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Background and Objective. Currently, depression is a widespread global issue that imposes a signifcant burden and disability on
individuals, families, and society. Deep learning (DL) has emerged as a valuable approach for automatically detecting depression
by extracting cues from audiovisual data and making a diagnosis. PHQ-8 is considered a validated diagnostic tool for depressive
disorders in clinical studies, and the objective of this experiment is to improve the accuracy of PHQ-8 prediction. Furthermore,
this paper aims to demonstrate the efectiveness of expert knowledge in depression diagnosis and discuss a novel multimodal
network architecture. Methods. Tis research paper focuses on multimodal depression analysis, proposing a fexible parallel
transformer (FPT) model capable of extracting data from three distinct modalities (i.e., one video and two audio descriptors). Te
FPT-Former model incorporates three paths, each using expert-knowledge-based descriptors from one modality as inputs. Tese
descriptors are represented into 32 features by the encoder part of a transformer module, and these features are fused to realize the
fnal regression of PHQ-8 score. Te extended distress analysis interview corpus (E-DAIC) is an expansion of WOZ-DAIC which
comprises semiclinical interviews intended to assist in the diagnosis of psychological distress conditions. It encompasses a sample
size of 275 participants, and in this study, it was utilized to test the model in a way of 10-fold cross-validation. Results. Te FPT
presented herein achieved comparable performance to the state-of-the-art works, with a root mean square error (RMSE) of 4.80
and a mean absolute error (MAE) of 4.58. Te ablation experiments demonstrate that the three-modality-fused model out-
performs other two-modality-fused and single-modality models. While using a PHQ-8 score threshold of 10, the accuracy of the
depression classifcation is 0.79. Conclusions. Leveraging the strength of expert-knowledge-based multimodal measures and
parallel transformer structure, the FPTmodel exhibits promising performance in depression detection. Tis model improved the
accuracy of depression diagnosis through audio and video, and it also proved the efectiveness of using expert-knowledge in the
diagnosis of depression. Te traits of fexible structure, high predictive efciency, and secure privacy protection make our model
a promotable intelligent system in mental healthcare.

1. Introduction

Te recognition that mental disorders are signifcant con-
tributors to the burden of disease is growing [1]. Currently,
depression stands as the most prevalent mental illness,
characterized predominantly by persistent and long-term

feelings of low mood [2], making it a signifcant form of
mental illness in modern times. As per the World Health
Organization (WHO), by 2030, depression is projected to
become the most prevalent mental disorder [3]. In extreme
cases, depression can result in suicide [4]. At present, there is
no distinct and efective clinical defnition for depression,
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resulting in a diagnosis process that can be both subjective
and lengthy. Te integration of artifcial intelligence and
mathematical modeling methods is increasingly being
employed in mental health research in attempt to address
this issue. Tese techniques can be benefcial to the feld of
depression detection, given their ability to appreciate the
signifcance of acquiring detailed data to distinguish various
depression disorders [5].

A multitude of automatic depression estimation (ADE)
systems have been developed [6]. Many audiovisual features
can also be used to diagnose depression [7, 8]. Zhou et al. [9]
put forward a unique deep architecture named Depress Net,
designed to learn representations from images for de-
pression recognition. He et al. [10] proposed a network that
integrates 2D-CNN networks and an attention mechanism
for depression recognition. While the majority of earlier
research concentrated on single-modal data, recent studies
have demonstrated that multimodal data can provide su-
perior predictive performance compared to single-modal
data [11]. Yang et al. [12] introduced a multimodal fusion
framework that integrates deep convolutional neural net-
work (DCNN) and deep neural network (DNN) models.
Tis model uses audio, video, and text streams as inputs and
is aimed at detecting depression. However, how to better
mine serialized information, how to better utilize multi-
modal information, and which features can improve the
accuracy of diagnosis more efectively are still topics that
need further research.

Using knowledge-based descriptors as inputs can be an
alternative strategy while using original audio and video as
inputs faces the challenge of personal privacy disclosure, and
the sheer volume of raw video can also slow down predictive
efciency. Facial expressions and the acoustic characteristics
of speech are the two main categories of knowledge-based
measures. Facial expressions serve as a powerful means of
conveying emotions to others. Psychologists have meticu-
lously modeled these expressions, culminating in a reference
guide known as the facial action coding system (FACS) [13]
which will be used in this experiment. Tis system catalogs
the combinations of facial muscles involved in each ex-
pression and can be utilized as a tool to discern an in-
dividual’s emotional state through their facial expression.
Te acoustic characteristics of speech have also been rec-
ognized as potential indicators of depression [14]. In this
study, a novel set of acoustic features known as the extended
Geneva Minimalistic Acoustic Parameter Set (eGeMAPS)
has been used. Tis set was recently devised for use in
various areas of speech analysis [15]. Te Mel-Frequency
Cepstral Coefcient (MFCC) method is also one of the
foremost techniques used for the extraction of speech fea-
tures [16], and this feature will also be used in the model
proposed in this article.

Numerous open-source datasets about depression are
available, ofering a valuable resource for researchers delving
into the realm of mental health. Shen et al. [17] presented the
Emotional Audio-Textual Depression Corpus (EATD-
Corpus), an assemblage encompassing audio recordings and
transcribed responses gathered from both depressed and
nondepressed individuals. However, it is important to note

that this corpus exclusively contains audio and textual data.
Cai et al. [18] introduce a multimodal open dataset designed
for the analysis of mental disorders. Tis dataset in-
corporates EEG and audio data sourced from clinically
depressed patients, as well as corresponding data from
unafected control subjects but its sample size is slightly
above 50. Te dataset used in this paper is the Extended
Distress Analysis Interview Corpus (E-DAIC) [19], an en-
hanced version of WOZ-DAIC, which comprises semi-
clinical interviews intended for assisting in the diagnosis of
psychological distress conditions.Tese resources stem from
the Audio/Visual Emotion Challenge andWorkshop (AVEC
2019), an event dedicated to the comparison of multimedia
and machine learning techniques in the realm of health and
emotion analysis [19].

Drawing inspiration from the potent learning capacity of
transformers, a sequence transduction model wholly based
on attention mechanisms [20], we proposed this FPT-
Former framework. Tis model is composed of multiple
parallel encoders for each modality, which create low-
dimensional global feature vectors encapsulating compact
information. By combining with expert knowledge, this
model enhances the prediction accuracy of the PHQ-8 scores
[21]. FPT-Former is specifcally tailored to process diverse
data types, facial expressions, audio-MFCC, and audio-
eGeMAPs, for accurate depression severity estimation.
Our model surpasses existing methodologies by in-
corporating a confuence of components, including parallel
transformer encoders for each modality and a fusion layer
for efective information convergence. Our FPT-Former
achieved comparable performance to the state-of-the-art
works, with a root mean squared error (RMSE) of 4.80 and
a mean absolute error (MAE) of 4.58.

Te key contributions of this paper can be encapsulated
as follows: (1) a fexible parallel transformer model has been
proposed for depression recognition; (2) the fusion of au-
diovisual expert-knowledge-based multimodal metrics in-
creases prediction accuracy; (3) the paralleled structure
adapts diferent numbers of measures in diverse modalities;
and (4) the utilization of low-dimensional video features in
the proposed transformer model increases prediction ef-
ciency and avoids personal privacy leakage.

Te structure of the paper is organized as follows: Section
2 introduces the related work of automatic depression di-
agnosis. Section 3 introduces the expert-knowledge-based
features that serve as inputs to the FPT-Former. Section 4
illustrates the framework of the proposed FPT-Former.
Section 5 presents and analyzes the experimental results.
Section 6 concludes the paper and discusses potential
future work.

2. Related Work

In the area of depression recognition, many researchers have
made progress. Du et al. [22] introduced the machine speech
chain model for depression recognition (MSCDR), high-
lighting the signifcance of vocal tract changes as important
markers for depression. Yang et al. [23] addressed the
challenge of speech depression detection by proposing the
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DALF framework, which employs attention-guided learn-
able time-domain flterbanks. By learning acoustic features
and spectral attention, DALF outperformed state-of-the-art
methods from audio signals. In a similar vein, Niu et al’s
“Depressioner” model [24] turned its attention to facial
dynamics, identifying facial changes as potential biomarkers
for depression levels. In 2022, Kakuba et al. [25] introduced
the concurrent spatial-temporal and grammatical
(CoSTGA) model, which is a deep learning-based approach.
Tis model is designed to simultaneously acquire spatial,
temporal, and semantic representations within the local
feature learning block (LFLB). Tese representations are
then combined into a latent vector, which serves as the input
for the global feature learning block (GFLB), and they also
presented an attention-based multilearning model (ABMD)
[26] that leverages residual dilated causal convolution
(RDCC) blocks and dilated convolution (DC) layers fea-
turing multihead attention. Te ABMD model delivers
comparable performance while efciently capturing global
contextualized long-term dependencies among features in
a parallel manner which can be used in speech emotion
recognition.

Moreover, researchers have been proactive in embracing
multimodal approaches to elevate the accuracy of depression
recognition. Li et al’s multimodal hierarchical attention
(MHA) model [27], designed for social media settings,
improves recognition performance by integrating various
data types. Tis model employs attention mechanisms and
combines multiple data sources which highlight the sig-
nifcance of taking a holistic approach. In tandem, privacy
concerns were addressed by Pan et al’s AVA-DepressNet
[28].Tis model pays attention to facial privacy preservation
while concurrently boosting audiovisual feature enhance-
ment, addressing the ethical issues of technology application
in sensitive domains such as mental health. Zou et al. [29]
developed a Chinese Multimodal Depression Corpus
(CMDC) by conducting semistructural interviews with
depression patients. Trough feature analysis and bench-
mark evaluations, they established the efectiveness of their
multimodal fusion approach, showcasing its potential for
automatic depression screening. Zhang et al. [30] introduced
a two-stream deep network within a depression detection
framework which achieved state-of-the-art performance on
AVEC2014 datasets [31].

Extending the scope, Zhao et al’s work [32] pushed the
boundaries of depression detection through the analysis of
image-based data. Tey introduced frequency attention,
tapping into the distinctive traits of depression images to
uncover signifcant patterns of depression patients.

Besides, the temporal dimension emerges as a recurring
motif. He et al’s DepNet [33] used deep learning to extract
spatial-temporal patterns from video-based facial sequences.
By scrutinizing patterns over time, this approach ofers
a deeper understanding of the dynamic nature of depression
manifestations.

Lastly, the treatment of mental illnesses is also a feld of
interest for deep learning. A. Singh et al. proposed a cost-
efective, socially designed robot named “Tinku” for teaching
and assisting children with autism spectrum disorder [34].

In addition, the continuous introduction of new deep
learning models, as well as improvements and adjustments
to these models, has played a promotive role in the research
of this feld [35–37].

3. Feature Descriptors

Te data utilized in this study are derived from the Extended
Distress Analysis Interview Corpus (E-DAIC) [19],
a broader version of WOZ-DAIC, which comprises semi-
clinical interviews intended for assisting in the diagnosis of
psychological distress conditions.Te research for this paper
involves 275 subjects, with each participant contributing
three unique sets of data, specifcally FACS, eGeMAPS, and
MFCC. Every subject is assigned a Patient Health Ques-
tionnaire (PHQ-8) score. All the initial descriptors used in
this paper are grounded in expert-based knowledge.

3.1. Video Descriptors. Te video descriptors in this exper-
iment were extracted by a facial behavior analysis toolkit
called OpenFace which can accurately detect head pose,
recognize facial action units, and estimate eye gaze [38].
Each subject’s interview video undergoes processing with
OpenFace. After this processing, every frame of the video
contains 49 distinct feature values.

Te frst to sixth eigenvalues constitute the subject’s head
pose. Te orientation of the head in relation to the camera
can be represented through rotation and shift. Figure 1 il-
lustrates the description of a head rotation transformation.
Te spatial coordinates corresponding to the head’s position
will also be provided.

Features from the 7th to the 14th represent the subjects’
eye gaze estimation. Te gaze direction vector of each eye is
represented by three numbers and the average of the hor-
izontal and vertical radians of the gazing directions of the
two eyes will also provide two features.

Te Facial Action Coding System (FACS) [13] is a tax-
onomy of human facial movements defned by their man-
ifestation on the face. It encodes the movements of
individual facial muscles, discerning subtle instantaneous
changes in facial appearance. With FACS, nearly any ana-
tomically possible facial expression can be coded, breaking it
down into specifc action units (AUs). It serves as a widely
accepted standard for objectively describing facial expres-
sions [39]. Eighteen action units were considered in this
study, all of which are more typically associated with the
expression of negative emotions, and these AUs are de-
scribed in Table 1.

Each AU is denoted by two values: its presence and its
intensity (excluding AU28, for which only its presence is
determined.). Te presence refers to whether the AU is
visibly apparent on the face and the intensity refers to the
strength or force of the AU, rated on a 5-point scale ranging
from minimal to maximal.

3.2. Audio Descriptors: MFCC. Te frst set of audio expert-
knowledge-based measures is the Mel-Frequency Cepstral
Coefcients (MFCC), and it encompasses 39 features.
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Research in psychophysics has revealed that the human
perception of frequency in speech signals does not adhere to
a linear scale. Terefore, for each tone with a factual fre-
quency (f ) measured in hertz (Hz), a subjective pitch is
assessed on a scale known as the “Mel” scale which is cal-
culated as follows [40]:

fmel � 2595 log10 1 +
f

700
􏼠 􏼡. (1)

In this context, fmel corresponds to the subjective pitch
in the “Mel” scale that is associated with a specifc frequency
measured in hertz (Hz). Tis understanding forms the
foundation for the defnition of the Mel-Frequency Cepstral
Coefcients (MFCCs), a fundamental set of acoustic features
used in speech and speaker recognition applications [41].

In the data employed for this experiment, 13 coefcients
are preserved following the Discrete Cosine Transform
(DCT), and the frst and second derivatives of these 13
coefcients are also computed. In summary, the Mel-
Frequency Cepstral Coefcient (MFCC) expert-knowl-
edge-based dataset comprises a total of 39 features.

3.3. Audio Descriptors: eGeMAPS. Valuable information
encapsulating emotional indicators can be extracted from
audio signals, which can contribute signifcantly to the di-
agnosis of depression. Researchers are investigating various
dimensions such as the identifcation of emotional states, the

conveyance of emotional signals through voice, the impact
of emotions in language, and the automatic detection of
speaker emotions for enhancing depression prediction
efcacy.

eGeMAPS is an expanded version of GeMAPS [15],
augmenting its set of 18 low-level descriptors (LLDs) with
several new features. Tese additions include fve spectral
features, such as the frst four Mel-Frequency Cepstral
Coefcients (MFCC1-4), and the spectral diference between
consecutive frames, alongside two frequency-dependent
attributes: the bandwidth of the second and third for-
mants. eGeMAPS contains 88 features in total which extract
acoustic parameters from speech to understand vocal
emotional expressions.

Tis paper uses 23 of these 88 features that are most
relevant to the diagnosis of depression, and every feature
undergoes a smoothing process utilizing a window size of
three frames. Detailed descriptions of these 23 features can
be seen in Table 2.

4. Framework of Flexible Parallel Transformer

Te network introduced in this study is called the FPT-
Former, which is a fexible, parallel transformer network
specifcally built to process multimodal data, facial expres-
sions, audio-MFCC, and audio-eGeMAPs characteristics,
for depression identifcation. Te FPT-Former architecture
is constituted by a confuence of components. Tese com-
ponents encapsulate an input layer, a cohort of parallel
encoders for each modality, and a fusion layer to converge
the learned information across the modalities. Te total
number of training parameters for the entire model is
234,463, and a ReduceLROnPlateau scheduler is used to
adjust the learning rate based on the validation loss, en-
hancing the model’s ability to converge to the optimal so-
lution. Tis section provides a detailed exposition of the
network architecture, and the data structure in each phase
undergoes various transformations throughout the pipeline
of our framework, FPT-Former, as illustrated in Figure 2.

4.1. Data Preprocessing and Input. Our dataset contains
multimodal data including facial expression, audio-MFCC,
and audio-eGeMAPs measures. Te facial expression fea-
tures, derived from the FACS, consist of 49 dimensions, and
audio-eGeMAPS measures comprise 39 dimensions, while
audio-MFCC measures are characterized by 23 dimensions.
To preserve the temporal information across the sequence of
video or audio frames, an additional feature value indicating
the frame serial number is appended to each modality,
resulting in the dimensions of 50, 40, and 24, respectively
(the feature number of facial expression, audio-MFCC, and
audio-eGeMAPs measures). Each of the three modalities
takes a frame every 0.1s, and each subject takes 4,146 frames.

4.2. Input Layer. Te journey of data through the network
commences at the input layer. Herein, the raw multimodal
data are introduced into the system frame-by-frame. Tis
modality-specifc data include facial measures of dimension

Table 1: List of AUs in OpenFace.

AU Full name
AU 1 INNER BROW RAISER
AU 2 OUTER BROW RAISER
AU 4 BROW LOWERER
AU 5 UPPER LID RAISER
AU 6 CHEEK RAISER
AU 7 LID TIGHTENER
AU 9 NOSE WRINKLER
AU 10 UPPER LIP RAISER
AU 12 LIP CORNER PULLER
AU 14 DIMPLER
AU 15 LIP CORNER DEPRESSOR
AU 17 CHIN RAISER
AU 20 LIP STRETCHED
AU 23 LIP TIGHTENER
AU 25 LIPS PART
AU 26 JAW DROP
AU 28 LIP SUCK
AU 45 BLINK

yaw pitch roll

Figure 1: Relationship between head posture angle change and
head motion.

4 International Journal of Intelligent Systems



(4146, 50), audio-MFCC measures of dimension (4146, 40),
and audio-eGeMAPs measures of dimension (4146, 24). Te
network takes three input streams with dimensions 50, 40,

and 24, respectively, corresponding to the diferent mo-
dalities of the dataset. Tis approach is predicated on the
understanding that capturing the temporal dynamics

Table 2: Selected eGeMAPS features for depression diagnosis.

Feature name Feature declaration
Loudness Te overall volume or sound intensity of a sound signal
Alpha ratio Te energy ratio of the sound signal spectrum’s low and high-frequency parts
Hammarberg index Te change pattern of the fundamental frequency in the sound signal

Slope 0–500 Te frequency spectrum’s rate of alteration is assessed in the range from 0Hz to
500Hz

Slope 500–1500 Te frequency spectrum’s rate of alteration is assessed in the range from 500Hz to
1500Hz

Spectral fux Te amount of fow or variation in the spectrum of a sound signal
mfcc1 Te frst Mel-Frequency Cepstral Coefcients
mfcc2 Te second Mel-Frequency Cepstral Coefcients
mfcc3 Te third Mel-Frequency Cepstral Coefcients
mfcc4 Te fourth Mel-Frequency Cepstral Coefcients

F0semitoneFrom27.5Hz Te semitone diference between the fundamental frequency of the sound signal and
27.5Hz

Jitter local Te local jitter of the sound signal
Shimmer local dB Te local trill of a sound signal
HNRdBACF Harmonic to noise ratio (HNR) of a sound signal

LogRelF0-H1-H2 Te logarithmic diference between the fundamental frequency in the sound signal
and the corresponding frst (H1) and second (H2) harmonics

logRelF0-H1-A3 Te logarithmic diference between the fundamental frequency in the sound signal
and the corresponding frst harmonic (H1) and third formant (A3)

F1frequency Te frequency of the frst formant (F1) in the sound signal
F1bandwidth Te bandwidth of the frst formant (F1) in the sound signal

F1amplitudeLogRelF0 Te logarithmic diference between the amplitude of the frst formant (F1) in the
sound signal and the fundamental frequency

F2frequency Te frequency of the second formant (F2) in the sound signal

F2amplitudeLogRelF0 Te logarithmic diference between the amplitude of the second formant (F2) in the
sound signal and the fundamental frequency

F3frequency Te frequency of the third formant (F3) in the sound signal

F3amplitudeLogRelF0 Te logarithmic diference between the amplitude of the third formant (F3) in the
sound signal and the fundamental frequency
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International Journal of Intelligent Systems 5



inherent in the frame sequence is paramount to the efec-
tiveness of the model.

4.3. Encoder Stage. Following that the input layer is the
encoder stage, this stage is characterized by a trident of
parallel encoders, each designed to cater to the specifc
modalities: facial expression, audio-MFCC, and audio-
eGeMAPs measures.

4.3.1. Transformer and Self-Attention. Te Transformer
architecture, proposed by Vaswani et al. [20], has emerged as
a groundbreaking paradigm in sequential data modeling,
thanks to its innovative self-attention mechanism. Tis
mechanism allows the model to weigh the signifcance of
diferent positions within a sequence while processing each
element, making it well-suited for capturing long-range
dependencies and relationships.

Te essence of the self-attention mechanism lies in the
QKV (Query-Key-Value) mechanism, which can be math-
ematically expressed as Figure 3.

Given an input sequence of vectors X� (x1, x2, . . ., xi),
the self-attention mechanism calculates the weighted sum of
value vectors based on their relevance to a query vector:

attention(Q, K, V) � softmax
QK

T

��
dk

􏽰􏼠 􏼡V, (2)

where Q represents the query matrix, K represents the key
matrix, and V represents the value matrix. dk is the di-
mension of the key vectors.

Te scaled dot-product operation inside the softmax
function computes the compatibility between each query
and key pair. Te result is a set of attention scores that
determine how much each value contributes to the fnal
output.

In the context of our model, the self-attention mecha-
nism enables the encoder to focus on relevant features
within a sequence. Tis is particularly benefcial when
processing multimodal data, as it helps capture meaningful
interactions between diferent elements.

4.3.2. Encoder Components. In this architecture, data from
three diferent modalities are individually channeled into
three separate encoder pathways. Each pathway follows
a multistep process.

Initially, the data are subjected to a multihead self-
attention mechanism, where the model utilizes fve atten-
tion heads to capture intricate relationships and de-
pendencies within each modality. Ten, a layer
normalization step is applied after the multihead self-
attention process. Te Transformers are tailored to the
specifc requirements of each data modality, with diferent
numbers of heads and layers. Te model uses 5, 4, and 4 self-
attention heads in its three transformer modules, re-
spectively. Following layer normalization, the data passes
through position-wise feed-forward networks. To mitigate
the risk of gradient vanishing, residual connections are
employed and these connections allow the output of each

layer to be combined with its input. Tree identical encoder
layers are stacked one upon the other. Te number of en-
coder layers and self-attention heads is determined after
multiple attempts under our computational environments.
Each encoder layer encompasses all the aforementioned
components, and this stacking increases the model’s rep-
resentational capacity. At the end of this process, each
pathway yields an output vector with dimensions [1, 32].

4.4. Fusion Layer. After the three encoders produce their
respective outputs, three [1, 32] feature vectors are obtained.
Tese vectors are then combined in a fusion layer, resulting
in a single comprehensive feature vector of dimensions (1,
96). Tis aggregated vector encompasses all the essential
information from the three modalities. Subsequently, the
feature vector is passed through a fully connected layer,
culminating in the fnal PHQ-8 score which can be used in
the prediction of depression severity.

In summary, the FPT-Former utilizes the richness of
information intrinsic to the diferent modalities, enabling
their synergistic utilization to augment the prediction ac-
curacy of depression severity.Te next section will shed light
on the efectiveness of our model, substantiated by empirical
results from our experiments.

5. Experiments and Analysis

In this section, we will analyze the experimental results,
assess our proposed FPT-Former model, and conduct
a comparison with existing state-of-the-art techniques.
Furthermore, through ablation studies, we will substantiate
the efectiveness of the FPT-Former model in estimating
depression severity by expert-knowledge-based multimodal
measures.

5.1. Dataset Split and Model Training. Tis study makes use
of the E-DAIC dataset which comprises data from 275
participants. Each participant’s data represents a sample,
which includes visual features from OpenFace 2.1.0, eGe-
MAPS features, and MFCC features extracted using
OpenSMILE [42]. For each sample, the maximum frames
considered are 12,438 for visual data and 41,460 frames for
both MFCC data and eGeMAPS features.

To ensure the consistency of the input across all samples,
we restrict the data for each modality. For visual features, we
select every third frame, resulting in 4146 frames per sample.
For audio features, every tenth frame is chosen, resulting in
4146 frames per sample for each of these modalities as well.

We employ a ten-fold cross-validation scheme for our
model training and evaluation, thus splitting our dataset into
ten partitions. For each fold, nine partitions are used for
training, and one partition is left out for testing.

Te FPT-Former is trained using the Adam optimizer
with an initial learning rate of 0.01 and a cosine annealing
schedule for learning rate decay. Te model is evaluated
using two metrics: RMSE and MAE, and both of them have
been calculated on the validation set for each fold.

RMSE and MAE are defned as follows:
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RMSE �

������������
1
N

􏽘 ri − ri
′( 􏼁
2

􏽲

,

MAE �
1
N

􏽘 ri − ri
′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

(3)

where N is the total number of observations, ri is the pre-
diction from the model, and ri

′ is the actual observed value.
Each fold is repeated and the reported results are av-

eraged over all folds. In this manner, we ensure a robust
estimation of our model’s performance.

5.2. Depression Recognition Results. To establish the efec-
tiveness of our proposed FPT-Former model in multimodal
depression severity estimation, we compared it with several
existing state-of-the-art methods. Te comparative evalua-
tion focused on the primary performance metrics: RMSE
and MAE.

Table 3 outlines the performance of our method against
others. Al Hanai et al. [43] employed audio and text features
in an LSTM neural network, achieving an RMSE of 6.50 and
MAE of 5.13, and Zhang et al. [44] introduced an autoen-
coder model with BiGRU for speech-based depression se-
verity prediction, resulting in an RMSE of 5.68 and MAE of
4.64. Yang et al. [45] integrated speech, text, and face data
with DCGAN for feature augmentation, yielding an RMSE
of 5.52 and MAE of 4.63, and Han et al. [46] proposed
a spatial-temporal feature network for speech-based de-
pression detection, achieving an RMSE of 6.29 and MAE of
5.38 while Fang et al. [47] presented a multimodal fusion
model with multilevel attention mechanism for depression
detection, with an RMSE of 5.17. Our FPT-Former presented
herein achieved comparable performance to the state-of-
the-art works, with an RMSE of 4.80 and anMAE of 4.58. To
ensure comparability, all the methods listed in Table 3 used
E-DAIC as a dataset.

To provide a better understanding of the agreement
between our FPT-Former model’s predictions and the actual
depression severity scores, we conducted a Bland–Altman
analysis. Te Bland–Altman plot (the left part of Figure 4)
depicts the diference between the predicted depression
severity scores and the actual scores on the y-axis, against the
average of the two scores on the x-axis. Te regression
analysis (the right part of Figure 4) also allows us to observe
whether the model exhibits consistent deviations across
diferent levels of depression severity.

5.3. Ablation Experiment. To better understand the contri-
bution of each modality to our model’s performance, we
conducted ablation experiments. Tese experiments sys-
tematically removed one or two modalities from the mul-
timodal model and observed the efect on performance.

5.3.1. Single Modality Ablation. In the single modality ab-
lation experiments, we individually removed each modality
such as FACS, MFCC, and eGeMAPS from our FPT-Former
model and observed the change in model performance.
Table 4 presents the results of the ablation experiments,
showing the RMSE andMAE values when eachmodality was
removed.

From the results presented in Table 4, it can be observed
that eachmodality plays a vital role in the performance of the
FPT-Former model. Removing any one of the modalities
leads to an increase in RMSE and MAE, indicating a decline
in prediction accuracy. Tis underlines the importance of
multimodal data and the synergy between these modalities
in making accurate predictions. Te extent of performance
degradation varies with the removal of diferent modalities,
suggesting that each modality contributes diferently to the
overall model’s performance.

5.3.2. Double Modality Ablation. Next, we examined the
interplay between diferent modalities by conducting double
modality ablation experiments. Here, we removed two
modalities at a time and evaluated the performance of the
model with only the one remaining modality. Te results are
shown in Table 5.

Tese fndings reinforce the notion that each expert-
based-knowledge carries unique and valuable information
for the task of depression severity estimation. Relying on
a single modality can cause the loss of essential information.
Tis underlines the signifcance of an expert-based-
knowledge in developing robust predictive models for de-
pression recognition. To visually represent these fndings,
a bar plot was generated (Figure 5) to compare the RMSE
and MAE values for diferent ablation scenarios. Te plot
illustrates the impact of removing each modality on the
model’s predictive accuracy.

Te dataset we utilized originates from AVEC 2017:
Real-life Depression and Afect Recognition Workshop and
Challenge [19], and this challenge provided a baseline for
comparison. We compared the results of our double
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Figure 3: Self-attention mechanism.
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modality ablation experiment with the baseline (the chal-
lenge provided the RMSE only) from the challenge, and the
results (Table 6) showed that our model demonstrated better
performance in predictions.

Te results reveal that the removal of FACS has the most
signifcant impact, leading to the highest increase in both
RMSE and MAE values. On the other hand, removing
MFCC causes a comparatively smaller increase in RMSE and
MAE, indicating its relatively lower contribution to the
model’s performance. It is noteworthy that each modality
plays a distinct role, and their removal afects the model’s
predictive capabilities diferently.

5.4. Depression Classifcation. In addition to estimating
depression severity scores, we further conducted a classif-
cation task to distinguish between normal subjects and
individuals with depression. Tis binary classifcation task
allows us to evaluate the model’s capability to diferentiate
between the two categories based on the threshold of 10
points on the Patient Health Questionnaire (PHQ-8) score

[21]. To demonstrate the model’s generalization, we also
conducted the same testing on the AVEC-2014 [48] dataset
which contains 150 subjects.Te AVEC-2014 dataset utilizes
BDI-II scores as labels, with a threshold of 21 to distinguish
between individuals with depression and those without
depression [49].

To provide a visual representation of our classifcation
model’s performance, we constructed a confusion matrix.
Te confusion matrix displays the true positive (TP), true
negative (TN), false positive (FP), and false negative (FN)
predictions. Tis matrix provides insights into the model’s
strengths and weaknesses in terms of correctly and in-
correctly classifed instances which have been shown in
Figure 6. 61 of 86 (70.93%) subjects with depression and
157 of 189 (83.07%) normal subjects were correctly pre-
dicted in E-DAIC dataset (Figure 6(a)), and 32 of 45
(71.11%) subjects with depression and 81 of 105 (77.14%)
normal subjects were correctly predicted in AVEC-2014
dataset (Figure 6(b)).

For assessing the performance of our classifcation
model, we employed the following evaluation metrics which
can be seen from Figure 7. Accuracy (ACC) is defned as the
proportion of correctly classifed instances among all in-
stances. Sensitivity (SEN) denotes the ratio of true positive
predictions to the actual positive instances (depressed in-
dividuals). Specifcity (SPE) is the ratio of true negative
predictions to actual negative instances (normal in-
dividuals). Positive predictive value (PPV) is the proportion
of true positive predictions among the instances that the
model classifed as positive. Negative predictive value (NPV)
indicates the proportion of true negative predictions among
the instances that the model classifed as negative. Here,
ACC, SEN, SPE, PPV, andNPV achieve 0.79, 0.71, 0.83, 0.66,
and 0.86, respectively, in the E-DAIC dataset (Figure 7(a))
and the same index achieves 0.75, 0.58, 0.85, 0.71, and 0.78,
respectively, in AVEC-2014 dataset (Figure 7(b)).
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Figure 4: Te Bland–Altman plot and regression analysis for FPT-Former depression severity predictions.

Table 4: Te performance of FPT-Former when each modality is
removed.

Model variant RMSE MAE
Without FACS 6.02 5.86
Without MFCC 5.67 5.51
Without eGeMAPS 5.88 5.73

Table 5: Te performance of FPT-Former when only one modality
is used.

Model variant RMSE MAE
FACS only 6.11 5.91
MFCC only 7.02 6.84
eGeMAPS only 6.60 6.21
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5.5. Limitations and Future Works. Despite the promising
results achieved by our proposed FPT-Formermodel, there exist
several limitations that highlight avenues for future research.

First, the model is trained and evaluated using the
E-DAIC dataset and AVEC-2014 dataset. Although these
datasets are widely accepted, the generalizability of the
model can be further validated using other multimodal

datasets that are more diverse in terms of demographic
characteristics and cultural contexts. Future work can in-
volve conducting experiments on more datasets to improve
the robustness and universality of the model.

Second, our study focused on three modalities: facial
expressions, audio-MFCC, and audio-eGeMAPs. While
these are undoubtedly important, depression manifests in

Performance Comparison in Ablation Experiments
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Figure 5: Te efect of modality ablation on model performance.

Table 6: Comparison between FPT-Former (when only one modality is used) and baseline of AVEC-2019.

Model RMSE
AVEC 2019 baseline-FACS [19] 7.02
AVEC 2019 baseline-MFCC [19] 7.28
AVEC 2019 baseline-eGeMAPS [19] 7.78
FPT-Former (FACS only) 6.11
FPT-Former (MFCC only) 7.02
FPT-Former (eGeMAPS only) 6.60
Te bold font indicates that the RMSE of our model is lower than the previous three models.
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Figure 6: Te confusion matrix of the classifcation result by E-DAIC dataset (a) and AVEC-2014 dataset (b).
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various other ways. Future studies could consider in-
corporating additional modalities, such as text from patient
interviews, physiological signals like heart rate variability, or
even social interaction patterns [50].

Furthermore, it is essential to note that the current
implementation of the FPT-Former relies on a concatena-
tion method for multimodal fusion. In future research, we
plan to explore more fusion techniques, such as attention
mechanisms, tensor fusion, or hierarchical fusion, to en-
hance the model’s accuracy and better capture the in-
terdependencies among diferent modalities.

Despite these limitations, the FPT-Former represents
a signifcant step towards a more comprehensive, accurate,
and nuanced approach to depression severity estimation.
Future work guided by these identifed areas of improve-
ment holds the potential to enhance the predictive capability
of the model and broaden its applicability in real-world
scenarios.

6. Conclusions

In this study, we introduced a novel fexible parallel
transformer model, the FPT-Former, designed to harness
the power of multimodal data in recognizing depression.
Trough its unique architecture, this model circumvents
the challenge of quantitative diferences across various
modality features and provides a robust solution to reduce
prediction errors. Besides, this model’s ability to adapt to
diferent numbers of measures across diverse modalities
underlines its fexibility and applicability. Our FPT-
Former model incorporates expert-knowledge-based au-
diovisual measures, facilitating the extraction of mean-
ingful patterns from data, while maintaining the low
dimensionality of input features. By employing low-
dimensional measures as inputs, our model not only in-
creases predictive efciency but also addresses concerns
related to personal privacy leakage, which is paramount in
mental health applications. Experimental results on the
E-DAIC dataset demonstrate the superiority of our model

over existing techniques in terms of RMSE and MAE. Te
ablation studies further reveal the integral role each mo-
dality plays in achieving superior performance. Integrating
multiple modalities and capturing long-term temporal
dependencies from videos has the potential to detect de-
pression accurately. After the comprehensive evaluation,
the FPT-Former may become a useful diagnostic tool for
mental health and contribute to global eforts in
addressing this critical mental health issue.

In conclusion, this research contributes signifcantly to
the understanding and technology of mental health di-
agnostics. Te FPT-Former model, with its emphasis on
expert-knowledge integration and privacy protection, not
only advances the feld of depression detection but also
promotes the development of intelligent systems in mental
healthcare. Its fexible structure and high predictive ef-
ciency make it a potential tool for clinicians and researchers.

Data Availability

Te data of the Extended Distress Analysis Interview Corpus
(E-DAIC) can be applied and accessed at https://dcapswoz.
ict.usc.edu/.

Additional Points

Highlights. (i) A fexible parallel transformer model has been
proposed to recognize depression. (ii) Audiovisual expert-
knowledge-based multimodal measures are integrated. (iii)
Using low-dimensional measures as inputs increases pre-
dictive efciency. (iv) Te paralleled structure adapts dif-
ferent numbers of measures in diverse modalities. (v) Te
model achieves a comparable performance to the state-of-
the-art works. (vi) Using expert-knowledge-based measures
avoids personal privacy leakage.
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