ON CERTAIN QUASI-COMPLEMENTED AND COMPLEMENTED BANACH ALGEBRAS

PAK-KEN WONG

Department of Mathematics
Seton Hall University
South Orange, New Jersey 07079 U.S.A.

(Received February 27, 1978)

ABSTRACT. In this paper, we continue the study of quasi-complemented algebras and complemented algebras. The former are generalizations of the latter and were introduced in [4] and studied in [4] and [11]. Some results are proved.

KEY WORDS AND PHRASES. Quasi-complemented and complemented Banach algebras.

AMS(MOS) SUBJECT CLASSIFICATION (1970) CODES.

1. INTRODUCTION.

Quasi-complemented algebras, which are generalizations of complemented algebras, were introduced in [4] and studied in [4] and [11]. In this paper, we continue the study of these two classes of algebras.

In Section 3, we introduce the concept of continuous quasi-complementor on a semi-simple annihilator Banach algebra. This is similar to the concept
of continuous complementor given by Alexander in [1]. Let A be a simple annihilator Banach algebra such that $x \in \text{cl}_A(xA)$ for all x in A. If A is infinite dimensional, we show that every quasi-complementor on A is continuous. This result is not true if A is finite dimensional. In this case, we obtain that a quasi-complementor q on A is continuous if and only if the set E_q of all q-projections is closed and bounded in A. By using these results, we give a characterization of continuous quasi-complementors (Theorem 3.4).

Section 4 is devoted to the study of uniformly continuous quasi-complementors. Let A be a semi-simple annihilator Banach algebra in which $x \in \text{cl}_A(xA)$ for all x in A and q a quasi-complementor on A. Suppose that A has no minimal left ideals of dimension less than three. Then we show that A is a dense subalgebra of some dual B^*-algebra B and $A^q = A$ for all closed right ideals R of A. Also every continuous complementor on A is uniformly continuous.

2. NOTATION AND PRELIMINARIES.

For any subset S in an algebra A, let $\ell_A(S)$ and $r_A(S)$ denote the left and right annihilators of S in A, respectively. Let A be a Banach algebra. Then A is called an annihilator algebra, if for every closed left ideal J and for every closed right ideal R, we have $r_A(J) = 0$ if and only if $J = A$ and $\ell_A(R) = 0$ if and only if $R = A$. If $\ell_A(r_A(J)) = J$ and $r_A(\ell_A(R)) = R$, then A is called a dual algebra.

Let A be a Banach algebra which is a subalgebra of a Banach algebra B. For each subset S of A, $\text{cl}(S)$ (resp. $\text{cl}_A(S)$) will denote the closure of S in B (resp. A). Also $\ell(S)$ and $r(S)$ (resp. $\ell_A(S)$ and $r_A(S)$) denote the left and right annihilators of S in B (resp. A). We write $|| \cdot ||$ for the norm on A and $| \cdot |$ for the norm on B.
Let A be a Banach algebra and let L_r be the set of all closed right ideals in A. Following [4], we shall say that A is a (right) quasi-complemented algebra if there exists a mapping $q : R \to R^q$ of L_r into itself having the following properties:

1. $R \cap R^q = (0)$ (2.1)
2. $(R^q)^q = R$ (2.2)
3. If $R_1 \supseteq R_2$, then $R_{2}^q \supseteq R_{1}^q$ (2.3)

The mapping q is called a (right) quasi-complementor on A. We know that $R + R^q$ is always dense in A, $A^q = (0)$ and $(0)^q = A$ (see [4]). Hence $R^q = (0)$ if and only if $R = A$.

A quasi-complemented algebra A is called a (right) complemented algebra if it satisfies:

1. $R + R^q = A$ (2.4)

In this case, the mapping q is called a (right) complementor on A (see [6, p. 651, Definition 1]).

Let A be a semi-simple Banach algebra with a quasi-complementor q. A minimal idempotent f in A is called a q-projection if $(fA)^q = (1 - f)A$. The set of all q-projection in A is denoted by E_q. By Lemma 3.1 in [11], every non-zero right ideal of A contains a q-projection.

In this paper, all algebras and linear spaces under consideration are over the complex field. Definitions not explicitly given are taken from Rickart's book [5].

We end the section with two new examples of complemented and quasi-complemented algebras.

EXAMPLE 1. Let A be a dual B^*-algebra and ϕ a symmetric norming function. Then the algebra $A^{(0)}_\phi$ given in [10, p. 293] is a complemented algebra with the complementor $q : R \to (R^*)^q_{A^{(0)}_\phi}$ (Theorem 3.4 in [11]).
EXAMPLE 2. Let G be an infinite compact group with the Haar measure and A the algebra of all continuous functions on G, normed by the maximum of the absolute value and $L_1(G)$ the group algebra. It is well known that A and $L_1(G)$ are dual A^*-algebras which are not two-sided ideals of their completions in an auxiliary norm. It is easy to see that the mapping $q : R + \xi_A(R)^*$ (resp. $R + \xi_{L_1(G)}(R)^*$) is a quasi-complementor on A (resp. $L_1(G)$). However, by Theorem 3.4 in [11], q is not a complementor.

3. CONTINUOUS QUASI-COMPLEMENTORS.

Let A be a semi-simple annihilator Banach algebra with a quasi-complementor q and M_A the set of all minimal right ideals of A. For each $R \in M_A$, by Lemma 3.1 in [11], $R = fA$ for some q-projection f in A. Therefore, $R + R^q = fA + (1 - f)A$. Let P_R be the projection on R along R^q. Then P_R is continuous.

DEFINITION. Suppose $a_n \in A$ with $a_n A \in M_A$ ($n = 0, 1, 2, \ldots$). A quasi-complementor q on A is said to be continuous if whenever a_n converges to a_0, then $P_{a_n A}$ converges to $P_{a_0 A}$ uniformly on any minimal left ideal of A.

REMARK. This is similar to the definition of continuous complementor introduced by Alexander (see [1, p. 387, Definition]).

Let A be a semi-simple annihilator quasi-complemented Banach algebra such that $x \in \text{cl}_A(xA)$ for all x in A and $\{I_\lambda : \lambda \in \Lambda\}$ the family of all minimal closed two-sided ideals of A. Define q_λ by $R^q_\lambda = R^q \cap I_\lambda$ for all closed right ideals R of I_λ. Then by [4, p. 144, Theorem 3.6] A is the direct topological sum of $\{I_\lambda : \lambda \in \Lambda\}$ and q_λ is a quasi-complementor on I_λ. Let H_λ be a minimal left ideal of I_λ. Then H_λ is a Hilbert space under some equivalent inner product norm by [4, p. 145, Lemma 4.2]. Let B_λ be the algebra of all completely continuous linear operators on H_λ.

P. Wong
Then by the proof of [4, p. 146, Theorem 4.3], \(I_\lambda \) is a dense subalgebra of \(B \) such that \(||\cdot|| \) majorizes \(|\cdot| \) on \(I_\lambda \). By the proof of [8, p. 442, Lemma 5.1], \(B_\lambda \) and \(I_\lambda \) have the same socle.

Lemma 3.1. A quasi-complementor \(q \) on \(A \) is continuous if and only if each \(q_\lambda \) is continuous.

Proof. Let \(R \in M_A \) with \(R \subseteq I_\lambda_0 \) for some \(\lambda_0 \in A \). Then \(R = fA \), where \(f \) is a \(q \)-projection in \(I_\lambda_0 \). Hence, for all \(x \in A \), \(P_R(x) = fx \). If \(\lambda \neq \lambda_0 \), then \(I_\lambda I_\lambda_0 = (0) \) and so \(P_R(x) = 0 \) for all \(x \in I_\lambda \). Using this fact and the proof of [1, p. 387, Theorem 2.2], we can show that \(q \) is continuous if and only if each \(q_\lambda \) is continuous.

The following result is a generalization of [3, p. 471, Theorem 6.8].

Lemma 3.2. Let \(A \) be a simple annihilator Banach algebra in which \(x \in cl_A(xA) \) for all \(x \in A \). If \(A \) is infinite dimensional, then every quasi-complementor \(q \) on \(A \) is continuous.

Proof. Let \(H \) be a minimal left ideal of \(A \). As observed before, \(H \) is a Hilbert space under some equivalent inner product and \(A \) is a dense dual subalgebra of \(B \), the algebra of all completely continuous linear operators on \(H \).

Also \(||\cdot|| \) majorizes \(|\cdot| \) on \(A \) and \(H \) is a minimal left ideal of \(B \). Then by [4, p. 148, Theorem 5.4], \(q \) can be extended to a quasi-complementor \(p \) on \(B \); \(M^p = cl([M \cap A]^q) \) for all closed right ideals \(M \) of \(B \). We show that \(M^p = \ell(M)^* \). In fact, let \(S(M) \) be the smallest closed subspace of \(H \) that contains the range \(x(H) \) for all \(x \in M \). Since \(||\cdot|| \) and \(|\cdot| \) are equivalent on \(H \), it follows from [4, p. 145, Lemma 4.1] that

\[
S(M) = M \cap H = MH = (M \cap A) \cap H = (M \cap A)H. \tag{3.1}
\]

Therefore, we have

\[
S(M^p) = M^pH = cl([M \cap A]^q) \cap H = [M \cap A]^q \cap H. \tag{3.2}
\]
(see [4, p. 148] for the last equality). By the proof of [4, p. 145, Lemma 4.2],
M \cap A = c_{A}((M \cap A)HA). Since A is infinite dimensional, by [4, p. 145,
Theorem 4.2 (iii)] and (3.1)
\[
S(M) = [c_{A}(S(M)A)]^{*} \cap H = [c_{A}((M \cap A)HA))]^{*} \cap H
\]
= [M \cap A]^{*} \cap H.
Therefore, by (3.2), \(S(M) = S(M^{P}) \). Hence it follows from [3, p. 464, Lemma
4.1] and [3, p. 465, Theorem 4.2] that \(M^{P} = \ell(M)^{*} \). In particular, \(\ell \) is con-
tinuous by [1, p. 388, Theorem 2.4].

Suppose \(a_{n}A \in M_{n} \) (n = 0, 1, 2, \ldots) with \(a_{n} + o_{0} \) in \(||\cdot|| \).
Hence \(a_{n} + o_{0} \) in \(||\cdot|| \). Let L be a minimal left ideal of A. Then L is
a minimal left ideal of B and \(||\cdot|| \) and \(||\cdot|| \) are equivalent on L; also
\(a_{n}A = a_{n}B \) for all n. Let \(f_{n} \) be a (unique) q-projection contained in \(a_{n}A \).
Then \(P_{a_{n}A}(x) = f_{n}x \) for all \(x \) in A. Since \(\ell \) is continuous, \(P_{a_{0}A} \)
converges to \(P_{a_{0}A} \) uniformly on L in \(||\cdot|| \) and hence in \(||\cdot|| \). There-
fore \(q \) is continuous and this completes the proof.

Let A be a semi-simple annihilator quasi-complemented Banach algebra
such that \(x \in c_{A}(xA) \) for all \(x \) in A which is a dense subalgebra of a
B*-algebra B. Suppose \(||\cdot|| \) majorizes \(||\cdot|| \) on A. By [8, p. 442, Lemma
5.1], the set \(E \) of all hermitian minimal idempotents of B is contained
in the socle of A and so \(E \subseteq A \). Let \(E_{q} \) be the set of all q-projections
in A. For each \(e \in E \), by [4, p. 149, Lemma 6.4], there exists a unique
element \(Q(e) \in E_{q} \) such that \(Q(e)A = eA \); the mapping \(Q : e \mapsto Q(e) \) is a
one - one mapping from \(E \) onto \(E_{q} \) and is called the q-derived mapping
(see [3] and [4]).

As shown in [3, p. 475], Lemma 3.2 is not true in general, if the algebra
A is finite dimensional. In this case, we have the following result:
QUASI-COMPLEMENTED AND COMPLEMENTED BANACH ALGEBRAS

LEMMA 3.3. Let A be a simple finite dimensional annihilator Banach algebra with a quasi-complementor q and E_q the set of all q-projections in A. Then q is continuous if and only if E_q is a closed and bounded subset of A.

PROOF. By [4, p. 143, Corollary 3.2], q is a complementor on A. Let H be a minimal left ideal of A. Then H is a Hilbert space and A can be taken as the B^*-algebra of all linear operators on H. Let Q be the q-derived mapping. By [1, p. 388, Theorem 2.4], Q is continuous if and only if q is continuous. Now Lemma 3.3 follows from Lemma 4.1 in [11].

We have the main result of this section.

THEOREM 3.4. Let A be a semi-simple annihilator quasi-complemented Banach algebra such that $x \in cl_A (xA)$ for all $x \in A$ and let $\Lambda_0 = \{ \lambda \in \Lambda : I_\lambda \text{ is finite dimensional} \}$. Then a quasi-complementor q on A is continuous if and only if E_q^λ is closed and bounded for each $\lambda \in \Lambda_0$, where E_q^λ is the set of all q-projections in I_λ.

PROOF. This follows from Lemma 3.1, 3.2 and 3.3.

4. UNIFORMLY CONTINUOUS QUASI-COMPLEMENTORS.

In this section, we assume that A is a semi-simple annihilator Banach algebra with a quasi-complementor q such that $x \in cl_A (xA)$ for all $x \in A$. Once again, M_A will be the set of all minimal right ideals of A and E_q the set of all q-projections in A. Also let I_λ, H_λ, q_λ, and B_λ be as in §3. The norm on B_λ is denoted by $|\cdot|$.

DEFINITION. A quasi-complementor q on A is said to be uniformly continuous if $\{ P_{fA} : f \in E_q \}$ is closed and bounded with respect to $\| P_{fA} \|$, the operator bound norm of P_{fA}.

REMARK. A uniformly continuous quasi-complementor q is continuous. In fact, by Theorem 3.4, we can assume that A is simple and finite dimensional.
Let H be a minimal left ideal of A. By the proof of Lemma 3.3, A can be taken as the B^*-algebra of all linear operators on H. Then by [7, p. 259, Theorem 4], E_q is bounded. Since $||f|| = \sup\{||fh|| : h \in H$ and $||h|| \leq 1\}$, we have $||p_{fA}|| = ||f||$ for all $f \in E_q$. It follows now that E_q is closed. Hence by Theorem 3.4, q is continuous.

If u and v are elements of a Hilbert space H, $u \otimes v$ will denote the operator on H defined by the relation $(U \otimes v)(h) = (h, v)u$ for all h in H.

THEOREM 4.1. Let A be a semi-simple annihilator Banach algebra with a uniformly continuous quasi-complementor q in which $x \in cl_A(xA)$ for all x in A. Suppose that A has no minimal left ideals of dimension less than three. Then A is a dense subalgebra of some dual B^*-algebra B and $R^q = \ell(R)^* \cap A$ for all closed right ideals R of A.

PROOF. We know that q is continuous and so is q_λ ($\lambda \in \Lambda$). By [4, p. 148, Theorem 5.4], q_λ induces a quasi-complementor p_λ on B_λ. If H_λ is finite dimensional, then by [4, p. 143, Corollary 3.2], q_λ is a complementor and so by the proof of Theorem 4.3 in [11], p_λ has the form $J_\lambda^{p_\lambda} = \ell(J_\lambda)^*$ for all closed right ideals J_λ in B_λ. If H_λ is infinite dimensional, this is also true by the proof of Lemma 3.2.

We show that there exists a constant M such that

$$||h|| \leq |h| \leq M|h||$$

$h \in H_\lambda$, $\lambda \in \Lambda$. (4.1)

We follow the argument in [1, p. 393, Lemma 4.3]. It can be assumed that

$$||h|| \leq |h| \leq \sqrt{2}|h||$$

$h \in H_\lambda$, $\lambda \in \Lambda$. (4.2)

Suppose (4.1) does not hold. Then there exists x_n in H_n such that

$$||x_n|| = 1$$

and $|x_n| = k > n$. By (4.2), we can find z_n in H_n such that

$$||z_n|| = 1, ||z|| \leq \sqrt{2}$.

Write $z_n = a_n x_n + x'_n$ with $a_n \in C$, $x'_n \in H_n$ and $(x_n, x'_n) = 0$. Put $y_n = k^{-1}x_n + x'_n$ and $f_n = (y_n \otimes y_n)/(y_n, y_n)$. Then $f_n \in E_q$ and
\[\left\| \mathbf{f}_n \mathbf{A} \left(\mathbf{x}_n \right) \right\| = \left\| \mathbf{y}_n \otimes \frac{\mathbf{y}_n \mathbf{x}_n}{\left(\mathbf{y}_n, \mathbf{y}_n \right)} \right\| = \left\| \frac{\left(\mathbf{x}_n, \mathbf{y}_n \right)}{\left(\mathbf{y}_n, \mathbf{y}_n \right)} \right\| \mathbf{y}_n \rightarrow \infty. \]

Hence \(\left\{ \left\| \mathbf{f}_n \mathbf{A} \right\| \right\} \) is unbounded and this contradicts the uniform continuity of \(\mathbf{q} \). Therefore (4.1) holds. Now by using the argument in Theorem 4.3, in [11], we can complete the proof.

Theorem 4.1 shows that there is essentially one type of uniformly continuous quasi-complementors on \(\mathbf{A} \).

The following result generalizes [4, p. 153, Theorem 7.6].

COROLLARY 4.2. Let \(\mathbf{A} \) and \(\mathbf{B} \) be as in Theorem 4.1. Then \(\mathbf{q} \) is a complementor on \(\mathbf{A} \) if and only if \(\mathbf{A} \) is a left ideal of \(\mathbf{B} \).

PROOF. This follows from Theorem 4.1 and Theorem 3.4 in [11].

On the other hand, if \(\mathbf{q} \) is a complementor, then we have:

THEOREM 4.3. Let \(\mathbf{A} \) be a semi-simple annihilator Banach algebra such that \(\mathbf{A} \) has no minimal left ideal of dimension less than three. Then every continuous complementor \(\mathbf{q} \) on \(\mathbf{A} \) is uniformly continuous.

PROOF. By [6, p. 655, Theorem 4], \(\mathbf{A} \) is the direct topological sum of its minimal closed two-sided ideals \(\{ \mathbf{I}_\lambda : \lambda \in \Lambda \} \) each of which is a complemented and dual algebra. Let \(\mathbf{q}_\lambda, \mathbf{H}_\lambda \) and \(\mathbf{B}_\lambda \) be as before and \(\| \cdot \| \) the norm on \(\mathbf{B}_\lambda \).

By [1, p. 390, Theorem 3.2], \(\mathbf{q}_\lambda \) induces a complementor \(\mathbf{p}_\lambda \) on \(\mathbf{B}_\lambda \) and by [1, p. 391, Theorem 3.3], \(\mathbf{p}_\lambda \) has the form \(\mathbf{J}_\lambda = \mathbf{k}(\mathbf{J}_\lambda)^* \) for all closed right ideals \(\mathbf{J}_\lambda \) in \(\mathbf{B}_\lambda \). By [1, p. 393, Lemma 4.3], there exists a constant \(M \) such that

\[\| h \| \leq \| h \| \leq M \| h \| \quad (h \in \mathbf{H}_\lambda, \lambda \in \Lambda). \tag{4.3} \]

Let \(\mathbf{B} \) be the \(\mathbf{B}^*(\infty) \)-sum of \(\{ \mathbf{B}_\lambda : \lambda \in \Lambda \} \). Then \(\mathbf{B} \) is a dual \(\mathbf{B}^* \)-algebra and \(\mathbf{E} \) coincides with the set of all hermitian minimal idempotents in \(\mathbf{B} \). Since \(\mathbf{q} \) is a left ideal of \(\mathbf{B} \), it is well-known that there exists a constant \(k \) such that \(\| \mathbf{b} \| \leq k \| \mathbf{b} \| \| \mathbf{a} \| \) for all \(\mathbf{b} \) in \(\mathbf{B} \) and \(\mathbf{a} \) in \(\mathbf{A} \). Then
\[| | P f_A(x) | | = | | f(x) | | \leq k | | f | | \quad | | x | | = k | | x | | \quad \text{for all } x \text{ in } A \text{ and } f \text{ in } E \]

Hence \(\{ P f_A : f \in E \} \) is bounded. It remains to show that it is closed. Let \(\{ P f_n A \} \) be a Cauchy sequence, where \(f_n \in E \). We show that, for \(m \) and \(n \) large enough, \(f_m \) and \(f_n \) are contained in the same minimal closed two-sided ideal. Suppose this is not so. Then there exists some minimal closed two-sided ideal \(I_{\lambda_n} \) of \(A \) such that \(f_n \in I_{\lambda_n} \), but \(f_m \notin I_{\lambda_n} \). Let \(H_{\lambda_n} \) be the minimal left ideal in \(I_{\lambda_n} \). Since \(| f_n | = 1 \), we can choose \(h_n \in H_{\lambda_n} \) such that \(| f_n h_n | > 1/2 \) with \(| h_n | = 1 \). Since \(f_m I_{\lambda_n} = (0) \), by (4.3) we have

\[
\frac{1}{2} < | f_n h_n | = | f_n h_n - f_m h_n | \leq M | f_n h_n - f_m h_n | \leq M | P f_n A - P f_m A | | h_n | = M | P f_n A - P f_m A | .
\]

But \(\{ P f_n A \} \) is a Cauchy sequence; a contradiction. Therefore, we can assume that \(f_m \) and \(f_n \) belong to the same \(I_{\lambda_n} \). Hence,

\[
| f_n - f_m | = \sup \{ | (f_n - f_m) h | : h \in H_{\lambda_n} \text{ and } | h | \leq 1 \} \leq M | P f_n A - P f_m A | .
\]

and so \(\{ f_n \} \) is a Cauchy sequence in \(| | . | | \). Since \(E \) is closed in \(| | . | | \) by Theorem 4.2, in [11], \(f_n \to f \) in \(| | . | | \) for some \(f \in E \). Since

\[
| | (P f_n A - P f_A)(x) | | = | | f_n x - f x | | \leq k | | f_n - f | | | | x | | \quad \text{for all } x \text{ in } A,
\]

\(P f_n A \to P f_A \) and so \(\{ P f_A : f \in E \} \) is closed. This completes the proof.
REFERENCES

Submit your manuscripts at http://www.hindawi.com