Antibacterial Potential of *Aloe weloensis* (Aloeacea) Leaf Latex against Gram-Positive and Gram-Negative Bacteria Strains

Yohannes Kelifa Emiru, 1 Ebrahim Abdela Siraj, 1 Tekleab Teka Teklehaimanot, 2 and Gedefaw Getnet Amare 2

1School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
2School of Pharmacy, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia

Correspondence should be addressed to Yohannes Kelifa Emiru; johnkelifa@gmail.com

Received 20 August 2018; Accepted 11 December 2018; Published 2 January 2019

Objective. To evaluate the antibacterial effects of the leaf latex of *Aloe weloensis* against infectious bacterial strains. Methods. The leaf latex of *A. weloensis* at different concentrations (400, 500, and 600 mg/ml) was evaluated for antibacterial activities using the disc diffusion method against some Gram-negative species such as *Escherichia coli* (ATCC 14700) and *Pseudomonas aeruginosa* (ATCC 35619) and Gram-positive such as *Staphylococcus aureus* (ATCC 50080) and *Enterococcus fecalis* (ATCC 4623). Results. The tested concentrations of the latex ranging between 400 and 600 mg·mL⁻¹ showed significant antibacterial activity against bacterial strain. The highest dose (600 mg/ml) of *A. weloensis* leaf latex revealed the maximum activity (25.93 ± 0.066 inhibition zone) followed by the dose 500 mg/ml against *S. aureus*. The lowest antibacterial activity was observed by the concentration 400 mg/ml (5.03 ± 0.03) against *E. coli*. Conclusion. The results of the present investigation suggest that the leaf latex of *A. weloensis* can be used as potential leads to discover new drugs to control some bacterial infections.

1. Introduction

Infectious disease is defined as a disease caused by a specific infectious agent or its toxic product that results from transmission of pathogenic agent or its toxic product from an infected person, animal, or reservoir to a susceptible host [1]. Infectious diseases have been the most serious health issue in the world [2]. The epidemiology of infections has significantly changed in the last 30 years [3] and is responsible for one-third of global mortality [4]. Some of pathogenic infectious bacterial species includes *Staphylococcus aureus* (infections of skin, septic arthritis, and food intoxication) [5], *Bacillus subtilis* and *Bacillus licheniformis* (food intoxication) [6], *Escherichia coli* (food-borne illness, diarrhea) [7], *Pseudomonas aeruginosa* (infecting the chronic wounds) [8], and *Salmonella enterica* and *Salmonella typhimurium* (food intoxication) [9, 10]. To date, even though a wide range of synthetic and semisynthetic antibacterial medications are available for the treatment of infectious diseases [11], resistance of bacterial strains to the available antibiotic agents has been growing [12] and continues to challenge both developing and developed countries [13, 14]. Antimicrobial resistance is more frequent in low-income countries where one out of two people is dying prematurely from infections disease as compared to the developed countries [15, 16]. Moreover, the current cost of most of the chemotherapeutic agents is unaffordable to the patients that are especially found in developing countries [17]. As result of restricted access to proper medicine, in many developing countries, people are still using plants to treat the most prevalent infections [18].
The species Aloe weloensis belongs to the family Aloeaceae. The leaf latex of A. weloensis has been used for the management of wound and different skin diseases and pain from ear infection, headache, and rheumatism in Ethiopian folk medicine [19]. Usage of plant-derived antimicrobial agents might provide opportunities to access new antibiotics and minimizing the chances resistance to pathogenic microorganisms [20]. Therefore, discovery of new-generation drugs against infections from natural products is highly desired for development of effective, affordable, and safe antibacterial agents that would be used as a complimentary or alternative with conventional medicines. To the best of our knowledge, there were no previous studies that have been conducted so far on the antibacterial activities of the leaf latex of Aloe weloensis. Hence, the objective of this study was to evaluate the antibacterial effects of the leaf latex of Aloe weloensis against infectious bacterial strains.

2. Methods

2.1. Collection and Identification of Plant. The leaf latex of A. weloensis was collected in the month of March 2018 from the local area (Harego, southeast of Dessie). The plant material was identified and authenticated by Prof. Sebsebe Demissew, Department of Biology, Addis Ababa University. A sample specimen of the plant has been deposited at the National Herbarium with a voucher number of TT-003.

2.2. Preparation of Latex. The latex of A. weloensis was collected by cutting the leaves transversally near the base and then latex from the leaves eluted by gravity in sterile plates by keeping the leaves at 45 to 90 degrees. The elution process was closely observed to avoid mixing of the latex with gel from the cut leaves. It was then left in open air for a period of 3 days to allow evaporation of water parts. Finally, after drying, a dark-purple color latex was obtained and stored in a refrigerator before screening for antibacterial activity.

2.3. Preparation of Inoculum. Each inoculum of standard bacteria strain was prepared by inoculating a loopful of test bacteria from a colony in 50 ml nutrient broth medium and mixed gently until it formed a homogenous suspension. The bacterial cultures were incubated at 37°C and grown to the mid-log growth phase. Finally, bacterial numbers were adjusted with 0.5 McFarland turbidimetry.

2.4. Bacterial Strains. The four bacteria species which was used in this study were Gram-negative: Escherichia coli (ATCC 14700) and Pseudomonas aeruginosa (ATCC 35619) and Gram-positive: Staphylococcus aureus (ATCC 50080) and Enterococcus fecalis (ATCC 4623). All the standard bacterial strains were obtained from the Amhara regional laboratory.

2.5. Determination of Antibacterial Activity. Antibacterial activity of the leaf latex of A. weloensis (400, 500, and 600 mg/ml) was evaluated by the disc diffusion method [21]. In brief, the Mueller–Hinton agar (Himedia, Mumbai, India) plates were prepared by pouring into sterile Petri plates. The dried plates were swabbed uniformly with 0.1% of inoculum suspension and subsequently allowed to dry. The sterile individual discs loaded with various concentrations of the latex (400, 500, and 600 mg/ml) were placed onto the medium surface (pH 6.8–7.2). After diffusion of the latex into the medium, plates were incubated for 24 h at 37°C. For negative control, the discs were loaded with 10% dimethyl sulfoxide (Sigma-Aldrich, St. Louis, MO, USA) alone whereas ciprofloxacin (5 μg/disc; Sigma-Aldrich, St. Louis, MO, USA) was used as positive control. After incubation, antibacterial activity was determined by measuring the zone of inhibition around the disc by millimeter using a transparent ruler. The measurements were performed in triplicates to determine the mean of the inhibition zone.

2.6. Phytochemical Screening. The phytochemical screening test of A. weloensis leaf latex was carried out for the presence or absence of secondary metabolites such as anthraquinones, tannins, flavonoids, glycosides, alkaloids, and terpenoids by using the method as described by Trease and Evans [22] and Jones and Kinghorn [23].

2.7. Statistical Analysis. All the results were expressed as mean ± standard error of means (SEM) for each microorganism. Statistical analysis was performed with the Statistical Package for the Social Sciences (SPSS) version 21.0. The differences between different concentrations were assessed by one-way analysis of variance (ANOVA). The post hoc multiple comparisons Duncan test were used. Results were considered significant when p ≤ 0.05.

3. Results

3.1. Antibacterial Activity of the Extract. In vitro antibacterial activity of the latex was studied against clinically important Gram-negative and Gram-positive strains of bacterial pathogens as presented in Table 1. The antibacterial activity was determined by the presence or absence of the inhibition zone around the discs. The tested concentrations of the latex ranging between 400 and 600 mg/mL showed significant antibacterial activity against bacterial strain. The highest dose (600 mg/ml) of A. weloensis leaf latex revealed the maximum activity (25.93 ± 0.066 inhibition zone) followed by the dose 500 mg/ml against S. aureus. The lowest antibacterial activity was observed by the concentration 400 mg/ml (5.03 ± 0.03) against E. coli.

3.2. Phytochemical Screening. The results of Table 2 reporting the qualitative phytochemical analysis indicated the presence of all the tested bioactive compounds in the leaf latex of A. weloensis.

4. Discussion

Antimicrobial resistance is harmful to mankind because most of the infectious microorganisms understand the
isolated compounds from the leaf latex of A. weloensis, therefore further antibacterial activity investigation of A. weloensis is highly warranted to pave the way to discover an efficient antibacterial agent that can be used alone or in combination with conventional antibiotics to treat infectious diseases caused by pathogenic bacterial strains and possibly to treat resistance bacterial strains.

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Conflicts of Interest

We declare that we have no conflicts of interest.

Acknowledgments

We are grateful to the Department of Pharmacology, College of Medicine and Health Science, Wollo University, for encouragement and providing facilities for carrying out the present study.

References

Table 1: Antibacterial activity of different concentrations of Aloe weloensis leaf latex.

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>Leaf latex (400 mg/ml)</th>
<th>Leaf latex (500 mg/ml)</th>
<th>Leaf latex (600 mg/ml)</th>
<th>DMSO (30 μl/ml)</th>
<th>Ciprofloxacin (5 μg/disc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus</td>
<td>16.16 ± 0.16a</td>
<td>18.23 ± 0.12b</td>
<td>25.93 ± 0.066a</td>
<td>—a</td>
<td>27.03 ± 0.03a</td>
</tr>
<tr>
<td>E. coli</td>
<td>5.03 ± 0.03b</td>
<td>10.10 ± 0.05b</td>
<td>11.06 ± 0.06b</td>
<td>—b</td>
<td>26.36 ± 0.19a</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>12.13 ± 0.08b</td>
<td>14.06 ± 0.06b</td>
<td>14.16 ± 0.12a</td>
<td>—c</td>
<td>27.00 ± 0.00a</td>
</tr>
<tr>
<td>E. fecalis</td>
<td>15.10 ± 0.10a</td>
<td>17.03 ± 0.03b</td>
<td>0.12a —a</td>
<td>27.06 ± 0.03a</td>
<td></td>
</tr>
</tbody>
</table>

Results are given as mean ± SEM of ZI (excluded the diameter of the well) in mm (n = 3). *Statistical significance at P ≤ 0.05 (Duncan test); —, no zone of inhibition.

Table 2: Qualitative phytochemical constituents of Aloe weloensis leaf latex.

<table>
<thead>
<tr>
<th>Class of compounds</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthraquinone</td>
<td>+++</td>
</tr>
<tr>
<td>Tannins</td>
<td>++</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>+++</td>
</tr>
<tr>
<td>Glycosides</td>
<td>+++</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>+++</td>
</tr>
<tr>
<td>Terpenoids</td>
<td>+</td>
</tr>
</tbody>
</table>

+, weak; ++, moderate; ++++, strong.

5. Conclusion

In conclusion, the current work demonstrated that the antibacterial activities revealed by *A. weloensis* were effective enough against Gram-positive and Gram-negative bacterial strains. The results presented in this study are encouraging and verify the search for newer active compounds in *A. weloensis* that is responsible for its antibacterial potential. Therefore, further antibacterial activity investigation of isolated compounds from the leaf latex of *A. weloensis* is highly warranted to pave the way to discover an efficient antibacterial agent that can be used alone or in combination with conventional antibiotics to treat infectious diseases caused by pathogenic bacterial strains and possibly to treat resistance bacterial strains.

Acknowledgments

We are grateful to the Department of Pharmacology, College of Medicine and Health Science, Wollo University, for encouragement and providing facilities for carrying out the present study.

References

[9] E. Cavallaro, K. Date, C. Medus et al., “Salmonella typhi-
murium infections associated with peanut products,” New
immunosensor for the rapid detection of the foodborne
pathogen Salmonella enterica in milk samples,” Food control,
activity and antioxidant activity of traditional medic-
inal plants from the Balkan Peninsula,” NJAS-Wageningen
160525Final%20paperwith%20cover.pdf.
resistance on health and economic outcomes,” Clinical In-
[14] H. D. M. Coutinho, L. N. Cordeiro, and K. P. Bringel,
“Antibiotic resistance of pathogenic bacteria isolated from the
population of Juazeiro do Norte-Ceara. Rev. Bras. Ciên,
44850/1/9789241564489_eng.pdf.
Anti-Microbiennes de: pterocarpus Erinaceus Poir (Faboïdeae), Daniellia Oliveri (Rolfe) Hutch. et Dalz (Cae-
salpinoïdeae) et Anchnomanes Difformis (Blume) Engler
(Araceae), Utilisées en Médecine Traditionnelle dans la
Préfecture de Tchamba (TOGO),” Doc de Pharmacie, Univ.
Lomé, p. 87, 2012.
against human pathogenic bacteria,” IJBBR, International
Journal of Biotechnology and Bioengineering, vol. 4, no. 7,
Special Issue: African Traditional Medicine Day, WHO, Ge-
neva, Switzerland, 2010, http://apps.who.int/iris/docume-
ments/s21374en/s21374en.pdf.
[19] S. Demissew, I. B. Friis, T. Awas et al., “Four new species of
Aloe (Aloaceae) from Ethiopia, with notes on the ethics of
describing new taxa from foreign countries,” Kew Bulletin,
essential oils as potential antimicrobial agents,” Compre-
ensive Reviews in Food Science and Food Safety, vol. 11, no. 1,
extracts used externally in traditional medicine,” Journal of Eth-
[22] G. E. Trease and W. C. Evans, Pharmacognosy, Bailliere
[23] W. P. Jones and A. D. Kinghorn, “Extraction of plant sec-
ondary metabolites,” Natural Products Isolation, pp. 323–351,
2006.
[24] M. A. Bhata, R. A. Malika, P. Prakasha, and A. M. Lone,
“Preparation and evaluation of antibacterial potential of
Pithecellobium dulce root extract against gram positive and
gram-negative bacteria,” Microbial Pathogenesis, vol. 116,
activity and cytotoxicity of Pterocarpus erinaceus Poir
extracts, fractions and isolated compounds,” Journal of Eth-
five herbal extracts against Multi Drug Resistant (MDR)
strains of bacteria and fungi of clinical origin,” Molecules,
[27] F. T. Mambe, I. K. Voukeng, V. P. Beng, and V. Kuete,
“Antibacterial activities of methanol extracts from Alchornea
cordifolia and four other Cameroonian plants against MDR
phenotypes,” Journal of Taibah University Medical Sciences,
[29] Y. Tao, Y. Hideaki, N. Toshiro, K. Yumi, U. Hironori, and
R. Kazuo, “Selective cytotoxicity of glycyrrhetinic acid against
tumorigenic r/m H-M-SFME-1 cells: potential involvement of
H-Ras downregulation,” Toxicology Letters, vol. 192, no. 3,
availability of polyphenols,” Journal of Nutrition, vol. 130,
[31] C. Manach, A. Scalbert, C. Morand, C. Remesy, and
L. Jimenez, “Polyphenols: food sources and bioavailability,”
American Journal of Clinical Nutrition, vol. 79, no. 5,
flavonoids,” International Journal of Antimicrobial Agents,