ON SOME FIXED POINT THEOREMS IN BANACH SPACES

D.V. PAI and P. VEERAMANI

Department of Mathematics, Indian Institute of Technology
Powai, Bombay - 400076, India

(Received March 28, 1980, and in revised form December 22, 1980)

ABSTRACT. In this paper, some fixed point theorems are proved for multi-mappings as well as a pair of mappings. These extend certain known results due to Kirk, Browder, Kanna, Ćirić and Rhoades.

KEY WORDS AND PHRASES. Normal structure, Multi-mapping, Uniformly convex Banach Space.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. 47H10, 54E15, 46A05.

1. INTRODUCTION.

A result of continuing interest in fixed point theory is one due to Kirk [6]. This states that a non-expansive self-mapping of bounded, closed and convex subset possessing normal structure in a reflexive Banach space has a fixed point. The interest in this result has been further enhanced due to simultaneous and independent appearance of results of Browder [2] and Göhde [5] which are essentially special cases of the result of Kirk. Recently Kannan [6] and Ćirić [2] have obtained results in basically the same spirit by suitably modifying the non-expansive condition on the mapping and the condition of normal structure on the underlying set. In this paper we give a fixed point result for multi-mappings (Theorem 2.1) and extend the results of Kannan [6] and Ciric [3] to a pair of mappings (Theorems 3.1 and 3.2). This enables us to establish convergence of Ishikawa iterates (cf. [9]) for a pair of mappings.
2. A FIXED POINT THEOREM FOR MULTI-MAPPINGS.

Let K be a closed, bounded and convex subset of a Banach space X. For $x \in X$, let $\delta(x;K)$ denote $\sup \{ \|x-k\| : k \in K\}$ and let $\delta(K)$ denote the diameter of K. Recall that a point $x \in K$ is called a non-diametral point of K if $\delta(x;K) < \delta(K)$ and that K is said to have normal structure whenever given any closed bounded convex subset C of K with more than one point, there exists a non-diametral $x \in C$.

It is well-known (cf. [4]) that a compact convex subset of an arbitrary Banach space and a closed, bounded and convex subset of a uniformly convex Banach space have normal structure. With K as before, let $r(K)$ denote the radius of K.

Let M denote the Chebyshev centre of K: $\inf \{ \delta(x;K) : x \in K\}$ and let K_c denote the Chebyshev centre of K.

Theorem 2. Let K be a nonempty weakly compact convex subset of the Banach space X. Assume K has normal structure. Let $T:K \to 2^K$ be a mapping satisfying:

for each closed convex subset F of K invariant under T, there exists some $\alpha(F), 0 < \alpha(F) < 1$, such that

$$\delta(Tx,Ty) \leq \max \{ \delta(x,F), \alpha(F) \delta(F) \}$$

for each $x, y \in F$.

Then T has a fixed point x_0 satisfying $Tx_0 = \{x_0\}$.

Proof. We imitate in parts the proof of Kirk's theorem. Let \mathcal{F} denote the collection of non-empty closed convex subsets C of K that are left invariant by T, i.e., $Tc \subseteq C$, where $TC = \cup \{Tc : c \in C\}$. Order \mathcal{F} by set-inclusion. By weak compactness of K, we can apply Zorn's lemma to get a minimal element M. It suffices to show that M is a singleton. Suppose that M contains more than one element. By the definition of normal structure there exists $x_0 \in M$ such that

$$\sup \{ \|x_0-y\| : y \in M \} = \delta(x_0,M) < \delta(M),$$

Hence $\delta(x_0,M) \leq \alpha_1(M) \delta(M)$ for some $\alpha_1, 0 < \alpha_1 < 1$.
If $\delta(Tx, Ty) \leq \delta(x, M)$ for all $x, y \in M$, let $M_\delta = \{x \in M : \delta(x, M) \leq \alpha_1 \delta(M)\}$.

Otherwise, by hypothesis there exists $\alpha(M), 0 \leq \alpha(M) < 1$, such that $\delta(Tx, Ty) \leq \alpha \delta(M)$ for some $x, y \in M$.

Let $\beta = \max \{\alpha, \alpha_1\}$ and $M_\delta = \{x \in M : \delta(x, M) \leq \beta \delta(M)\}$.

As $x_0 \in M_\delta$, M_δ is nonempty. Evidently, M_δ is convex. Since $x \rightarrow \delta(x, M)$ is continuous, M_δ is closed.

Let $x \in M_\delta$

$$\delta(Tx, Ty) \leq \max \{\delta(x, M), \alpha \delta(M)\}$$

$$\leq \beta \delta(M) \text{ for } y \in M.$$

Hence $T(M)$ is contained in a closed ball of arbitrary centre in Tx and radius $\beta \delta(M)$. By the minimality of M, if $m \in Tx$, then $M \subseteq U(\ m : \beta \delta(M))$ (the closed ball of centre m and radius $\beta \delta(M)$), whence $m \in M_\delta$ and $T(M_\delta) \subseteq M_\delta$. But

$$\delta(M_\delta) \leq \beta \delta(M) < \delta(M)$$

which contradicts the minimality of M. Thus M is a singleton and this completes the proof.

Corollary 2.2. Let K be a nonempty weakly compact convex subset of the Banach space X. Assume K has normal structure. Let T be a mapping of K into itself which satisfies: for each closed convex subset F of K invariant under T there exists some $\alpha(F), 0 \leq \alpha(F) < 1$, such that

$$||Tx-Ty|| \leq \max \{\delta(x, F), \alpha \delta(F)\}$$

for each $x, y \in F$. Then T has a fixed point.

Corollary 2.3. Let K be a nonempty weakly compact convex subset of the Banach space X. Assume K has normal structure. Let T be a mapping of K into itself which satisfies: for each closed convex subset F of K invariant under T there exists some $\alpha(F), 0 \leq \alpha(F) < 1$, such that

$$||Tx-Ty|| \leq \max \{||x-y||, r(F), \alpha \delta(F)\}$$

for each $x, y \in F$. Then T has a fixed point.

Remark. The preceeding results generalize the results of Kirk [7] and Browder [2].
3. **COMMON FIXED POINTS OF MAPPINGS.**

Theorem 3.1. Let K be a weakly compact convex subset of the Banach space X.

Let T_1, T_2 be two mappings of K into itself satisfying:

1. $||T_1 x - T_2 y|| \leq \max \{ (||x-T_1 x|| + ||y-T_2 y||)/2$, $||x-T_2 y|| + ||y-T_1 x||)/3$, $||x-y|| + ||x-T_1 x|| + ||y-T_2 y||)/3\}$

for each $x, y \in K$,

2. $T_1 C \subseteq C$ if and only if $T_2 C \subseteq C$ for each closed subset C of K;

3. either $\sup_{z \in C} ||z-T_1 z|| \leq \delta(C)/2$,
 or $\sup_{z \in C} ||z-T_2 z|| \leq \delta(C)/2$ holds for each closed convex subset C of K invariant under T_1 and T_2.

Then there exists a unique common fixed point of T_1 and T_2.

Proof. Let \mathcal{F} denote the family of all non-empty closed convex subsets of K, each of which is mapped into itself by T_1 and T_2. Ordering \mathcal{F} by set-inclusion, by weak compactness of K and Zorn's lemma, we obtain a minimal element F of K. Without loss of generality, assume that $z \in F$ if and only if $z \leq (\delta(C))/2$.

Let $x \in F$. Since $(\delta(F))/2 \leq r(f)$, we obtain using (1) that $||T_1 x - T_2 y|| \leq r(F)$. (y \in F). This gives that $T_2 F \subseteq U(T_1 x : r(f)) = U$, whence $T_2 (F \cap U) \subseteq F \cap U$ and by hypotheses (2) $T_1 (F \cap U) \subseteq F \cap U$. By the minimality of F, we obtain $F \subseteq U$.

This gives $\delta(T_1 x, F) = r(F)$, whence $T_1 x \in F$. Therefore, $T_1 (F \cap U) \subseteq F \cap U$ and by hypothesis (2) $T_2 (F \cap U) \subseteq F \cap U$. We now show that if F contains more than one element, then F is a proper subset of F. Assume the contrary that $F = F$. Since $\delta(x, F) = r(F)$ for each $x \in F$, we obtain $\delta(F) = r(F) = \delta(x, F)$, ($x \in F$). Again from (1), we get

$||T_1 x - T_2 y|| \leq \max \{ (3 \delta(F))/4$, $(\delta(F) + \delta(F))/3$, $(\delta(F) + \delta(F) + \delta(F)/2)/3\}$

$= 5\delta(F)/6$.

The same argument as before yields \(\delta(T_1x,F) \leq 5\delta(F)/6 < \delta(F) \), which is a contradiction. Consequently, if \(F \) contains more than one element, then \(F \) is a proper subset of \(F \). But this in view of above contradicts the minimality of \(F \). Hence \(F \) contains exactly one element, say, \(x_0 \), whence \(T_1x_0 = x_0 = T_2x_0 \). Assume there exists another element \(y_0 \in K \) such that \(T_1y_0 = y_0 = T_2y_0 \). Then using (1), we obtain

\[
||T_1x_0 - T_2y_0|| \leq \frac{2}{3} ||T_1x_0 - T_2y_0||,
\]

whence

\[x_0 = T_1x_0 = T_2y_0 = y_0.\]

THEOREM 3.2. Let \(K \) be a weakly compact convex subset of the Banach space \(X \).

Assume \(K \) has normal structure. Let \(T_1, T_2 \) be mappings of \(K \) into itself satisfying:

1. \[||T_1x - T_2y|| \leq \max \left\{ \frac{1}{2} (||x - T_1x|| + ||y - T_2y||), \frac{1}{2} (||x - T_2y|| + ||y - T_1x||), \frac{1}{3} (||x - y|| + ||x - T_1x|| + ||y - T_2y||) \right\}, \]

for each \(x, y \in K \),

2. \[T_1C \subseteq C \text{ if and only if } T_2C \subseteq C \text{ for each closed convex subset } C \text{ of } K, \]

3. either \[\sup_{z \in D} ||z - T_1z|| \leq r(D), \]
 or \[\sup_{z \in D} ||z - T_2z|| \leq r(D) \]

holds for each closed convex subset \(D \) of \(K \) invariant under \(T_1 \) and \(T_2 \). Then there exists a unique common fixed point of \(T_1 \) and \(T_2 \).

PROOF. Let \(\mathcal{F} \) be as in Theorem 3.1. Exactly as in Theorem 3.1., \(\mathcal{F} \) has a minimal element \(F \). Without loss of generality, assume that \(\sup_{z \in F} ||z - T_2z|| \leq r(F) \).

Let \(x \in \mathcal{F}_c \). Then using (1) we obtain

\[||T_1x - T_2y|| \leq r(F). \]

This gives exactly as in Theorem 3.1 that \(T_1(F) \subseteq F \) and \(T_2(F) \subseteq F \). Since \(K \) has normal structure, one has \(\delta(F) < \delta(F) \) if \(K \) contains more than one element, which contradicts the minimality of \(F \). Thus \(F \) contains precisely one element, which is the unique common fixed point of \(T_1 \) and \(T_2 \) as in Theorem 3.1.

REMARK. One can replace condition (1) of Theorem 3.2 by

1. \[||T_1x - T_2y|| \leq \max \left\{ ||x - y||, \frac{1}{2} (||x - T_1x|| + ||y - T_2y||), \frac{1}{3} (||x - y|| + ||x - T_1x|| + ||y - T_2y||) \right\}, \]

(\(\mathcal{F} \))
This also yields the existence of a common fixed point of T_1 and T_2. However, it need not be unique.

THEOREM 3.3. Let K be a weakly compact convex subset of the Banach space X. Assume K has normal structure. Let T_1, T_2 be mappings of K into itself satisfying (2) and (3) of the preceding theorem and,

\[\| T_1 x - T_2 y \| \leq \max \{ \| x - y \|, \| x - T_1 x \|, \| x - T_2 x \|, \| x - T_2 y \| \} \]

Then there exists a common fixed point of T_1 and T_2.

The proof of the above theorem is similar to that of Theorem 3.2 and hence it is omitted.

4. ISHIKAWA ITERATION FOR COMMON FIXED POINTS

A uniformly convex Banach space is reflexive. A bounded, closed and convex subset of a uniformly convex Banach space is therefore weakly compact; also, it has normal structure. Hence Theorems 2.1, 3.2 and 3.3 can be particularized to such a setting. Rhoades [9] has extended a result of Ćirić (cf. [3], Theorem 2) to a wider class of transformations by using Ishikawa iterative scheme. With a suitable modification of arguments, this extends to a pair of mappings of the type as in Theorem 3.2.

THEOREM 4.1. Let K be a non-empty closed bounded and convex subset of a uniformly convex Banach space X. Let T_1, T_2 be mappings of K into itself satisfying (1), (2) and (3) of Theorem 3.2. Let the sequence $\{x_n\}$ of iterates be defined by

\[
\begin{align*}
 x_0 & \in K, \\
 y_n &= (1 - \beta_n)x_n + \beta_n T_1 x_n, \quad n \geq 0, \\
 x_{n+1} &= (1 - \alpha_n)x_n + \alpha_n T_2 y_n, \quad n \geq 0,
\end{align*}
\]

where $\{\alpha_n\}, \{\beta_n\}$ satisfy (i) $0 \leq \alpha_n, \beta_n \leq 1$ for all n, (ii) $\sum \alpha_n (1 - \alpha_n) = \infty$, and (iii) $\lim \beta_n = \beta < 1$. Then $\{x_n\}$ converges to the unique common fixed point of T_1 and T_2.

PROOF. The existence of the unique common fixed point of T_1 and T_2 results from Theorem 3.2. Let the unique common fixed point be v. From (1)

\[\| T_1 x_n - v \| \leq \| x_n - v \| \]
Following exactly the same lines as in the proof of Theorem 1 of [9] we obtain subsequences \(y_{n_k}, x_{n_k} \) of \(y_n, x_n \) respectively such that

\[
\lim_{k} \| x_{n_k} - T_2 y_{n_k} \| = 0
\]

we show that

\[
\lim_{k} \| x_{n_k} - T_1 x_{n_k} \| = 0.
\]

It would be sufficient, with (7), to show that \(\lim_{k} \| T_1 x_{n_k} - T_2 y_{n_k} \| = 0 \).

For any integer \(n \), from

\[
\| T_1 x_n - T_2 y_n \| \leq \left(\| x_n - T_1 x_n \| + \| y_n - T_2 y_n \| \right) / 2,
\]

we obtain

\[
\| T_1 x_n - T_2 y_n \| \leq (2 - \beta_n) \| x_n - T_2 y_n \| / (1 - \beta_n).
\]

It follows from

\[
\| T_1 x_n - T_2 y_n \| \leq \left(\| x_n - y_n \| + \| x_n - T_1 x_n \| + \| y_n - T_2 y_n \| \right) / 3,
\]

that

\[
\| T_1 x_n - T_2 y_n \| \leq (2 - \beta_n) \| x_n - T_2 y_n \| / (2 + \beta_n).
\]

From

\[
\| T_1 x_n - T_2 y_n \| \leq \left(\| x_n - y_n \| + \| x_n - T_1 x_n \| + \| y_n - T_2 y_n \| \right) / 3
\]

we obtain

\[
\| T_1 x_n - T_2 y_n \| \leq \| x_n - T_2 y_n \| / (1 - \beta_n) + \| y_n - T_2 y_n \| / (1 - \beta_n).
\]

From (9) - (11) we obtain

\[
\| T_1 x_n - T_2 y_n \| \leq 2 \| x_n - T_2 y_n \| / (1 - \beta_n).
\]

Therefore,

\[
\| T_1 x_{n_k} - T_2 y_{n_k} \| \leq 2 \| x_{n_k} - T_2 y_{n_k} \| / (1 - \beta_n)
\]

and (7) implies \(\lim_{k} \| T_1 x_{n_k} - T_2 y_{n_k} \| = 0 \),

whence

\[
\lim_{k} \| x_{n_k} - T_1 x_{n_k} \| = 0.
\]

Now let us prove that this implies that
This follows easily from
\[
||x_{n_k} - T_2x_{n_k}|| \leq ||x_{n_k} - T_1x_{n_k}|| + ||T_1x_{n_k} - T_2x_{n_k}||
\leq ||x_{n_k} - T_1x|| + \max(\{||x_{n_k} - T_1x|| + ||x_{n_k} - T_2x||\}/2, \\
(\{||x_{n_k} - T_2x|| + ||x_{n_k} - T_1x||\}/3, \\
(\{||x_{n_k} - x_{n_k}|| + ||x_{n_k} - T_1x|| + ||x_{n_k} - T_2x||\}/3).
\]
which tends to 0 as \(k \to \infty \) since
\[
||x_{n_k} - T_1x_{n_k}|| \to 0 \text{ as } k \to \infty.
\]
Also
\[
||T_1x_{n_k} - T_1x_{n_k}|| \leq ||T_1x_{n_k} - T_2x_{n_k}|| + ||T_2x_{n_k} - T_1x_{n_k}||
\]
From (1) of Theorem 3.2,
\[
||T_1x_{n_k} - T_2x_{n_k}|| \leq \max\{||x_{n_k} - T_1x_{n_k}|| + ||x_{n_k} - T_2x_{n_k}||\}/2, \\
(\{||x_{n_k} - T_2x_{n_k}|| + ||x_{n_k} - T_1x_{n_k}||\}/3, \\
(\{||x_{n_k} - x_{n_k}|| + ||x_{n_k} - T_1x_{n_k}|| + ||x_{n_k} - T_2x_{n_k}||\}/3).
\]
If
\[
||T_1x_{n_k} - T_2x_{n_k}|| \leq ||T_1x_{n_k} - T_2x_{n_k}|| + ||x_{n_k} - T_1x_{n_k}||/3, \text{ then}
3 ||T_1x_{n_k} - T_2x_{n_k}|| \leq ||x_{n_k} - T_2x_{n_k}|| + ||T_1x_{n_k} - T_2x_{n_k}||
+ ||x_{n_k} - T_2x_{n_k}|| + ||T_1x_{n_k} - T_1x_{n_k}||
\]
which implies
\[
(11) \quad ||T_1x_{n_k} - T_2x_{n_k}|| \leq ||x_{n_k} - T_1x_{n_k}|| + ||x_{n_k} - T_2x_{n_k}||.
\]
If
\[
||T_1x_{n_k} - T_2x_{n_k}|| \leq ||x_{n_k} - x_{n_k}|| + ||x_{n_k} - T_1x_{n_k}|| + ||x_{n_k} - T_2x_{n_k}||/3,
\]
it follows, in a similar manner, that (11) holds. Therefore, in all cases, (11) is satisfied.
Therefore,

\[|T_1 x_{n_k} - T_1 x_k| \leq |T_1 x_{n_k} - x_k| + |x_n - T_2 x_{n_k}| + |x_n - T_1 x_{n_k}| + |x_n - T_2 x_{n_k}|, \]

which tends to 0 as \(k \to \infty \). Therefore \(\{T_1 x_{n_k}\} \) is a Cauchy sequence and hence it converges, say, to \(u \). Consequently

\[\lim x_{n_k} = \lim T_1 x_{n_k} = u. \]

Also,

\[|u - T_2 u| \leq |u - x_{n_k}| + |x_n - T_1 x_{n_k}| + |T_1 x_{n_k} - T_2 u| \leq |u - x_{n_k}| + |x_n - T_1 x_{n_k}| + \max \left\{ \frac{|x_{n_k} - T_2 u|}{3}, \frac{|x_{n_k} - u|}{3}, \frac{|x_{n_k} - T_1 x_{n_k}|}{3}, \frac{|u - T_2 u|}{3} \right\}. \]

Taking the limit as \(k \to \infty \), we obtain \(|u - T_2 u| = 0 \). Therefore, \(u = T_2 u \).

ACKNOWLEDGEMENT. Thanks are due to the referees for a critical reading of the manuscript. In particular, the present improved version of Theorem 4.1 is due to the suggestions of one of the referees who pointed our attention to reference [9].

REFERENCES

1. BONSALL, F.F. Lectures on some fixed point theorems of functional analysis, Tata Institute of Fundamental Research, Bombay, India, 1962.

