ON THE PARTITION PROPERTY OF MEASURES ON P^λ_κ

DONALD H. PELLETIER
Department of Mathematics
York University
Downsview, Ontario
Canada, M3J 1P3

(Received September 18, 1981)

ABSTRACT. The partition property for measures on P^λ_κ was formulated by analogy with a property which Rowbottom [1] proved was possessed by every normal measure on a measurable cardinal. This property has been studied in [2], [3], and [4]. This note summarizes [5] and [6], which contain results relating the partition property with the extendibility of the measure and with an auxiliary combinatorial property introduced by Menas in [4]. Detailed proofs will appear in [5] and [6].

KEY WORDS AND PHRASES. Supercompact cardinals, measures with the partition property, extendible measures.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODE. 03E55.

I. DEFINITIONS AND SUMMARY OF KNOWN RESULTS.

Where κ, λ are infinite cardinals with $\kappa \leq \lambda$, P^λ_κ denotes the set of all subsets of $[\kappa]^\lambda$ of cardinality κ. A measure, μ, on P^λ_κ is a $\{0,1\}$-valued function defined on subsets of P^λ_κ satisfying

1. $\forall \alpha < \lambda$, $\mu(\{\alpha\}) = 0$ (non-triviality);
2. $\mu(\emptyset) = 0$ and $\mu(P^\lambda_\kappa) = 1$;
3. if $\gamma < \kappa$ and $\{X_\alpha | \alpha < \gamma\}$ is pairwise disjoint, then $\mu(\bigcup X_\alpha) = \sum_{\alpha < \gamma} \mu(X_\alpha)$ (κ-additivity).

A measure μ on P^λ_κ is called normal if, in addition, it satisfies

1. $\forall f : P^\lambda_\kappa \to \lambda$ such that $\mu(\{p \in P^\lambda_\kappa | f(p) \in \alpha\}) = 1$, $\exists X \subseteq P^\lambda_\kappa$ with $\mu(X) = 1$
2. and $\exists \alpha < \lambda$ such that $\forall p \in X$, $f(p) = \alpha$.

κ is called λ-supercompact if there exists a normal measure on P^λ_κ.

\(\kappa \) is supercompact if it is \(\lambda \)-supercompact \(\forall \lambda \geq \kappa \).

This concept was introduced in [7] because of its analogy with the notion of a measurable cardinal. (A cardinal \(\kappa \) is measurable if there exists a \(\mu : P(\kappa) \to \{0,1\} \) satisfying (1) - (3) above.) Many questions about measures on \(P^\kappa \) are motivated by attempts to generalize results that are known for measurable cardinals.

A measure \(\mu \) on the measurable cardinal \(\kappa \) is called normal if \(\forall f : \kappa \to \kappa \) such that \(\mu(\{ \gamma < \kappa | f(\gamma) < \gamma \}) = 1 \), \(\exists X \subseteq \kappa \) with \(\mu(X) = 1 \) and \(\exists \alpha < \kappa \) such that \(\forall \gamma \in X , f(\gamma) = \alpha \).

The theorem that motivates the partition property is the following one of Rowbottom [1]: if \(\mu \) is a normal measure on a measurable cardinal \(\kappa \) and if \(F : \{ \{ \alpha, \beta \} | \alpha < \beta < \kappa \} \to \{0,1\} \), then \(\exists H \subseteq \kappa \) with \(\mu(H) = 1 \) and \(\exists I \in \{0,1\} \) such that \(F(\{ \alpha, \beta \}) = I \) whenever \(\alpha < \beta \) and \(\alpha, \beta \in H \).

Where \(X \subseteq P^\kappa \), let \([X]^2 = \{ \{ p, q \} | p, q \in X \& p \neq q \} \). A subset \(X \subseteq P^\kappa \) is called homogeneous for \(F \), where \(F : [P^\kappa]^2 \to \{0,1\} \), if \(F \) is constant on \(\{ \{ p, q \} \in [X]^2 | p \subseteq q \& q \subseteq p \} \). A normal measure \(\mu \) on \(P^\kappa \) is said to have the partition property (which we abbreviate by Part (\(\mu \))) if \(\forall F : [P^\kappa]^2 \to \{0,1\} \), \(\exists X \subseteq P^\kappa \) with \(\mu(X) = 1 \) which is homogeneous for \(F \).

By analogy with Rowbottom's theorem, it was natural to conjecture that every normal measure on \(P^\kappa \) would have the partition property. The following list of theorems summarizes the results that are known.

THEOREM A (Menas [4]). If \(\kappa \) is \(2^{<\kappa} \)-supercompact, then there exist \(2^{2^\kappa} \)-many normal measures on \(P^\kappa \) with the partition property.

THEOREM B (Solovay; published in [4]). If \(\kappa \) is supercompact and \(\lambda > \kappa \) is \(\beta \)-supercompact for some \(\beta \geq \lambda \) (in particular, if \(\lambda \) is measurable), then there is a normal measure on \(P^\lambda \) without the partition property.

THEOREM C (Solovay, assuming GCH: Menas, without GCH [4]). If \(\kappa \) is supercompact, then for certain small cardinals (e.g. \(\lambda = \kappa^+ \) or \(\lambda = 2^\kappa \)) every normal measure on \(P^\kappa \) has the partition property.

THEOREM D (Kunen [3], details are in [6]). If \(\kappa \) is supercompact, then the least \(\alpha > \kappa \) such that \(P^\kappa \) bears a normal measure without the partition property.
is Π^1_1-indescribable and inaccessible.

2. **MENAS' PROPERTY χ.**

In his proof of Theorem A, Menas introduced an auxiliary combinatorial property. A measure μ on P_κ^λ is said to have property χ (which we will abbreviate as $\chi(\mu)$) if there exists an $f: \kappa \rightarrow \kappa$ such that

$$\mu(\{p \in P_\kappa^\lambda \mid f(|p \cap \kappa|) = |p| \land \forall \alpha < |p \cap \kappa|, f(\alpha) < |p \cap \kappa|\}) = 1 .$$

His proof of Theorem A can be broken into three lemmas.

LEMMA A_1. Part(\mu) iff $\exists X \subseteq P_\kappa^\lambda$ with $\mu(X) = 1$ such that $\forall p, q \in X (p \subseteq q \rightarrow |p| < |q \cap \kappa|)$.

LEMMA A_2. If κ is $2^{\lambda^\kappa} < \kappa$-supercompact, then there exist $2^{2^{\lambda^\kappa}} < \kappa$-many normal measures on P_κ^λ with property χ.

LEMMA A_3. For any normal measure, μ, on P_κ^λ, $\chi(\mu) \rightarrow \text{Part}(\mu)$.

His proof of Lemma A_3 uses the characterization of Part(\mu) given in Lemma A_1.

3. **RESTRICTION MEASURES, EXTENDIBLE MEASURES, AND ELEMENTARY EMBDDEDS.**

Suppose $\kappa \leq \alpha \leq \beta$ and $g: P_\kappa^{\beta} \rightarrow P_\kappa^{\alpha}$, If μ is a measure on P_κ^{β}, then $g_\kappa(\mu)$ is the $\{0,1\}$-valued function defined on subsets of P_κ^{α} by

$$g_\kappa(\mu)(X) = 1 \text{ iff } \mu(\{p \in P_\kappa^{\beta} \mid g(p) \in X\}) = 1 .$$

For the function $g(p) = p \cap \alpha$, it can be proved that $g_\kappa(\mu)$ is a measure on P_κ^{α}; it is called the restriction of μ to P_κ^{α} and is denoted by $\mu|\alpha$. In this same situation, if ν is a measure on P_κ^{α}, we say that ν is β-extendible if there exists a measure μ on P_κ^{β} such that $\nu = \mu|\alpha$.

For a normal measure, μ, on P_κ^{λ}, let M denote the transitive collapse of P_κ^{λ}/μ, the ultrapower of the universe, V_κ^λ/μ, constructed from μ and let $j_\mu: V \rightarrow M$ be the corresponding elementary embedding. (See [7] for details).

THEOREM E ([7]). Let $\kappa \leq \alpha \leq \beta$; let μ be a normal measure on P_κ^{β} and let $\nu = \mu|\alpha$. Then there exists an elementary embedding $k: M_\nu \rightarrow M_\mu$ such that $k \circ j_\nu = j_\mu$.

4. **THEOREMS.**

THEOREM 1. ([5]). For any normal measure μ on P_κ^{λ}, $\chi(\mu)$ iff there exists an $f: \kappa \rightarrow \kappa$ such that $j_\mu(f)(\alpha) = \lambda$.
This alternate characterization of property \(\chi \) in terms of the behaviour of the associated elementary embedding can be used to provide easier proofs of Theorems A and C. It is also crucial to the proof of Theorem 2 which shows that Menas' property \(\chi \) is not equivalent to the partition property.

THEOREM 2. ([6]). Let \(\kappa < \eta < \lambda < \text{the least inaccessible cardinal} \) \((2^\kappa)^+ \leq \lambda < \eta\), let \(\kappa \) be \(\lambda \)-supercompact, and let \(\mu \) be any normal measure on \(P_\kappa \lambda \); then there exists a cardinal \(\sigma \in [\kappa, \lambda) \) such that \(\text{Part}(\mu|\sigma) \) and \(\neg \chi(\mu|\sigma) \).

The proof uses Theorem 1 and Theorem E to get \(\neg \chi(\mu|\sigma) \) and Theorem D to get \(\text{Part}(\mu|\sigma) \).

THEOREM 3. ([5]). Suppose \(\phi(\alpha, \xi) \) is a formula in \(L_{ZF} \) satisfying

1. \(\phi(\alpha, \xi_1) \land \phi(\alpha, \xi_2) \rightarrow \xi_1 = \xi_2 \),
2. \(\forall \nu < \kappa \), \(\exists \xi < \kappa \) \(\phi(\alpha, \xi) \);

let \(\kappa < \lambda \) and assume that for some \(\beta > \lambda \), there exists a normal measure \(\mu \) on \(P_\kappa \beta \) such that \(M_\mu \models \phi(\kappa, \lambda) \); then \(\chi(\mu|\lambda) \).

In particular, if (i) and (ii) hold for \(\phi(\alpha, \xi) \) and \(\nu \) is a normal measure on \(P_\kappa \lambda \) which is \(\beta \)-extendible to a measure \(\mu \) on \(P_\kappa \beta \) for which \(M_\mu \models \phi(\kappa, \lambda) \), then \(\chi(\nu) \) (and hence \(\text{Part}(\nu) \) by Lemma A.3).

The proof uses Theorem 1 in conjunction with Theorem E.

Theorem 3 can be used to show that certain measures are not extendible. The existence of non-extendible measures on a supercompact cardinal is known. In fact, if \(\kappa \) is supercompact and if \(\mu \) is minimal in the Mitchell ordering of normal measures on \(P_\kappa \lambda \) (see [7] for this definition), it can be shown that \(\mu \) is not \(2^{\kappa} \)-extendible. Here, we show that Solovay's "glue-together" measures are not extendible.

Where \(\kappa \) is \(\lambda \)-supercompact and \(\lambda \) is measurable, the so called "glue-together" measures are defined as follows: fix a normal measure \(\tau \) on \(\lambda \) and a normal measure \(\nu \) on \(P_\kappa \lambda \), and for \(X \subseteq P_\kappa \lambda \), define \(\nu(X) = \tau(\{\sigma < \lambda \mid \nu(X \cap P_\kappa \sigma) = 1 \}) \); this is a special case of the construction used by Solovay in his proof of Theorem B.

THEOREM 4. ([5]). If \(\kappa \) is \(\lambda \)-supercompact where \(\lambda \) is the least measurable cardinal greater than \(\kappa \), then the "glue-together" measures on \(P_\kappa \lambda \) are not \(2^\lambda \)-extendible.
extendible.

The proof uses Theorem 3 in conjunction with Theorem B and Lemma A_3.

ACKNOWLEDGEMENT. This work was partially supported by the Natural Sciences and Engineering Research Council of Canada under grant # A8216.

REFERENCES
