signals were extracted from the

Total
Examples

Base Classifier Learning Weight

Base Classifier Learning Weight

Base Classifier Learning Weight

Ensemble
Model

Figure 10: Te training process of the GBDT.
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BiSP® smart pen (Figure 11), concerning four sensors and
six features, microphone, fngergrip, axial pressure of ink
refll, tilt and acceleration in “X direction,” tilt and accel-
eration in “Y direction,” and tilt and acceleration in “Z
direction.”

4.1.2. PARKINSON_HW Dataset. Te PARKINSON_HW
dataset consists of 62 PD patients and 15 healthy controls
who attended the Department of Neurology in Cerrahpasa
Faculty of Medicine at Istanbul University.

For all participants, three handwriting tests, i.e., the static
spiral test, the dynamic spiral test, and the stability test on
certain point, were implemented by using a Wacom Cintiq
12WX graphics table (Figure 12) (a graphics tablet in-
tegrated with an LCDmonitor that displayed the PC’s screen
on the monitor and can only interact with a digitizing pen).
Tis is a specially designed software for recording hand-
writing patterns and testing coordination of PD patients.

Te static spiral test (SST) was frequently used for
clinical research. In this test, three Archimedes spirals were
displayed on a drawing board using the software, and pa-
tients were asked to use a digital pen to trace as many of the
same spirals as possible. During testing, the aforementioned
characteristics and other data used to designate patients were
recorded in the dataset.

Unlike the SST, in the dynamic spiral test (DST), the
Archimedes spiral simply appeared and disappeared
(blinked) at certain intervals, forcing the patient to mem-
orize the pattern and keep drawing. Te purpose of this test
was to determine changes in the patient’s drawing perfor-
mance and pause time, as it was difcult to track the
Archimedes spiral in this condition. As a result of this test, it
was observed that most of the Parkinson’s patients con-
tinued to draw, but nearly all lost their patterns.

Te purpose of the stability test on certain point (STCP)
was to determine the stability of the patient’s hand or the
degree of hand tremor. Tere was a red dot in the middle of
the screen, and the subject was asked to hold the digital pen
on the dot without touching the screen.

4.2. Experimental Settings. Te experiment was imple-
mented on two handwriting datasets, and appropriate set-
tings were arranged according to the features of each dataset.
Te device had a graphics card of GeForce RTX 2080,
a memory of 31.1GiB, and a CPU of Intel Xeon(R) W-2133.
Te settings were described in accordance with the dataset.

For the two sleep datasets, we shufed and randomly
selected 80% of the data for training and 20% for testing,
with a data capacity of 1329 to 146976.80% of the data were
for training in the experimental network and compared with
all the CO data in the reference network.Te remaining 20%
of the data were used to compare with all CO data and were
tested. Te fnal testing time on each dataset was approxi-
mately 105ms (NewHandPD-Image), 452ms (New-
HandPD-Signal), and 129ms (PARKINSON_HW).

Te computational cost (time complexity) of the model
directly determines the forward time of the model and the
training/prediction time of the model. If the complexity is

too high, it can lead to a large amount of time spent on
model training and prediction, and it is neither possible to
quickly validate ideas and improve models nor to achieve
rapid prediction. Time complexity refers to the number of
operations of the model. Te proposed model is divided into
four modules to analyze the computational cost. For the
preprocessor, according to equations (1)–(4), we can cal-
culate the time complexity as O(n3 + n2 + 2 log n + 1). For
the SiamBiMNN, in the light of the two recurrent networks
contained within the model, according to equation (5), the
time complexity is O(2∗ n∗ d2), n is the sequence length,
and d is the representation dimension. For the Sia-
mOctCNN, the time complexity is O(2∗ k∗ n∗ d2), and k is
the kernel size of the convolutions. For the decision-making
layer, the time complexity is O(n log n∗ d∗m), where n is
the number of samples, d is the number of features, and m is
the depth of the tree.

Te NewHandPD (image) dataset contained 1329
samples. We frst converted the image to a binary image and
limited each value to (0, 1) for training.Te input dimension
and time step size in the SiamBiMNN were 50 and 50, which
were the reshaped sizes of the original images, with a hidden
output of 128 and a learning rate of 0.001. In the

Grip pressure
sensor

Tilt & Acceleration

pressure sensor

Refill pressure
sensorWriting

′s

pressure sensor

Figure 11: Te biometric pen. It includes four sensors: the tilt and
acceleration sensor, the refll pressure sensor, the grip pressure
sensor, and the writing’s pressure sensor.

LCD monitor Digitizing Pen

Figure 12: Te digitized graphics tablet.
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SiamOctCNN, the convolution kernels of the three layers
were 5∗ 5 (octave convolution kernel), 5∗ 5, and 3∗ 3. In
the decision-making layer, the maximum number of iter-
ations for a weak learning machine was 100.

Te NewHandPD (signal) contained 146976 samples.
We reshaped the signal matrix to 6∗ 100. In the Siam-
BiMNN, the signal data were processed by the SiamBiMNN
cell with the time step of 10, the input dimension of 60, and
the hidden output of 128. In the SiamOctCNN, the size of
the octave convolution kernel was 5∗ 5 and the regular
convolution kernel was 5∗ 5 and 3∗ 3. Te maximum
number of iterations for a weak learning machine was 50 in
the decision-making layer.

Te PARKINSON_HW dataset contained 3208 samples,
and the signal matrix was reshaped to 4∗ 100. In the
SiamBiMNN, the signal data were processed by the Siam-
BiMNN cell with the time step of 10, the input dimension of
40, and the hidden output of 128. In the SiamOctCNN, the
size of the octave and the regular convolution kernels was the
same as that of the above two datasets. Te maximum
number of iterations for a weak learning machine was 100 in
the decision-making layer.

4.3. Handwriting Recognition. Te experiment is imple-
mented in two parts: single-modal handwriting recognition
and multimodal handwriting recognition. Firstly, the signals
and images in datasets NewHandPD and PARKIN-
SON_HW are processed by individual components in the
proposed algorithm, and four evaluation methods, i.e.,
precision, recall, F1 score, and accuracy, are used to compare
the performance of each module and the whole module.
Ten, we compared the handwriting recognition results of
PD patients and healthy subjects with various deep models
and verifed the high accuracy of the ST-SiamNN.

In the process of multimodal identifcation, we input six
kinds of bimodal data into the SiamBiMNN and the Sia-
mOctCNN and show the experimental results with four
evaluation methods. In addition, these six collocations are
spliced andmixed and input into diferent independent deep
frameworks for training, and accurate recognition results are
obtained.

4.3.1. Singlemodal Handwriting Recognition. We conducted
ablation experiments on single-modal data.Te ST-SiamNN
is split into four components, i.e., the preprocessor, the
SiamBiMNN, the SiamOctCNN, and the decision-making
layer, and we selected seven diferent combinations among
them to evaluate the experimental results on the two
datasets.

Te ablation Study on the NewHandPD dataset: this
dataset includes bimodal handwriting data, i.e., image and
signal. First of all, in experiment 1, we were faced with 1392
handwritten handwriting images. Each image was reshaped
to a size of 50∗ 50 for training in the ST-SiamNNmodel. We
enable diferent components in the ST-SiamNN to evaluate
the performance of each module, and results of combined
components on the NewHandPD dataset (image) are shown
in Table 1. We use the “✓” to represent the components that

are enabled and highlight the greatest performance of the
combination.

Among the four evaluation indexes, i.e., precision, recall,
F1 score, and accuracy, the best result is that all the com-
ponents are activated. Among the seven combinations, the
combination “preprocessor + SiamBiMNN+decision-
making layer” ranks the second, and the recognition rate
is 91.73%, followed by combination “SiamBiMNN+
decision-making layer” and combination
“preprocessor + SiamOctCNN+decision-making layer,”
which shows that the SiamBiMNN has a greater impact on
the whole model, followed by the SiamOctCNN. Compared
with the results of “preprocessor + decision-making layer,”
the accuracy of including the SiamNN has been greatly
improved, which verifes the efectiveness of the model.

In experiment 2, the signal data corresponding to ex-
periment 1 are input into the model for training, and the
efect is slightly lower than the image data. Results of
combined components on the NewHandPD dataset (Signal)
are shown in Table 2.

For the evaluation methods of recall, F1 score, and
accuracy, the whole model ST-SiamNN achieves the opti-
mum results, and the components SiamBiMNN and Sia-
mOctCNN almost attain a preferable classifcation result.
For the precision, the combination
“preprocessor + SiamBiMNN+decision-making layer” rea-
ches the top, indicating that this combination is more
sensitive to the detection of healthy subjects. Compared with
the recall value, the whole model shows the highest results,
which indicates that the ST-SiamNN is the most accurate for
Parkinson’s disease detection.

Te ablation study on the PARKINSON_HW dataset: in
this experiment, we frstly reshape the four-dimensional data
of frames into training samples with 100 frames as a group,
and each training sample is 400 dimensions. Results of
combined components on the PARKINSON_HW dataset
are shown in Table 3.

We can see that the results of the combination “pre-
processor” and combination “preprocessor + decision-
making layer” are still the lowest. After data preprocess-
ing and twin network training, the accuracy is improved by
6%-7%. Te combination “preprocessor + SiamOctCNN+
decision-making layer” achieves the highest recall value
of 85.86%. Te whole model and the combination
“preprocessor + SiamBiMNN+decision-making layer” ob-
tain approximately 83% of the result. Overall, Siamese
networks contribute the most to the proposed model.

Te performance of seven diferent deep models on
single-modal datasets is illustrated in Table 4. By comparing
the experimental results of the datasets of the deep model,
the results of datasets NewHandPD (Image) and New-
HandPD (Signal) are much higher than that of the PAR-
KINSON_HW dataset due to data inconsistency. Te
coordinate data included in the signal data of the PAR-
KINSON_HW dataset does not change signifcantly, or the
handwriting diference between healthy subjects and PD
patients is small, which afects the experimental results.

In the dataset NewHandPD (image), although the per-
formance of the CNN is superior to the three time-series
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models LSTM, BiLSTM and CRNN, the accuracy of
TS-LSTM and HiGRU has been increased due to the con-
sideration of the improvement of an extensible unit of the
time series model and the hierarchical structure. In the
dataset NewHandPD (Signal), there is little diference be-
tween the results of each model. HiGRU has achieved
88.31% accuracy, ranking second, followed by BiLSTM. Each
time series model focuses on diferent characteristics, which
are inferior to the ST-SiamNN. For the dataset PARKIN-
SON_HW, TS-LSTM, HiGRU, and BiLSTM still have
a steady efect. Due to the lack of spatial features of

handwriting, the CNN is less suitable for handwritten data
than the temporal model.

We also use ROC curves and AUC values to compare the
performance of these deep models (Figure 13). For the
NewHandPD (image) dataset (Figure 13(a)), we can see that
the ST-SiamNN ranks at the top and LSTM is at the bottom.
Te AUC value of TS-LSTM and HiGRU is about 4% lower
than the ST-SiamNN.TeCRNN and CNN achieve a similar
AUC due to the role of the convolution layer. For the
NewHandPD (signal) dataset (Figure 13(b)), the perfor-
mance of deep models is divided into three levels: Level 1:

Table 1: Results on the NewHandPD dataset (image).

NewHandPD dataset
Components Evaluation

Preprocessor SiamBiMNN SiamOctCNN Decision-making layer Precision (%) Recall (%) F1 score (%) Acc (%)
✓ 85.19 89.84 87.45 87.59

✓ ✓ 90.14 87.67 88.89 87.97
✓ ✓ ✓ 89.84 92.74 91.27 91.73
✓ ✓ ✓ 86.96 92.31 89.55 89.47

✓ ✓ 90.65 91.30 90.97 90.60
✓ ✓ 86.23 91.54 88.81 88.72

✓ ✓ ✓ ✓ 92. 1 93.4 93.14 92. 6
Te bold values in Table 1 show the highest scores of the compared individual components in the proposed model on the NewHandPD dataset (image).

Table 2: Results on the NewHandPD dataset (signal).

NewHandPD dataset
Components Evaluation

Preprocessor SiamBiMNN SiamOctCNN Decision-making layer Precision (%) Recall (%) F1 score (%) Acc (%)
✓ 86.57 87.07 86.82 83.41

✓ ✓ 88.31 86.03 87.16 84.13
✓ ✓ ✓ 91.19 90.20 90.69 88.48
✓ ✓ ✓ 89.81 88.67 89.24 86.56

✓ ✓ 90.62 89.67 90.14 87.76
✓ ✓ 87.18 90.94 89.02 85.90

✓ ✓ ✓ ✓ 91.17 94.37 92.74 90.76
Te bold values in Table 2 show the highest scores of the compared individual components in the proposed model on the NewHandPD dataset (signal).

Table 3: Results on the PARKINSON_HW dataset.

PARKINSON_HW dataset
Components Evaluation

Preprocessor SiamBiMNN SiamOctCNN Decision-making layer Precision (%) Recall (%) F1 score (%) Acc (%)
✓ 79.37 73.71 76.43 71.18

✓ ✓ 77.84 77.44 77.63 72.90
✓ ✓ ✓ 80.60 83.29 81.92 77.73
✓ ✓ ✓ 77.10  5. 6 81.24 75.55

✓ ✓ 79.70 81.33 80.51 76.01
✓ ✓ 79.90 78.50 79.19 74.30

✓ ✓ ✓ ✓  1.09 83.38  2.22 7 .04
Te bold values in Table 3 show the highest scores of the compared individual components in the proposed model on the PARKINSON_HW dataset.

Table 4: Performance of deep models on the two datasets.

Dataset LSTM (%) BiLSTM (%) CNN (%) CRNN (%) TS-LSTM (%) HiGRU (%) ST-SiamNN (%)
NewHandPD (image) 85.71 86.84 87.16 86.47 88.35 89.10 92. 6
NewHandPD (signal) 86.46 87.74 86.39 87.60 87.48 88.31 90.76
PARKINSON_HW 73.99 74.45 71.18 72.74 74.61 76.32 7 .04
It shows the ST-SiamNN obtains the best performance among those mentioned in deep models.
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LSTM and CNN; Level 2: HiGRU, TS-LSTM, CRNN, and
BiLSTM; Level 3: ST-SiamNN. Level 1 is the basic model,
Level 2 is the upgraded model, and Level 3 is the mixed
upgraded model. We can see that their performance is in-
creasing. In Figure 13(c), it can be seen that the area covered
by the ROC curve is obviously smaller than that of the frst
two datasets and so is the corresponding AUC value. CNN’s
AUC ranks last because the signal data provided by this
dataset has fewer characteristics in space than in time. Te
hybrid models, i.e., TS-LSTM, HiGRU, and the proposed
ST-SiamNN, still outperform other deep models.

Additionally, we compare fve popular methods in recent
years (EfcientNet, MobileViT, ConvNeXt, Vision Trans-
former (ViT), and MobileNetV2) and fnd that the classi-
fcation results on the NewHandPD dataset are the best. As
shown in Table 5, we use four criteria to evaluate the testing

results. Te overall efect of MobileNetV2 is higher than that
of other methods, but compared to ViT based efects, it
shows signifcant disadvantages, indicating that the visual
transformer is not sensitive to handwriting data.

4.3.2. Multimodal Handwriting Recognition. In the multi-
modal handwriting recognition process, we input hand-
writing data of diferent modalities into two Siamese
networks (the SiamBiMNN and the SiamOctCNN) for
training. Tere are six collocations as follows:

(1) SiamOctCNN: NewHandPD (image)
SiamBiMNN: PARKINSON_HW

(2) SiamBiMNN: NewHandPD (image)
SiamOctCNN: PARKINSON_HW
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Figure 13:Te ROC curve of the ST-SiamNN on the datasets.Te AUC value is used to evaluate the classifcation efect and stability of each
class. (a) Te NewHandPD (image) dataset. (b) Te NewHandPD (signal) dataset. (c) Te PARKINSON_HW dataset.
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(3) SiamOctCNN: NewHandPD (signal)
SiamBiMNN: PARKINSON_HW

(4) SiamBiMNN: NewHandPD (signal)

SiamOctCNN: PARKINSON_HW
(5) SiamOctCNN: NewHandPD (signal)

SiamBiMNN: NewHandPD (image)

Table 5: Performance comparison with state-of-the-art approaches on the NewHandPD dataset.

Method Dataset Precision (%) Recall (%) F1 score
(%) Accuracy (%)

EfcientNet NewHandPD 86.93 87.65 84.02 86.53
MobileViT NewHandPD 87.82 89.21 87.49 89.62
ConvNeXt NewHandPD 90.30 91.47 90.35 90.38
Vision transformer NewHandPD 82.18 84.99 81.63 82.97
MobileNetV2 NewHandPD 90.26 91.48 90.14 90. 9
It shows the MobileNetV2 obtains the highest accuracy among state-of-the-art approaches on the NewHandPD dataset.

Table 6: Results of the ST-SiamNN on multimodal data.

Multimodal data Evaluation

SiamBiMNN SiamOctCNN Precision (%) Recall (%) F1 score
(%) Acc (%)

NewHandPD (image) NewHandPD (signal) 94.21 93.44 93.83 94.36
NewHandPD (signal) NewHandPD (image) 92.00 95.04 93.50 93.98
NewHandPD (image) PARKINSON_HW 89.51 93.43 91.43 90.98
PARKINSON_HW NewHandPD (image) 88.10 90.24 89.16 89.85
NewHandPD (signal) PARKINSON_HW 84.83 87.75 86.27 82.24
PARKINSON_HW NewHandPD (signal) 85.44 84.82 85.13 80.84

Table 7: Performance comparison with state-of-the-art approaches on fusion datasets.

Multimodal data LSTM
(%)

BiLSTM
(%)

BiMNN
(%)

CNN
(%)

CRNN
(%)

TS-LSTM
(%)

HiGRU
(%)

ST-SiamNN
(%)

NewHandPD (image) +NewHandPD
(signal) 86.95 88.84 90.01 87.59 88.10 89.38 89.59 94.36

NewHandPD
(image) + PARKINSON_HW 84.59 85.12 86.17 86.69 85.11 84.32 86.19 90.9 

NewHandPD
(signal) + PARKINSON_HW 72.36 73.28 73.80 73.59 71.49 72.11 75.20  2.24

It shows that ST-SiamNN achieves the highest accuracy on fusion datasets.
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Figure 14: Te confusion matrix of the ST-SiamNN on the datasets. (a) NewHandPD (image + signal). (b) NewHandPD (image) +HW.
(c) HW+NewHandPD (signal).
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(6) SiamBiMNN: NewHandPD (signal)
SiamOctCNN: NewHandPD (image)

Te evaluation of the performance of the six bimodal
data combinations is demonstrated in Table 6. Te results in
Tables 6 and 7 show that diferent signals (NewHandPD
(image) +NewHandPD (signal)) from the same data set are
pieced together into a sample through manual screening.
Signals from diferent datasets (PARKIN-
SON_HW+NewHandPD (image)) are directly processed
into a matrix of appropriate size and input into the network.
PD and non-PD detection are to analyze the input data.
Because the data of NewHandPD (signal) and NewHandPD
(image) are corresponding, we carry out data pairing pre-
processing and send them to the SiamBiMNN and the
SiamOctCNN for training. It can be seen that the accuracy of
using fusion data is higher than that of using single data. On
the contrary, due to the infuence of similar data between
classes in the PARKINSON_HWdataset, the performance of
the model decreases slightly, which makes the result higher
than that using a single PARKINSON_HW and lower than
that using a single NewHandPD. Here, we are concerned
that the accuracy rate of the BiMNN is about 1% higher than
that without adding a path, and the convergence speed is
faster, which is sufcient to prove the efciency of its cell.

Te comparison of the recognition accuracy of deep
models is shown in Table 7. Te deep model is evaluated by
training the direct connection data. After fusing the two sets of
data in NewHandPD, the performance of most models is
improved slightly. After adding the data of PARKINSON_HW,
the average accuracy of deep models is reduced, which shows
the limitation of these single models and the disadvantage of
the hard fusion method. Te designed data fusion algorithm
ST-SiamNN processes the input data separately and makes the
training results reach the best.Te extracted features can better
show the diferences in handwriting between PD patients and
healthy subjects, which are superior to other deep models. Te
confusion matrix of classifcation is demonstrated in Figure 14.
It can be clearly seen that the ST-SiamNN is successful in the
detection of PD patients. In the combination “PARKIN-
SON_HW+NewHandPD (signal),” the recognition rate of
healthy subjects is only 72.69%, which indicates that the model
is more sensitive to the handwriting data containing images,
and the processing of multidimensional signal data will be the
next research goal.

Since there is little work on multimodal data fusion in
the feld of handwriting recognition for Parkinson’s
disease, we only compare the classifcation efect of the
single-modal methods on the NewHandPD dataset. As

shown in Table 8, this experiment compares three dif-
ferent tests in the dataset separately. It can be seen that the
performance of our method still exceeds that of other
single-modal studies, including CNN+ LSTM, SVM,
random forest, statistical methods, and multi-BiGRU.
Since there are few methods on the PARKINSON_HW
dataset, we will not discuss them in this article. In
summary, among the three handwriting tests, the accu-
racy of recognizing spirit is the highest, which is very
recognizable and can be the best choice for PD detection.
Te accuracy of circle recognition is the lowest because it
is difcult to distinguish PD from healthy people.

5. Conclusion

In this article, we propose a novel methodology for iden-
tifying multimodal handwritings of PD patients and healthy
people using a Spatio-temporal Siamese neural network (ST-
SiamNN) from images and signals obtained after the ex-
amination of diferent devices. Te ST-SiamNN is based on
a Siamese structure where we have embedded multiple
networks to generate the most discriminant features. In this
difcult problem, it is necessary to take advantage of both
deep learning and traditional classifers to capture the
changes in multimodal PD handwriting data and produce
the most discriminative feature vector. Te experiment
emphasizes that the proposed framework and the multi-
model fusion method make it easier to screen and detect PD
patients or individuals with potential PD from the subjects,
and the high accuracy of the classifcation result also pro-
motes handwritten training and the nonmanual data pro-
cessing process, which provides a reference for auxiliary
medical diagnosis and treatment.

Considering the limitations of the current study, the size
of the dataset can still be increased to include more cate-
gories and subjects, which will help better evaluate the
generalization ability of the proposals. Te conventional
program will bring the bias of developers. Every answer or
decision output in a deep learning system cannot be
explained accurately, and the labeled data set of training is
processed in advance, so fairness requires to be tested. When
it is used in the medical scene of human life, the system
should be transparent and interpretable enough; otherwise,
people’s trust in it will be greatly reduced.

Data Availability

Te data supporting the fndings of the current study are
available from the corresponding author upon request.

Table 8: Performance comparison with single-modal approaches on NewHandPD.

Tests Pereira
et al. [47] (%)

Pereira
et al. [48] (%)

Ribeiro
et al. [49] (%) Diaz et al. [50] (%) Xu and Zhu [51] (%) Zhu et al. [52] (%) ST-SiamNN (%)

Spiral 77.53 78.26 89.48 94.44 81.17 77.45 95. 6
Meander 87.14 80.75 92.24 91.11 78.18 70.86 93.39
Circle — 68.04 — 88.89 — — 90.21
ST-SiamNN achieves the highest accuracy on three tests.
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