ABSTRACT. It is proved here that a completely regular Hausdorff space X is pseudocompact if and only if for any continuous function f from X to a pseudocompact space (or a compact space) Y, $f^*\phi$ is z-ultrafilter whenever ϕ is a z-ultrafilter on X.

KEY WORDS AND PHRASES. Pseudocompact, βX, z-filter, z-ultra function.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. Primary 54D99.

1. INTRODUCTION.

For notations and basic results one is referred to [1]. We only consider here completely regular Hausdorff spaces.

Let f be continuous from X to Y. Let ϕ be a z-ultrafilter on X, then $f^*\phi$ denotes the z-filter $\{B \in Z(Y): f^{-1}(B) \in \phi\}$ on Y and is known to be prime. We further know that a prime z-filter is contained in a unique z-ultrafilter. Let $\Delta(f)\phi$ denote the z-ultrafilter containing $f^*\phi$. Thus we have a function $\Delta(f)$ from βX to βY sending ϕ to $\Delta(f)\phi$. The function f is called z-ultra if $f^*\phi = \Delta(f)\phi$ for every z-ultrafilter ϕ on X.
2. MAIN RESULTS

PROPOSITION. A continuous function \(f \) from \(X \) to \(Y \) is \(z \)-ultra if and only if for every zero-set \(B \) in \(Y \), \(\Delta(f)^{-1}(\beta^Y) = f^{-1}(B) \).

PROOF. Let \(f \) be \(z \)-ultra. Then, \(\phi \in \Delta(f)^{-1}(\beta^Y) \) if and only if \(\Delta(f)\phi = f^*\phi \in \beta^Y \). But this is equivalent to \(B \in f^*\phi \) or to \(f^{-1}(B) \in \phi \), which happens if and only if \(\phi \in f^{-1}(B) \).

Conversely, \(B \in f^*\phi \) and only if \(\phi \in f^{-1}(B) \), i.e. \(\Delta(f)\phi \in \beta^Y \), since \(f^{-1}(B) = \Delta(f)^{-1}(B) \). But \(\Delta(f)\phi \in \beta^Y \) is equivalent to saying that \(B \in \Delta(f)\phi \).

We see that \(f^* = \Delta(f) \).

In order to prove the main theorem of the paper we need the following observations for pseudocompact spaces. If \(X \) is pseudocompact, then a subset of \(\beta X \) is a zero-set if and only if it is closure of a zero-set in \(X \) and conversely, a subset of \(X \) is a zero-set in \(X \) if and only if its closure is so in \(\beta X \).

THEOREM. If a space \(X \) is pseudocompact then any continuous function \(f \) from \(X \) to any pseudocompact space \(Y \) is \(z \)-ultra. Conversely, if the inclusion of \(X \) in \(\beta X \) is \(z \)-ultra, then \(X \) is pseudocompact.

PROOF. Let \(B \) be a zero-set in \(Y \). Since \(\beta^Y \) is a zero-set in \(\beta Y \) as \(Y \) is pseudocompact, \(\Delta(f)^{-1}(\beta^Y) \) is a zero-set in \(\beta X \). Pseudocompactness of \(X \) implies that \(\Delta(f)^{-1}(\beta^Y) = \beta^X \) for some zero-set \(A \) in \(X \). We show that \(A = f^{-1}(B) \).

Since \(\Delta(f)/X = f \), we observe that \(\Delta(f)^{-1}(B) \cap X = f^{-1}(B) \). Clearly, \(\Delta(f)^{-1}(\beta^Y) \cap X = \Delta(f)^{-1}(B) \cap X = f^{-1}(B) \). Next, \(\Delta(f)^{-1}(\beta^Y) \cap X = \beta^X \cap X = A \). Hence \(f^{-1}(B) = A \), and we have \(f \) to be \(z \)-ultra.

Conversely, let \(i \) be the inclusion of \(X \) in \(\beta X \). Since \(\Delta(i)/X = i \), \(\Delta(i) \) is the identity on \(\beta X \). Let \(B \) be a nonempty zero-set in \(\beta X \). Since \(i \) is \(z \)-ultra, from the above proposition we have that \(B = \Delta(i)^{-1}(B) = i^{-1}(B) \). But \(i^{-1}(B) \cap X = \beta^X \cap X = \beta^X \cap X = \beta^X \cap X = \beta^X \cap X = A \). Hence \(f^{-1}(B) = A \), and we have \(f \) to be \(z \)-ultra.

As an application of our theorem we prove the following well known theorem due to Glicksberg [2].
THEOREM. If X is pseudocompact and Y is compact, then $X \times Y$ is pseudocompact.

PROOF. Let $f: X \times Y \to Z$ be a continuous function, Z some pseudocompact space. Consider a z-ultrafilter ϕ on $X \times Y$. Let $\pi_2: X \times Y \to Y$ denote the projection on the second coordinate. Since Y is compact and $\pi_2^*\phi$ is a z-filter, it is fixed as well. Let $y_0 \in \bigcap \pi_2^*\phi$. Hence ϕ_1, the restriction of ϕ to the subspace $X \times \{y_0\}$ is a z-ultrafilter on $X \times \{y_0\}$. Let f_1 denote the restriction of f to the subspace $X \times \{y_0\}$. Since X is pseudocompact, f_1 is z-ultra. Clearly, $f_1^* \subseteq f_1^*\phi$. Next, let $B \in f_1^*\phi$. Hence $f_1^{-1}(B) \in \phi_1$. Since $f_1^{-1}(B)$ contains $f_1^{-1}(B)$, $f_1^{-1}(B)$ intersects every member of ϕ. Thus $f_1^{-1}(B) \in \phi$ as it is a z-ultrafilter. We get that $B \in f^*\phi$. Hence $f^*\phi = f_1^*\phi_1$ and it follows that f is z-ultra.

ACKNOWLEDGEMENT

This work was done while the first author was visiting Mehta Research Institute, Allahabad in summer 1977.

REFERENCES

