ON THE OVERCONVERGENCE OF CERTAIN SERIES

M. BLAMBERT and R. PARVATHAM

Institut Fourier
Mathématiques Pures
Boîte postale 116
38402 ST MARTIN D'HERES
FRANCE

(Received April 27, 1978)

ABSTRACT. In this work, we consider certain class of exponential series with polynomial coefficients and study the properties of convergence of such series. Then we consider a subclass of this class and prove certain theorems on the overconvergence of such a series, which allow us to determine the conditions under which the boundary of the region of convergence of this series is a natural boundary for the function f defined by this series.

KEY WORDS AND PHRASES. LC-Dirichletian element, L-Dirichletian element, Convergence, Overconvergence.

AMS (MOS) SUBJECT CLASSIFICATION (1970) CODES. 30A16, 30A64.

1. INTRODUCTION.

Let us consider the following LC-dirichletian element

$$\{f\} : \sum_{n=1}^{\infty} P_n(x) \exp(-\lambda_n s), \quad (1.1)$$

where $P_n(s) = \sum_{j=0}^{m_n} a_{nj} s^j$, a_{nj} are complex constants with $a_{nj} \neq 0$, $s = \sigma + i\tau$.

\((\sigma, \tau) \in \mathbb{R}^2\) and \((\lambda_n)\) is a sequence of complex numbers such that \((|\lambda_n|)\) is a D-sequence. That is to say \((|\lambda_n|)\) is a sequence of positive real numbers satisfying
\[
0 < |\lambda_1| < |\lambda_2| < \ldots , \lim_{n \to \infty} |\lambda_n| = \infty. \tag{1.2}
\]

Let
\[
L = \lim \sup \left\{ \frac{\log n}{|\lambda_n|} / n \in \mathbb{N} - \{0\} \right\} \tag{1.3}
\]
\[
A_n = \max \left\{ |a_{nj}| / j \in (0, 1, \ldots, m_n) \right\} \tag{1.4}
\]
and
\[
\beta^* = \lim \sup \left\{ \frac{m_n}{|\lambda_n|} / n \in \mathbb{N} - \{0\} \right\}. \tag{1.5}
\]

Let \(\mathcal{E}_n\) be the set of points of \(\mathbb{C}\) which are zeros of \(P_n(s)\) and \(\mathcal{E} = \bigcup \mathcal{E}_n\). Let us denote by \(\mathcal{E}^d\) the derived set of \(\mathcal{E}\) and
\[
\mathcal{E}_\infty = \left\{ s \in \mathbb{C} \mid \exists s \in (n_j) P_n(s) = 0 \right\} \text{ where } (n_j) \text{ is an infinite subsequence of } \mathbb{N} - \{0\}
\]
depending on \(s\); let \(\mathcal{E}^* = \mathcal{E}^d \cup \mathcal{E}_\infty\). \(\mathcal{E}^*\) is a closed set. Let us suppose that \(\mathbb{C} - \mathcal{E}^*\) is non empty. We put
\[
\forall s \in \mathbb{C} - \mathcal{E}^*, \quad \delta(n, s) = -\frac{\log |P_n(s) \exp(-\lambda_n s)|}{|\lambda_n|}, \text{ for sufficiently large } n, \tag{1.6}
\]
\[
\delta_\ast(s) = \lim \inf \left\{ \delta_n(s) / n \in \mathbb{N} - \{0\} \right\} \tag{1.7}
\]
\[
\forall \varepsilon \in \mathbb{R}, \quad \mathcal{B}_\ast = \left\{ s \in \mathbb{C} - \mathcal{E}^* / \delta_\ast(s) > \varepsilon \right\}. \tag{1.8}
\]

In this paper, using a technique similar to that used by M. Blamert and J. Simeon [2], we prove two lemmas for a LC-dirichletian element which enable us to discuss the properties of absolute convergence and uniform convergence for (1.1) in \(\mathbb{C} - \mathcal{E}^*\) exclusively. Then we prove Jentzsch's theorem for a L-dirichletian element that is for element of the type (1.1) where \(\lambda_n\) are positive real numbers satisfying (1.2) \((\lambda_n)\) is a D-sequence and a theorem on the overconvergence for a L-dirichletian element.

2. MAIN RESULTS.

DEFINITION. - It is said that a function is sub-lipschitzian on an open set, if it is lipschitzian on each compact subset of that open set.
Lemma 1. Let \(\kappa \) be any compact subset of \(\mathbb{C} \). Then the following assertions are true.

1. \(\forall \exists \forall \) the function \(\kappa \ni s \rightarrow \delta(n, s) \) is Lipschitzian.

2. If \(\beta^* < \infty \), and if there exists a \(s_0 \in \mathbb{C} - \beta^* \) such that \(|\delta^*(s_0)| < \infty \), then the function \(\delta^* \) is sub-Lipschitzian on \(\mathbb{C} - \beta^* \).

Proof. Let \(\forall \exists \forall \) \(\kappa \ni \epsilon = \text{dist}(\kappa, \beta^*) \). Then it is easy to see that.

\[
\forall \exists \forall \forall \{ j \in \{1, 2, \ldots, m_n\} = \alpha_{n_j} \notin d_s, \epsilon \},
\]

where \(d_{s, \epsilon} \) is the open disc centred at \(s \) and of radius \(\epsilon \) and \(\{ \alpha_{n_j} \} \), \(j \in \{1, 2, \ldots, m_n\} \), is the sequence of zeros of \(P_n(s) \) (with its order of multiplicity is taken into account). More precisely let us show that.

\[
\forall \exists \forall \forall \forall \{ j \in \{1, 2, \ldots, m_n\} = \alpha_{n_j} \notin d_s, \epsilon \},
\]

Let \(G_\epsilon = \bigcup \{ d_{s, \epsilon} \} \). It is evident that \(\overline{G}_\epsilon \) the closure of \(G_\epsilon \) is a compact subset of \(\mathbb{C} - \beta^* \). Let \(\epsilon' \ni \bigcap \epsilon \notin \bigcap \epsilon \). The set of discs \(d_{s, \epsilon'} \) indexed by \(s \) on \(\overline{G}_\epsilon \) is an open covering of \(\overline{G}_\epsilon \). Hence we have a finite subcovering.

\[
\exists \bigcup_{j=1}^{k} d_{s_j, \epsilon'} = \overline{G}_\epsilon.
\]

Let \(s \in \kappa \) and \(s' \in d_{s, \epsilon} \); hence \(s' \in G_\epsilon \). Then \(s' \in \bigcup_{j=1}^{k} d_{s_j, \epsilon'} \) which implies that \(\exists s' \in d_{s_j, \epsilon'} \). Now

\[
\forall \exists \forall \forall \{ j \in \{1, \ldots, k\} \}
\]

and hence

\[
\forall \exists \forall \forall \{ j \in \{1, \ldots, k\} \} \quad P_n(s) \neq 0,
\]

which gives \(\forall \exists \forall \forall \{ j \in \{1, \ldots, k\} \} \quad P_n(s') \neq 0 \). As \(s \) is arbitrary on \(\kappa \) and \(s' \) is arbitrary on \(d_{s, \epsilon} \) we have
From which we have

$$\forall \epsilon \in]0, \epsilon_{K}[^{\mathbb{R}} \quad \forall n, n' \ni \exists j(1, \ldots, k) = \alpha_{nj} \not= s_{j}, \epsilon \} .$$

Under the above conditions related to \(n, s \) and \(s' \) with \(s \neq s' \),

$$|\delta(n, s) - \delta(n, s')| \leq |s-s'| + \frac{1}{|\lambda_{n}|} \sum_{j=1}^{m_{n}} \log \left\{ 1 + \frac{|s-s'|}{\epsilon} \right\}$$

$$\leq |s-s'| + \frac{|s-s'|}{|\lambda_{n}|} \sum_{j=1}^{m_{n}} \log \left(1 + \frac{|s-s'|}{\epsilon} \right)$$

$$\leq |s-s'| + \frac{|s-s'|}{|\lambda_{n}|} \sup_{x > 0} \left\{ \frac{\log(1+x)}{x} \right\} ;$$

as \(\sup_{x > 0} \left\{ \frac{\log(1+x)}{x} \right\} = 1 \), \(|\delta(n, s) - \delta(n, s')| \leq |s-s'| \left\{ 1 + \frac{m_{n}}{\epsilon |\lambda_{n}|} \right\} \). Putting

$$\mu_{n} = 1 + \frac{m_{n}}{\epsilon |\lambda_{n}|} ,$$

$$\forall \epsilon \in]0, \epsilon_{K}[^{\mathbb{R}} \quad \forall (s, s') \in \mathbb{K} \times \mathbb{K}$$

which proves the first part of the lemma.

Now let \(\mu_{n} = \lim_{n \to \infty} \mu_{n} = 1 + \beta_{n}/\epsilon \) with \(\epsilon \in]0, \epsilon_{K}[^{\mathbb{R}} \); as \(\exists s_{0} \in C-\epsilon^{*} \delta_{*}(s_{0}) < \infty \)

$$\forall \epsilon \in]0, \epsilon_{K}[^{\mathbb{R}} \quad \forall (s, s') \in \mathbb{K} \times \mathbb{K}$$

and

$$\forall (s, s') \in \mathbb{K} \times \mathbb{K}$$

where

$$\mu^{*}_{K} = \inf_{\epsilon \in]0, \epsilon_{K}[^{\mathbb{R}}} \left\{ \mu^{*}_{n}/\epsilon \right\} = 1 + \beta^{*}_{\epsilon_{K}} .$$

Hence

$$\forall (s, s') \in \mathbb{K} \times \mathbb{K}$$

which completes the proof of the lemma.

Under the condition (2) of Lemma 1, \(\delta_{*} \) is continuous on \(C-\epsilon^{*} \).
which implies that \(\mathcal{B}_{\alpha} \) is an open subset of \(\mathbb{C} - \varepsilon^* \); but \(\mathcal{B}_{\alpha} \) can have several connected components.

Lemma 2. When \(\beta^* < \infty \), then

\[
\forall \alpha \in \mathbb{R} \left\{ \mathcal{B}_{\alpha} \neq \emptyset \Rightarrow \forall \beta' \in \mathcal{B}_{\alpha} \mathcal{B}_{\alpha}^* \right. \forall n, n \geq n' \forall s \in \mathcal{K} \left| \prod_n \exp(-\lambda_n) < \exp(-\lambda_n^*(\alpha - \beta')) \right\}.
\]

Proof. Let \(\alpha \in \mathbb{R} \) such that \(\mathcal{B}_{\alpha} \neq \emptyset \) (otherwise the lemma is trivial) and let \(\mathcal{K} \) be a compact subset of \(\mathcal{B}_{\alpha} \). We can easily see that

\[
\forall s \in \mathbb{C} - \varepsilon^* \quad s \in \mathcal{K} \quad \exists \forall \varepsilon > 0 \quad \prod_n \exp(-\lambda_n) < \exp(-\lambda_n^*(\alpha - \beta'))
\]

where \(d_{s, \varepsilon} \) is the closed disc centred at \(s \) and of radius \(\varepsilon \). Hence

\[
\forall s \in \mathbb{C} - \varepsilon^* \quad \exists \forall \varepsilon > 0 \quad \prod_n \exp(-\lambda_n) < \exp(-\lambda_n^*(\alpha - \beta'))
\]

Let us consider the compact subset \(\mathcal{K} = \bigcup_{s \in \mathcal{K}} d_{s, \varepsilon} \), of \(\mathbb{C} - \varepsilon^* \). As

\[
\forall s \in \mathbb{C} - \varepsilon^* \quad s \in \mathcal{K} \quad \exists \forall \varepsilon > 0 \quad \prod_n \exp(-\lambda_n) < \exp(-\lambda_n^*(\alpha - \beta'))
\]

and hence

\[
\forall s \in \mathbb{C} - \varepsilon^* \quad \exists \forall \varepsilon > 0 \quad \prod_n \exp(-\lambda_n) < \exp(-\lambda_n^*(\alpha - \beta'))
\]

Since \(\mathcal{K} \) is a compact subset of \(\mathcal{B}_{\alpha} \), \(\forall s \in \mathcal{K} \quad \exists n \neq n' \quad \delta(n, s') > \alpha \); finally we have

\[
\forall s \in \mathcal{K} \quad \exists n \neq n' \quad \delta(n, s') > \alpha \quad (2.1)
\]
where ϵ is arbitrary in $]0, \epsilon[$. The set of discs $d_{s, \epsilon}$ indexed by s on κ is an open covering for κ and hence $\exists \bigcup_{s=1}^{k} d_{s, \epsilon} \supset \kappa$. Further we have $\forall \exists s \in d_{s, \epsilon}$.

Using (2.1) for the particular pair (s_j, s), we have

$$
\forall \beta > \beta^* \epsilon \in]0, \text{dist}(s_j, s)\left[n(=n_{s_j, \epsilon}) n \in \kappa^n \right].
$$

Let $n'' = \text{Max}\left\{ n_{s_j, \beta, \epsilon'} \mid j \in (1..k) \right\}$ and as $|s - s_j| < \epsilon$, we have

$$
\forall \exists \delta(n, s) > \alpha - |s - s_j|\left(1 + \frac{\beta'}{\epsilon} \right).
$$

Choosing $\epsilon = \epsilon' < \frac{\epsilon}{3}$ we have $\frac{\text{dist}(k, \epsilon')} {2} < \text{dist}(c^*, \kappa, \epsilon)$ and

$$
\forall \beta > \beta^* \epsilon \in]0, \frac{\epsilon}{2}[\text{ n'' nzn''}.
$$

where s is any arbitrary point of κ and n'' does not depend on s. Hence

$$
\forall \beta > \beta^* \epsilon \in]0, \frac{\epsilon}{2}[\text{ n'' nzn''} s \in \kappa.
$$

As β' is arbitrary and strictly greater than β^*, we have

$$
\forall \beta > \beta^* \in]0, \frac{\epsilon}{2}[\text{ n'' nzn''} s \in \kappa.
$$

and hence

$$
\forall \beta > \beta^* \in]0, \frac{\epsilon}{2}[\text{ n'' nzn''} s \in \kappa.
$$

THEOREM 1. - When $\beta^* < \infty$, $L < \infty$, the LC-dirichletian element $\{f\}$ converges absolutely on $\beta^*, L+\beta^*$ and uniformly on any compact subset of $\beta^*, L+\beta^*$.

PROOF. Let us suppose that $\beta^*, L+\beta^*$ is non empty. Let κ_0 be a compact subset of $\beta^*, L+\beta^*$. We know that $\exists \kappa_0 \subset \beta^*$. Let
\(\beta' \in]\beta^*, \alpha - L[\). From Lemma 2 we have,

\[\exists \forall \forall' \sum_{n, n' \geq n'}|P_n(s)\exp(-\lambda_n s)| < \exp(-|\lambda_n| (\alpha - \beta')) \]

where \(\alpha - \beta' > L \). Hence

\[\sum_{n, n' \geq n'}|P_n(s)\exp(-\lambda_n s)| < \exp(-|\lambda_n| (\alpha - \beta')) \]

and the series on the right hand side is convergent which proves that \(f \) converges absolutely and uniformly on \(\kappa_0 \). Since \(\kappa_0 \) is any arbitrary compact subset of \(\mathcal{D}_{*, L + \beta^*} \), \(f \) converges uniformly on any compact subset of \(\mathcal{D}_{*, L + \beta^*} \) and absolutely on \(\mathcal{D}_{*, L + \beta^*} \).

REMARK 1. By the following method, we obtain a bigger set of absolute convergence for \(f \). Let \(\mathcal{D}_{L} \) be supposed to be non-empty and \(L < \infty \).

Then \(\forall \exists \delta_*(s) > L + \varepsilon_s ; \exists \forall (n, s) > L + \varepsilon_s \) and

\[n' s \geq n' \]

\[\forall n' s \geq n' \]

\[\sum_{n, n' \geq n'}|P_n(s)\exp(-\lambda_n s)| < \sum_{n, n' \geq n'}\exp(-|\lambda_n| (\alpha + \beta')) \]

and as the series on the right hand side converges, the series (1.1) converges absolutely on \(\mathcal{D}_{L} \). In this result, we have no restriction on \(\beta^* \).

REMARK 2. \(f \) diverges on \(\mathcal{C} - \mathcal{C}^* - \mathcal{D}_{\Omega} \). If \(s \in \mathcal{C} - \mathcal{C}^* - \mathcal{D}_{\Omega} \), then

\[\delta_*(s) < 0 \] and \(\exists \delta_*(s) < -\alpha \). Hence \(\forall \exists \exists \delta(n, s) < -\alpha \)

\[n' s \geq n' \]

\[s \in \mathcal{C} - \mathcal{C}^* - \mathcal{D}_{\Omega} \]

where \((n, s) \) is an infinite subsequence of \(\mathbb{N} - \{0\} \). Therefore

\[|P_n(s)\exp(-\lambda_n s)| > \exp(\alpha|\lambda_n|) > 1 \]

and which shows that \(f \) diverges on \(\mathcal{C} - \mathcal{C}^* - \mathcal{D}_{\Omega} \). When \(L = 0 \), we have convergence of the series (1.1) in \(\mathcal{D}_{\Omega} \subset \mathcal{C} - \mathcal{C}^* \) and divergence in \(\mathcal{C} - \mathcal{C}^* - \mathcal{D}_{\Omega} \). We do not discuss the property of convergence of the series in \(\mathcal{C}^* \).

From here onwards we consider a \(L \)-dirichletian element,
\[
\{f\} : \sum_{n=1}^{\infty} A_n \exp(-\lambda_n s) \tag{2.2}
\]
where \(\{\lambda_n\}\) is a D-sequence (here \(\lambda_n\) are positive real numbers).

DEFINITION. It is said that a D-sequence \(\{\lambda_n\}\) is of the type \((\Lambda)\) if the following conditions are satisfied:

1. The Dirichlet series \(\sum_{j=1}^{\infty} \exp(-\lambda_s)\) converges on \(P = \{s \in \mathbb{C} \mid \sigma > 0\}\). (this gives that \(\sum_{j=1}^{\infty} \exp(-s(\lambda_n - \lambda_{jn}))\) converges on \(P\). Let \(\theta_n(s)\) be its sum at the point \(s\));

2. \(\forall \eta > 0\) the sequence of functions \(\theta_n(s)\) where \(\theta_n : P \ni s \rightarrow \theta_n(s)\) is bounded on \(P\);

3. For every \(\eta > 0\) the sequence of functions \(\theta_n^*(s)\) where \(\theta_n^* : P \ni s \rightarrow \sum_{j=1}^{\infty} \exp(-s(\lambda_n - \lambda_j))\) is bounded on \(P\).

EXAMPLE. – If \(\{\lambda_n\}\) is a D-sequence and \(\exists \mu > 0\) such that \(\inf(\lambda_{n+1} - \lambda_n) = \mu\), then it is easy to see that \(\{\lambda_n\}\) is of the type \((\Lambda)\).

If the D-sequence \(\{\lambda_n\}\) is of the type \((\Lambda)\), then we can easily show that \(L = 0\).

Now let us prove Jentzsch’s theorem for L-dirichletian element. This theorem for Dirichlet series with complex exponents was proved by T.M. Gallie [3]. First let us consider the associated Dirichlet series of \(\{f\}\).

\[\{f_A\} : \sum_{n=1}^{\infty} A_n \exp(-\lambda_n s)\]

where \(A_n\) is defined by (1.4). Let

\[\sigma_p^f = \text{Inf}\{\sigma \in \mathbb{R} \mid \lim_n |A_n \exp(-\lambda_n s)| = 0, n \to \infty\}\]

be the abscisse of pseudo convergence of \(\{f_A\}\). Then we know that

\[\sigma_p^f = \lim_{n \to \infty} \sup \left\{ \frac{\log A_n}{\lambda_n} \right\} ;
\]

when \(L = 0\), \(\sigma_p^f\) is the same as \(\sigma_c^f\), the abscisse of convergence of \(\{f_A\}\).
Let \(n \) and \(n' \) be two natural numbers such that \(n' \geq n \). Let \(E_{n,n'} \) denote the set, indexed by \((n,n')\), of points of \(\mathbb{C} \) which are zeros of the LC-dirichletian polynomial

\[
S_{n,n'}(S) = \sum_{j=n}^{n'} P_j(s) \exp(-s\lambda_j);
\]

let \(E \) denote the union of all sets \(E_{n,n'} \), corresponding to all pairs \((n,n')\) and \(E_{\infty} \) be the set formed by the points which are zeros for an infinity of polynomials \(S_{n,n'}(s) \). Let us put \(E^* = E^d \cup E_{\infty} \) where \(E^d \) is the derived set of \(E \). \(E^* \) is a closed subset of \(\mathbb{C} \). It is evident that \(E \supset \mathcal{E} \) and \(E_{\infty} \supset \mathcal{E}_{\infty} \) and hence \(E^* \supset \mathcal{E}^* \). We suppose in what follows that \(\mathbb{C} - E^* \neq \emptyset \) (which implies \(\mathbb{C} - \mathcal{E}^* \neq \emptyset \)). Then we have

THEOREM 2. When the D-sequence \(\left(\lambda_n \right) \) is of the type \(\frac{f_A}{n} \), \(\sigma_c < \infty \) and \(\beta^* < \infty \), then we have \(\left(\mathfrak{Fr}(\mathcal{E}_{\infty}) \cap \mathbb{C} - \mathcal{E}^* \right) \subset E^* \).

PROOF. Let us suppose that the theorem is not true. Then there exists a point \(b \in \left(\mathfrak{Fr}(\mathcal{E}_{\infty}) \cap \mathbb{C} - \mathcal{E}^* \right) \) and a disc \(d(b,\rho) \) centred at \(b \) of radius \(\rho > 0 \), included in \(\mathbb{C} - \mathcal{E}^* \) such that

\[
\exists n_0 \quad \forall n' \geq n_0 \quad \exists \in d(b,\rho) \quad S_{n,n'}(s) \neq 0.
\]

We have \(|P_n(s)\exp(-\lambda_n s)| \leq A_n(1+|s|)^{m_n} |\exp(-\lambda_n s)| \) and

\[
\forall \exists \in d(b,\rho) \quad (m/\lambda_n) < \beta' \quad \text{Let us take a certain} \quad \beta' > \beta^* \quad \text{and put} \quad \beta'^* n_0' \quad \text{such that} \quad \omega = \beta' \Log[1+\sup\{ |s|/s \in d(b,\rho) \}] - \inf\{ \sigma/s \in d(b,\rho) \} \quad \text{and hence}
\]

\[
\forall \exists \in d(b,\rho) \quad |P_n(s)\exp(-\lambda_n s)| < A_n \exp(\omega \lambda_n). \quad \text{From the definition of} \quad \frac{f_A}{n} \quad \text{we have}
\]

\[
\forall \exists \in d(b,\rho) \quad A_n < \exp(\sigma' \lambda_n). \quad \text{Hence putting} \quad n_1 = \max(n_0',n_0''), \quad \sigma' > \sigma_c \quad \text{and} \quad n_2 \quad \text{we get}
\]

\[
\forall \exists \in d(b,\rho) \quad |P_n(s)\exp(-\lambda_n s)| < \exp((\omega+\sigma') \lambda_n) \quad \text{with} \quad n_1 \quad \text{and} \quad n_2.
\]

Let \(S_{n,n'}(s) = \sum_{j=1}^{n} P_j(s) \exp(-\lambda_j s) \) and \(\forall s \in d(b,\rho) \quad T_{n,n}(s) = (S_{n,n}(s))^{1/\lambda_n}; \)

\[
[S_{n,n}(s)]^{1/\lambda_n} \quad \text{is defined to be equal to} \quad \exp((1/\lambda_n) \Log S_{n,n}(s)) \quad \text{where} \]

Im \log S_{n_1,n}(s) \in]-\pi,\pi]. For each integer \(n \geq n_1 \) the function

\[T_{n_1,n} : d(b,\rho) \ni s \to T_{n_1,n}(s) \text{ is holomorphic on } d(b,\rho). \]

We have

\[\forall s \in d(b,\rho), \mid T_{n_1,n}(s) \mid = \left(\sum_{j=1}^{n} P_j(s) \exp(-\lambda_j s) \right)^{1/\lambda_n} \leq \exp(\log n) \exp(\log n). \]

Since \((\lambda_n) \) is of the type \((\lambda) \) which implies \(L = 0 \), we have \(\lim_{n \to \infty} \exp(-\log n) = 1. \)

Hence the sequence of functions \((T_{n_1,n})_{n \geq n_1} \), is bounded and hence normal on \(d(b,\rho) \).

Let \(\kappa \) be a compact subset of \(d(b,\rho) \) such that \(\text{Int } \kappa \cap \partial \neq \emptyset \). From any extracted subsequence of \((T_{n_1,n}) \) we can extract a subsequence which converges uniformly on \(\kappa \) and the limit function is holomorphic on the \text{Int } \kappa.

Let \(\kappa_1 \) be a compact subset of \(d(b,\rho) \) such that \(\text{Int } \kappa \cap \text{Int } \kappa_1 \neq \emptyset \). Then we have \(\forall s \in \kappa_1, \lim_{n \to \infty} T_{n_1,n}(s) = 1. \)

Now \(\kappa \cup \kappa_1 \) is a compact subset of \(d(b,\rho) \). Then the subsequence extracted from the arbitrarily extracted subsequence of \((T_{n_1,n}) \) converges uniformly on \(\kappa \cup \kappa_1 \) to a limit function holomorphic in \(\text{Int } (\kappa \cup \kappa_1) \) and continuous on the boundary of \(\kappa \cup \kappa_1 \) and takes the value one at each point of \(\kappa_1 \). Hence the limit function takes the value one at each point of \(\kappa \cup \kappa_1 \). This results that the sequence \((T_{n_1,n}) \) converges to the same limit function on \(\kappa \cup \kappa_1 \).

As \(\kappa \) is any arbitrary compact subset of \(d(b,\rho) \) and \(\kappa_1 \) is any arbitrary compact subset of \(d(b,\rho) \cap \partial \neq \emptyset \) such that \(\text{Int } \kappa \cap \text{Int } \kappa_1 \neq \emptyset \), we have

\[\forall s \in d(b,\rho), \lim_{n \to \infty} T_{n_1,n}(s) = 1. \]

Let \(s_0 \in d(b,\rho) \cap (\mathbb{C} - \partial \neq \emptyset) \). Then

\[\forall \epsilon > 0, \exists n_1 = n_1(s_0,\epsilon) \geq n_1, n \geq n_1 \]

and hence
which gives
\[
\frac{\log |P_n(s_0) \exp(-\lambda_n s_0)|}{\lambda_n} > -\frac{\log 2}{\lambda_n} - \log(1+\epsilon);
\]
\[
\delta_*(s_0) > 0 \text{ as } \epsilon \text{ is arbitrary. Hence we arrive at a contradiction that } s_0 \notin \mathcal{B}_{\delta_0} \cap \mathbb{C}-\mathbb{E}^* \text{ which establishes the result.}
\]

Finally, let us prove a theorem on the overconvergence of \(\{f\} \) defined by (7). Before proving the theorem let us note that

REMARK 3. Let \(\Delta \) be any compact subset of \(\mathbb{C}-\mathbb{E}^* \) and \((\lambda_n) \) be a D-sequence of the type (\(\Lambda \)). We have
\[
|P_n(s) \exp(-\lambda_n s)| \leq A_n (1+|s|)^{\lambda_n} \exp(-\sigma_n).
\]
If \(s \in \Delta \), then
\[
|P_n(s) \exp(-\lambda_n s)| \leq A_n (1+m_\Delta)^{\lambda_n} \exp(\sigma_\Delta \lambda_n)
\]
where \(m_\Delta = \sup \{|s|/s \in \Delta\} \). As \(\Delta \) is a compact set, \(m_\Delta \) is finite; for sufficiently large \(n \) we have
\[
\frac{\log |P_n(s) \exp(-\lambda_n s)|}{\lambda_n} \leq \frac{\log A_n}{\lambda_n} + \frac{m_\Delta}{\lambda_n} \log(1+m_\Delta) + m_\Delta;
\]
\[
\delta_*(s) = -\frac{f_A}{\alpha_0 - \beta* \log(1+m_\Delta) - m_\Delta}.
\]
Hence \(\forall \Delta \subset \mathcal{B}_{*, \alpha_0 - \epsilon} \) with \(\alpha_0 = -\frac{f_A}{\alpha_0 - \beta* \log(1+m_\Delta) - m_\Delta} \). If
\[
\beta* < \frac{-\sigma_c - m_\Delta}{1+\log(1+m_\Delta)}, \text{ we have } \Delta \subset \mathcal{B}_{* \beta^*}.
\]

THEOREM 3. - When \((\lambda_n) \) is a D-sequence of the type (\(\Lambda \)), \(\beta* \in \mathbb{R} \) and \(\mathcal{B}_{* \beta^*} \neq \phi \) if there exist an infinite subsequence \((n_\nu) \), \(\nu \in \mathbb{N} \), of \(\mathbb{N}-\{0\} \)
and a sequence of strictly positive numbers \((\theta_\nu) \) such that
\[
\lim_{\nu \to \infty} \theta_\nu = +\infty
\]
and
\[
\forall \nu \in \mathbb{N}, \lambda_{n \nu + 1} > (1+\theta_\nu)\lambda_{n \nu}
\] (2.3)
then the sequence \(\{S_n(s)\} \), \(n \in \mathbb{N} \), where \(S_n(s) = \sum_{j=1}^{\infty} P_j(s) \exp(-\lambda_j s) \), converges at each point \(s \) of any open simply connected subset (whose intersection with \(\mathbb{C} - \mathbb{C}^* \) is non empty) of an open set included in \(\mathbb{C} - \mathbb{C}^* \) in which the function \(f \) defined by \(\{f\} \) is holomorphic.

PROOF. Let us choose 3 bounded domains \(\Delta_1, \Delta_2 \) and \(\Delta_3 \) in the following manner: \(\Delta_1 \subset \Delta_2 \), \(\Delta_2 \subset \Delta_3 \), \(\Delta_3 \subset \mathbb{C} - \mathbb{C}^* \), \(\Delta_1 \subset \mathbb{C}^* \) and \(\Delta_3 \) is included in an open subset of \(\mathbb{C} - \mathbb{C}^* \) in which the function \(f \) defined by \(\{f\} \) is holomorphic. Further let \(\text{Fr}(\Delta_1) \), \(\text{Fr}(\Delta_2) \) and \(\text{Fr}(\Delta_3) \) satisfy a condition of Hadamard's type, namely

\[
\exists \quad \log M_2 \leq b \log M_1 + (1-b) \log M_3
\]

where \(b \in [0, 1] \)

\[M_i = \max_{s \in \text{Fr}(\Delta_i)} |f(s)| \]

It is easy to see that \(\exists \Delta \subset \mathbb{C} - \mathbb{C}^* \). Let us consider the set \(\Delta \) which is non empty and is an interval. Let \(a_{\Delta} = \sup I \). Then

\[a_{\Delta} > b^* \quad \text{and} \quad \forall \quad \delta^* < a_{\Delta} - \epsilon \subset \Delta \].

We can easily show that,

\[a_{\Delta} = \inf \{\delta^*(s) | s \in \Delta \} \]

which implies that \(a_{\Delta} \) is a finite number. Hence from lemma 2,

\[
\exists \quad \forall \quad \forall \quad \forall \quad [P_n(s) \exp(-\lambda_j s)] < \exp(-\lambda_n (a_{\Delta} - \beta')) \]

Since \((\lambda_n) \) is a D-sequence of the type \((\lambda)\) and \(a_{\Delta} - \beta' > 0 \), there exists a finite number strictly positive \(B(\beta') \) such that

\[\forall \quad \forall \quad \sum_{j=n+1}^\infty |\exp(-\lambda_j s)| < B(\beta') \]

then we have for each \(n \geq n_1 \)
\[\sum_{j=n+1}^{\infty} \left| P_j(s) \exp(-\lambda_j s) \right| < B(\beta') \exp\{-\lambda_{n+1}(\alpha_{\Delta_3} - \beta')\}. \]

(2.4)

Now let \(I_2 = \{ \alpha \in \mathbb{R} \mid \beta_3 \geq \alpha \} \). We have

\[\forall \, \exists \, \forall \, \delta(n,s) \geq \frac{-\log A_n}{\lambda_n} - \frac{m_n}{\lambda_n} \log (1+|s|) + \sigma. \]

Let \(m_{\Delta_3} = \sup \{|s|/s \in \Delta_3\} \). Then

\[\forall \, \delta(n,s) \geq \frac{-\log A_n}{\lambda_n} - \frac{m_n}{\lambda_n} \log (1+m_{\Delta_3}) - m_{\Delta_3}, \]

which shows that \(\Delta_3 \subset \beta_3 \), with \(\alpha < -\sigma \frac{A_3}{c} - \beta^* \log (1+m_{\Delta_3}) - m_{\Delta_3} \), and hence \(I_2 \neq \emptyset \) and is an interval in \(\mathbb{R} \). Let \(\alpha_{\Delta_3} = \sup I_2 \). Then \(\forall \, \beta_3 < \alpha_{\Delta_3} - \varepsilon \in \Delta_3 \).

We can easily show that \(\alpha_{\Delta_3} = \inf \{ \delta_+(s) \mid s \in \Delta_3 \} \), which implies that \(\alpha_{\Delta_3} \) is a finite number. Once again, from lemma 2, we get

\[\forall \, \exists \, \forall \, |P_n(s)\exp(-\lambda_n s)| < \exp\{-\lambda_n(\alpha_{\Delta_3} - \beta')\} \]

which gives

\[\forall \, \sum_{s \in \Delta_3} |P_j(s)\exp(-\lambda_j s)| = \sum_{j=1}^{n_2-1} |P_j(s)\exp(-\lambda_j s)| + \sum_{j=n_2}^{n-1} |P_j(s)\exp(-\lambda_j s)| \]

\[\leq \max \left\{ \sum_{j=1}^{n_2-1} |P_j(s)\exp(-\lambda_j s)| / s \in \Delta_3 \right\} + \sum_{j=n_2}^{n} \exp(-\lambda_j(\alpha_{\Delta_3} - \beta')) \].

Let us choose \(\beta' > \beta^* \) such that \(\alpha_{\Delta_3} - \beta' \neq 0 \). Now we examine the two cases.

Case 1. If \(\alpha_{\Delta_3} - \beta' > 0 \), then

\[\sum_{j=n_2}^{n} \exp(-\lambda_j(\alpha_{\Delta_3} - \beta')) = \exp(\lambda_n(\alpha_{\Delta_3} - \beta')) \sum_{j=n_2}^{n} \exp(-\lambda_j(\alpha_{\Delta_3} - \beta')) < B''(\beta') \exp(\lambda_n(\alpha_{\Delta_3} - \beta')) \]

where \(B''(\beta') \) is the sum of the series \(\sum_{j=0}^{\infty} \exp(-2(\alpha_{\Delta_3} - \beta') \lambda_j) \).
Case 2. If \(\alpha_{\Delta_3} < -\beta' < 0 \), then

\[
\sum_{j=n_2}^{n} \exp(-\lambda_j (\alpha_{\Delta_3} - \beta')) = \sum_{j=n_2}^{n} \exp(\lambda_j |\alpha_{\Delta_3} - \beta'|) = \exp(\lambda_n |\alpha_{\Delta_3} - \beta'|) \sum_{j=n_2}^{n} \exp(-\lambda_j (\alpha_{\Delta_3} - \beta'))
\]

Since the \(D \)-sequence \(\lambda_n \) is of the type \((\Lambda)\) there exists a finite number strictly positive \(B'(\beta') \) such that

\[
\sum_{n \in \mathbb{N} - \{0\}} \exp(-\lambda_n |\alpha_{\Delta_3} - \beta'|) \leq B'(\beta')
\]

which implies that

\[
\sum_{j=n_2}^{n} \exp(-\lambda_j (\alpha_{\Delta_3} - \beta')) \leq B'(\beta') \exp(\lambda_n |\alpha_{\Delta_3} - \beta'|)
\]

On putting \(B''(\beta') = \text{Max}[B'(\beta'), B''(\beta')] \) we have

\[
\sum_{j=n_2}^{n} \exp(-\lambda_j (\alpha_{\Delta_3} - \beta')) \leq B''(\beta') \exp(\lambda_n |\alpha_{\Delta_3} - \beta'|)
\]

(2.5)

Using the generalized form of Hadamard three circle theorem \([4]\) we have

\[
\exists \quad \log M_{2,\nu} \leq b \log M_{1,\nu} + (1-b) \log M_{3,\nu} \quad (2.6)
\]

where

\[
M_{1,\nu} = \text{Max} \{|R_{n_{\nu}}(s)| / s \in \text{Fr}(\Delta_i)\}, i = 1, 2, 3
\]

with

\[
R_{n_{\nu}}(s) = f(s) - \sum_{j=1}^{n_{\nu}} P_j(s) \exp(-\lambda_j s)
\]

From (2.4) we have for \(n_{\nu} \geq n_1 \)

\[
M_{1,\nu} \leq B(\beta') \exp\{-\lambda_{n_{\nu} + 1}(\alpha_{\Delta_1} - \beta')\} < B(\beta') \exp\{-(1-b)\lambda_n (\alpha_{\Delta_1} - \beta')\}
\]

(2.7)

because of (2.3). On putting

\[
B_o = \text{Max} \{|f(s)| / s \in \text{Fr}(\Delta_3)\} + \text{Max} \left\{ \sum_{j=1}^{n_2 - 1} |P_j(s) \exp(-\lambda_j s)| / s \in \text{Fr}(\Delta_3) \right\}
\]

we have from (2.5) for \(n_{\nu} \geq n_2 \),

\[
M_{3,\nu} \leq B_o + B''(\beta') \exp(\lambda_n |\alpha_{\Delta_3} - \beta'|)
\]

Let \(B'(\beta') = \text{Max}(B_o, B''(\beta')) \). Then for \(n_{\nu} \geq n_2 \),
Then using (2.7) and (2.8) in (2.6) we get, for \(n \geq \max\{n_1, n_2\} \):

\[
\log M_{2,n} \leq b \log B(\beta') + (1-b) \log B'_0(\beta') + b(1+\varepsilon_n)(\alpha_{\Lambda_1} - \beta') + (1-b) \alpha_{\Lambda_3} - \beta' \]

Since \(\lim_{n \to \infty} \varepsilon_n = \infty \), we have \(\lim_{n \to \infty} (\alpha_{\Lambda_1} - \beta') = -\infty \), and hence \(\lim_{n \to \infty} \log M_{2,n} = -\infty \) which proves the theorem.

When the polynomial \(P_n(s) \) reduces to a complex number \(a_n, \), we get the famous Ostrowski's theorem [1] for Dirichlet series. Our theorem contains G.L. Luntz' theorem [5] as a particular case when \(P_n(s) = a_n s^{m_n} \).

COROLLARY. In theorem 3 if we replace (2.3) by the condition that there exists a sequence \((\varepsilon_n) \) of strictly positive numbers such that

\[
\lim_{n \to \infty} \varepsilon_n = \infty \quad \text{and} \quad \exists \quad \forall \quad n+1 > (1+\varepsilon_n) \lambda_n, \quad \text{then each point of } (\text{Fr}_{\Delta_o}^*) \cap \mathbb{C} - \mathbb{C}^*
\]

is a singular point for \(f \) defined by (2.2). In particular if \((\text{Fr}_{\Delta_o}^*) \subset \mathbb{C} - \mathbb{C}^* \), then \(\text{Fr}_{\Delta_o}^* \) is a natural boundary for \(f \).

PROOF. Let us suppose that the corollary is false. Then there exists a point \(b \in (\text{Fr}_{\Delta_o}^*) \cap \mathbb{C} - \mathbb{C}^* \) and a disc \(d(b, \rho) \) centred at \(b \) and of radius \(\rho > 0 \) on which \(f \) is holomorphic. As a result of theorem 3 the sequence \((S_n) \) converges on \(d(b, \rho) \). From remark 2 \(\{f\} \) diverges on \(\mathbb{C} - \mathbb{C}^* - \Delta_o^* \). There exists necessarily points common to \(\mathbb{C} - \mathbb{C}^* - \Delta_o^* \) and \(d(b, \rho) \). For these points there is a contradiction which establishes the corollary.

ACKNOWLEDGMENT. The second author would like to thank French Government for financial support.

REFERENCES

Laboratoire de Mathématiques Pures - Institut Fourier dépendant de l'Université Scientifique et Médicale de Grenoble associé au C.N.R.S.
B.P. 116
38402 ST MARTIN D'HERES (France)