SOME CONDITIONS ON FIXED RINGS

EDNA E. REITER
Department of Mathematics
University of Cincinnati
Cincinnati, Ohio 45221
U.S.A.

(Received February 12, 1979)

ABSTRACT. This paper deals with a question about the ascending and descending chain conditions on two-sided ideals. Using the ideas of the skew group ring, certain results for two-sided ideals are proved.

KEY WORDS AND PHRASES. Fixed rings, ascending and descending chain conditions on two-sided ideals, and skew group ring.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES:

1. INTRODUCTION.

Let R be an associative ring with an identity element 1, and let G be a group of automorphisms acting on R such that $|G|$, the order of G, is finite. In this paper we will prove several relationships between R and the fixed ring $R^G = \{r \in R : r^g = r \text{ for all } g \in G\}$. We answer the question raised by Fisher and Osterburg [7], that is, we prove that if R has no $|G|$-torsion (for $r \in G$, $|G|r = 0$ implies $r = 0$), and if $\text{Soc } R$ denotes the left (or right) socle of R,

...
then we have \((\text{Soc } R) \cap R^G \subseteq \text{Soc } R^G\). Thus for a semiprime ring with no \(|G|\)-torsion, \(\text{Soc } R \cap R^G = \text{Soc } R^G\).

We also answer a question about the ascending and descending chain conditions on two-sided ideals. It is well known that if \(|G|^{-1} \in R\) (i.e., if \(|G|\) is invertible in \(R\)) and if \(R\) satisfies the ascending or descending chain condition on left (right) ideals, then \(R^G\) also satisfies the same condition. However, the techniques used for one-sided ideals have not been applied to two-sided ideals. In this paper, we prove the analogous result for two-sided ideals by using the skew group ring of \(R\) and \(G\), \(R \rtimes G = \bigoplus_{g \in G} R_u\). Addition in \(R \rtimes G\) is componentwise; multiplication is given by the relations \((ru)(su) = (rs^{-1})_{u \circ h}\), extended linearly. The inverse question, posed as follows, remains open: If \(R\) is semiprime and \(|G|^{-1} \in R\), and if \(R^G\) satisfies the ascending (descending) chain condition on two-sided ideals, then must \(R\) satisfy the ascending (descending) chain condition on two-sided ideals? The analogous question is true for one-sided ideals.

For a left and right Noetherian ring, the Artin radical has been defined as the sum of all Artinian left ideals of the ring. If \(R\) is semiprime and \(|G|^{-1} \in R\), then \(A(R)\) is defined if and only if \(A(R^G)\) is defined. In the final section of this paper, we prove that under these conditions, \(A(R) \cap R^G = A(R^G)\).

2. THE SOCLES OF \(R\) AND \(R^G\).

First, consider the following theorem relating \(R\) and \(R \rtimes G\)-modules. The proof is a variation of the proof of Maschke's theorem. Note that all \(R \rtimes G\)-modules are certainly \(R\)-modules; on the other hand, the left \(R \rtimes G\)-submodules of \(R\) are the \(G\)-invariant left ideals of \(R\) (\(I \subseteq R\) such that \(I^g \subseteq I \forall g \in G\)).

Theorem 2.1 Let \(R\) be a ring and \(G\) a finite group of automorphisms of \(R\), and let \(0 \rightarrow N \rightarrow M \rightarrow N' \rightarrow 0\) be a short exact sequence of left (right) \(R \rtimes G\)-modules such that the map \(m \rightarrow |G|m\) is a bijection on \(M\). Then if the sequence
splits over R, it also splits over $R \ast G$.

Proof. See Fisher-Osterburg [7, Theorem 1.3]. They assume $|G|^{-1} \in R$, but the proof can be carried out easily without this as long as for any $m \in M$, $n \in N$, there exist m' and n' in M and N respectively such that $|G|m' = m$ and $|G|n' = n$.

From this, we obtain:

Corollary 2.2 Let M be a left (or right) $R \ast G$-module with $|G|$ a bijection on M. If M is semisimple as a left (or right) R-module, then M is $R \ast G$-semisimple.

Proof. Immediate.

Now we can apply this to solve the socle question.

Theorem 2.3 Let R be a ring with no $|G|$-torsion, and let $\text{Soc} R$ denote the left (or right) socle of R. Then $\text{Soc} R \cap R^G \subseteq \text{Soc} R^G$.

Proof. We give the proof for the left socle only. Note that $\text{Soc} R$ is a G-invariant left ideal of R; thus it is a left $R \ast G$-module. The simple components are minimal left ideals of R. These cannot be annihilated by $|G|$ so $|G|$ is a bijection on $\text{Soc} R$. We can apply Corollary 2.2: $\text{Soc} R$ is $R \ast G$-semisimple, i.e., $\text{Soc} R = \bigoplus_{i=1}^{n} K_i$, where each K_i is a minimal G-invariant left ideal of R.

We now claim that each $K_i \cap R^G$ is a minimal left ideal of R^G. For, suppose that X is a left ideal of R^G such that $0 \neq X \subseteq K_i \cap R^G$. Then $0 \neq RX \subseteq R(K_i \cap R^G) \subseteq K_i$; this implies $RX = K_i$. However, the fact that $|G|RX = RX$ forces $RX \cap R^G = X$, and the claim is proved.

Now, $(\text{soc} R) \cap R^G = (\bigoplus_{i=1}^{n} K_i) \cap R^G$. Each $K_i \cap R^G$ is a minimal of R^G and we will be finished if we can show that $(\bigoplus_{i=1}^{n} K_i) \cap R^G \subseteq \bigoplus_{i=1}^{n} (K_i \cap R^G)$. This is true, for suppose $\sum_{i=1}^{n} x_i \in R^G$, where $x_i \in K_i$. For any $g \in G$, $\sum_{i=1}^{n} x_i^g = \sum_{i=1}^{n} x_i$. Thus, $x_i^g - x_i = \sum_{j=1}^{n} x_j^g - x_j = 0, i = 1, \ldots n$, since the sum is direct and each K_i is G-invariant. These equations show that each $x_i \in R^G$.

Remark. This theorem was subsequently proved by R. Diop [6], and, with the extra assumption that $|G|^{-1} \in R$, by M. Lorenz [9].
We note the following corollary.

COROLLARY 2.4 Let R be a semiprime ring with no $|G|$-torsion. Then $(\text{Soc } R)$
\[\bigcap R^G = \text{Soc } R^G. \]

PROOF. By a theorem of Fisher and Osterburg [7], if R is semiprime with no $|G|$-torsion, then $\text{Soc } R^G \subseteq \text{Soc } R$.

3. **CHAIN CONDITIONS ON TWO-SIDED IDEALS.**

To deal with two-sided ideals in R and R^G, we again consider the skew group ring. In particular, we will use the following lemma.

LEMMA 3.1 Let R be any finite group. If R has the ascending (descending) chain condition on two-sided ideals, then R^G also satisfies the ascending (descending) chain condition on two-sided ideals.

PROOF. The proof follows the method of the Hilbert Basis Theorem. For $G = \{g_1, \ldots, g_n\}$, $I \subseteq R^G$, we define $I_k = \{r \in R : \text{ for some } r_1, \ldots, r_{k-1} \in R$, $r_1 g_i + \ldots + r_{k-1} g_{k-1} + ru \in I \}$ for $k = 1, \ldots, n$. For a chain of ideals $I_1, I_2, \ldots, I_j, \ldots$, let $I_{j,k}$ be the kth associated ideal of I_j as defined above. The n chains of ideals $I_{1,k}, I_{2,k}, \ldots, I_{j,k}, \ldots, k = 1, \ldots, n$ must each terminate; this forces the chain I_j in R^G to terminate.

It may be mentioned that the above lemma is true for any ring T and over-ring S such that there exists a finite subset of S, $\{s_1, \ldots, s_n\}$ such that $S = \bigcap_{i=1}^n Ts_i$ and $s_i T = Ts_i$.

It is well known (and easily proved) that for any ring S that has the ascending (descending) chain condition on two-sided ideals, any subring of the form eSe where $e^2 = e$ must also satisfy the same condition. We use this fact, together with Lemma 3.1, to prove the following theorem.

THEOREM 3.2 If $|G|^{-1} \in R$ and R satisfies the ascending (descending) chain conditions on two-sided ideals, then R^G satisfies the ascending (descending) chain condition on two-sided ideals. If $|G|^{-1} \in R$ and R has a composition series of two-sided ideals, then R^G has such a composition series also.
PROOF. Consider the element \(e = (1/|G|) \sum_{g \in G} u_g \in R \times G \). It is easy to show that \(e^2 = e \). Also, we claim that \(R^G \cong e(R \times G)e \). To prove this, use the ring isomorphism \(r \mapsto (ru_{g_1})e \), where \(g_1 \) is the identity of \(G \) to obtain \(R^G \cong R^G e = e(R \times G) e \). Then, since \(R \times G \) has the ascending (descending) chain condition on two-sided ideals, so does \(R^G \).

In the preceding Theorem 3.2, we may weaken the assumption that \(R \) has no \(|G|^{-1} \in R \) to the assumption that \(R \) has no \(|G| \)-torsion for the cases of the descending chain condition or the composition series property. This is true since \(|G| \) is in the center of \(R \) and \(R|G|^k, k = 1,2, ... \) is a descending chain of two-sided ideals which must terminate, forcing \(|G| \) to be invertible in \(R \).

We state this as the following corollary.

COROLLARY 3.3. If a ring \(R \) has no \(|G| \)-torsion, then if \(R \) satisfies the descending chain condition (has a composition series of two-sided ideals), \(R^G \) must also satisfy the descending chain condition (have a composition series of two-sided ideals).

PROOF. Evident from Theorem 3.2 and the paragraph above.

We conclude this section by noting an example due to Chuang and Lee [3]. This is a commutative Noetherian ring \(R \) with involution, such that \(R \) has no 2-torsion and the subring generated by the symmetric elements is not Noetherian. In a commutative ring, an involution is an automorphism of order 2, and the subring generated by the symmetric elements is the fixed ring. This example, then, shows that for the ascending chain condition, the hypotheses of Theorem 3.2 cannot be weakened to assume merely no \(|G| \)-torsion.

4. THE ARTIN RADICALS OF \(R \) AND \(R^G \).

In a left and right Noetherian ring \(R \), the Artin radical \(A(R) \) is defined as the sum of all right ideals of \(R \) that are Artinian as right \(R \)-modules. This radical turns out to be a two-sided ideal of \(R \); it is also equal to the sum of the left ideals of \(R \) that are left \(R \)-Artinian.
Let G be a finite group acting on a ring R without $|G|$-torsion. Then:

(i) If R is semiprime, then R^G is semiprime.

(ii) If R is semiprime and L is a G-invariant left ideal of R such that $\text{tr} \ L = 0$, then $L = 0$.

Now we can prove:

THEOREM 4.2 If R is semiprime and $|G|^{-1} \in R$, then $A(R) \cap R^G \subseteq A(R^G)$.

PROOF. First, we prove the following fact about right annihilators:

$$[r_R(A(R))]^G = r_{R^G}[A(R) \cap R^G].$$

Only one inclusion requires proof.

Let $x \in r_{R^G}[A(R) \cap R^G]$; that is, $x \in R^G$ and $[A(R) \cap R^G]x = 0$. Now $A(R)x$ is a G-invariant left ideal of R and $\text{tr} \ (A(R)x) = 0$. The Bergman-Isaacs is applicable so we have $A(R)x = 0$, i.e., $x \in [r_R(A(R))]^G$.

To prove the theorem, we show that $A(R) \cap R^G$ is an Artinian right ideal of R^G. By a theorem of Lenagan [8] if I is an ideal of a left and right
Noetherian ring such that I is left R-Artinian, then $R/r_{R}(I)$ is an Artinian ring. Thus, $R/r_{R}(A(R))$ is an Artinian ring. Since $|G|^{-1} \in R$, it follows easily that the fixed ring of this factor ring is Artinian. Using this together with the facts on the preceding page, we have the Artinian rings:

$$
\begin{align*}
&\frac{R}{r_{R}(A(R))} \\
\cong &\frac{R^G}{r_{R}(A(R)) \cap R^G}
\end{align*}
$$

And, from the first part of the proof, we have $R^C/(r_R[A(R) \cap R^G])$ is Artinian. It is true that a right ideal I of a ring S is contained in $A(S)$ if $S/r(I)$ is Artinian (see Chatters, Hajarnavis, and Norton [2], the proof of Theorem 1.3). Applying this, we have $A(R) \cap R^G \subseteq A(R^G)$.

To prove the other inclusion, we need the following theorem. Its proof is a variation of a proof by Cohen and Montgomery [4].

Theorem 4.3 Let R be a semiprime ring, left and right Noetherian with $|G|^{-1} \in R$. If $A = A(R^G)$ is the Artinian radical of R^G, then RA is an Artinian left R-module.

Proof. Since R is left and right Noetherian, there are left ideals of R, K_α, maximal in RA. And, since A is artinian, we may choose a finite family of these, k_1, \ldots, k_n, to minimize $K = A \cap (K_1 \cap \ldots \cap K_n)$.

We prove first that $K = 0$. For, suppose not. Since A is Artinian, the socle of R^G is essential as a left ideal in A. Also, since R^G is semiprime, $\text{Soc } (R^G)$ is a semisimple Artinian ring and has an identity element 1_S. Now, if $K \neq 0$:

$$
K \cap \text{Soc } R^G = (\text{Soc } R^G)e, \text{ where } e^2 = e \neq 0
$$

Consider $R(1_S - e) \subseteq RA$. The inclusion is proper since the sum $Re \oplus R(1_S - e)$ is not direct, and equality would force $Re = 0$ and hence $K = 0$. Therefore, we can choose a left ideal of R, K_0, so that K_0 is maximal in RA and:

$$
R(1_S - e) \subseteq K_0 \subseteq RA
$$
We now claim that \(e \notin K_0 \), which will make the ideal \(\bigcap (K_0 \cap K_1 \cap \ldots \cap K_n) \) properly smaller than \(K \), contradicting the choice of \(K_1, \ldots, K_n \) and thus forcing \(K = 0 \). To prove the claim, suppose that \(e \in K_0 \). Then obviously \(1_S \in K_0 \). Note that the sum \(A = A_1 \oplus A(1 - 1_S) \) is direct, and that \(\text{Soc } R = R^G \cdot 1_S \), so that \(\text{Soc } R^G \cap A(1 - 1_S) = 0 \). Since \(\text{Soc } R^G \) is essential in \(A \), we obtain \(A = A_1 \). Thus, \(RA = R_1 \subseteq K_0 \), and \(RA = K_0 \), a contradiction to the choice of \(K_0 \).

Now consider \(\bigcap_{i = 1}^n (K_i^G = L \subseteq RA) \). Certainly \(L \) is a \(G \)-invariant left ideal of \(R \) and \(L \cap A \subseteq K = 0 \). Also, \(L \cap R^G \subseteq RA \cap R^G = A \). We now have:

\[
L \cap R^G \subseteq L \cap A \cap R^G = 0
\]

Since \(L \cap R^G = 0 \), certainly \(\text{tr} (L \cap R^G) = 0 \). By the Bergman-Isaacs theorem, \(L = 0 \). Thus, there is a natural \(R \)-module embedding of \(RA \) in the finite direct sum of simple left \(R \)-modules, \(\bigoplus_{i = 1}^n \bigoplus_{g \in G} RA/(K_i^G) \). Now it is immediate that \(RA \) has finite length as a left \(R \)-module.

We close with two corollaries.

COROLLARY 4.4 Let \(R \) be left and right Noetherian, semiprime with \(|G|^{-1} \in R \). Then \(A(R^G) \subseteq A(R) \).

PROOF. We have proved that \(RA(R^G) \) is left Artinian; \(A(R) \) is the sum of all Artinian left ideals. Thus, \(A(R^G) \subseteq RA(R^G) \subseteq A(R) \).

COROLLARY 4.5 Let \(R \) be left and right Noetherian, semiprime with \(|G|^{-1} \in R \). Then \(A(R^G) = A(R) \cap R^G \).

PROOF. Theorem 4.2 and Corollary 4.5.
REFERENCES

