ADMISSIBLE GROUPS, SYMMETRIC FACTOR SETS, AND SIMPLE ALGEBRAS

R.A. MOLLIN
Mathematics Department
University of Calgary
T2N 1N4, Canada
(Received June 22, 1983)

ABSTRACT. Let K be a field of characteristic zero and suppose that D is a K-division algebra; i.e. a finite dimensional division algebra over K with center K. In Mollin [1] we proved that if K contains no non-trivial odd order roots of unity, then every finite odd order subgroup of D^*, the multiplicative group of D, is cyclic. The first main result of this paper is to generalize (and simplify the proof of) the above. Next we generalize and investigate the concept of admissible groups. Finally we provide necessary and sufficient conditions for a simple algebra, with an abelian maximal subfield, to be isomorphic to a tensor product of cyclic algebras. The latter is achieved via symmetric factor sets.

KEY WORDS AND PHRASES: Simple Algebra, admissible, multiplicative subgroup, cyclic algebra.

1. NOTATION AND PRELIMINARIES.

Let K be a field of characteristic zero. We define the Schur subgroup $S(K)$ of $B(K)$, the Brauer group of K, to be those equivalence classes which contain a simple component of the group algebra $K G$ for some finite group G. We let $[A]$ denote the equivalence class of the K-central simple algebra A in $B(K)$. The notation $A \otimes B$ means $[A] = [B]$ in $B(K)$. When $A \otimes B$ is written, the tensor product is assumed to be taken over the algebra in the left factor. For most basic results pertaining to $S(K)$ the reader is referred to Yamada [2].

A crossed product algebra will be denoted $(K/k, \beta)$ which is the central simple k-algebra having K-basis u_σ with $\sigma \in G(K/k)$, subject to: $u_\sigma u_\tau = \beta(\sigma, \tau)u_{\sigma \tau}$ and $u_\sigma x = x x_\sigma$ for $x \in K$ and $\sigma, \tau \in G(K/k)$, the Galois group of K over k. For further information pertaining to crossed products the reader is referred to Reiner [3].

Finally we comment on notation. If m is a positive integer with $m = p^n$ where the prime p does not divide n then $|m|_p = p^n$; i.e. $|m|_p$ denotes the p-part of m. A primitive mth root of unity will be denoted by ϵ_m.

2. SUBGROUPS OF SIMPLE ALGEBRAS.

Let K be a field of characteristic zero. The major thrust of this section is to provide a generalization of Mollin [1, Theorem 3.6, p. 243]. To pave the road we first need a definition and some preliminary results.
Let D be an E-division algebra for some field E, finite dimensional over K, and let n be a fixed positive integer. We say that D is (n,K)-adequate if there exists a K-division algebra B with $K \cdot I \subseteq D \subseteq M_n(B)$ where I is the identity of $M_n(B)$, the full ring of $n \times n$ matrices with entries from B.

We need the following result which generalizes Mollin [1, Theorem 3.4, p. 242]. In what follows $\text{Aut}(D)$ denotes the automorphism group of D.

THEOREM 2.1. Let E/K be finite Galois. If D is an (n,K)-adequate E-division algebra and $\sigma \in \text{Gal}(E/K)$ then σ extends to $\text{Aut}(D)$.

PROOF. Let $A = M_n(B)$ where D is embedded in A. If $C = C_A(E)$ denotes the centralizer of E in A then by Reiner [3, Corollary 7.14, p. 96] we have $[C] = [B \otimes K E]$. The remainder of the proof follows from this juncture exactly as the proof of Mollin [1, Theorem 3.4, p. 242].

Q.E.D.

The following which is immediate generalizes Mollin [1, Corollary 3.5, p. 242].

COROLLARY 2.2. Let E/K be finite Galois, and let D be an (n,K)-adequate E-division algebra. If $[D] \in S(E)$, with exponent m, then e_m is in K.

In what follows a subgroup of $M_n(D)$ will mean a finite multiplicative subgroup of $M_n(D)$. The following result is immediate from Hikari [4, Propositions 1 and 2, pp. 360-370]. Note that if G is an abelian group expressible as a direct sum of cyclic groups $C_1 \oplus \ldots \oplus C_n$ with $|C_i| = e_i$ such that $e_1 | e_{i+1}$ for $i = 1, 2, \ldots, n-1$ and $e_n \neq 1$ then we say that G has invariants of length n.

LEMMA 2.3. Suppose that G is a subgroup of $M_n(D)$ where $n < p$ for the minimum odd prime divisor p of $|G|$. Then all odd Sylow subgroups of G are abelian with invariants of length less than or equal to n.

Now we need another definition. Given a K-division algebra D and a fixed positive integer n, suppose that G is a subgroup of $M_n(D)$. We let $V(G) = \{ \sum a_i g_i : a_i \in Q; g_i \in G \}$. $V(G)$ is a Q subalgebra of $M_n(D)$ and is, in fact, a direct summand of the group algebra $Q[G]$. This generalizes the concept as used in Amitsur [5] for the case $n = 1$ wherein $V(G)$ is a minimal division algebra containing G. Now we are in a position to prove the main result of this section.

THEOREM 2.4. Let n be a fixed positive integer and let D be a K-division algebra. If K contains no non-trivial odd order roots of unity then every odd order subgroup of $M_n(D)$, with $n < p$ for the minimum prime divisor of $|G|$, is abelian with invariants of length $\leq n$.

PROOF. Suppose $V(G) = \bigoplus_{i=1}^{n} M_{n_i}(D_i) \subseteq M_n(D)$. Thus $\sum n_i \leq n < p$. But n_i divides $|G|$, (see Curtis and Reiner [6, Chapter IV]). Hence, $n_i = 1$ for each i. Now if D_i is commutative for each i then G is abelian in which case we get the result from lemma 2.3. Thus we assume that D_i is a (non-trivial) division algebra for some i. Then $[D_j]$ has odd exponent, $r > 1$ say, in $S(E)$ where E/Q is finite abelian (see Amitsur [5]). But $D_j \subseteq M_n(D)$ so $D_j \otimes K E$ is (n,K)-adequate, and $D_j \otimes K E$ is a division algebra such that $[D_j \otimes K E]$ has exponent r in $S(KE)$. By corollary 2.2, e_r is in K, contradicting the hypothesis.

Q.E.D.

3. ADMISSION

The following definitions generalize concepts introduced in Schacher [7]. Let K/k be a finite extension of fields. K is called (n,k)-adequate if and only if K is
a self-centralizing maximal subfield of $M_n(D)$ for some k-division ring D, and n is the smallest positive integer for which there is such an embedding as k-algebras, (see Reiner [3, Chapter 7]). A finite group G is called (n,k)-admissible if and only if there is a Galois extension K of k with $G = G(K/k)$ and K is (n,K)-adequate. G is called totally n-admissible if and only if for each pair of number field K and k with K Galois over k and $G = G(K/k)$ we have that K is (n,K)-adequate.

The reader should note that the concept of K-adequacy was used in [1] to prove that every finite odd order multiplicative subgroup of a division ring D is cyclic, whenever the center of D has no non-trivial odd order roots of unity, (I[, Theorem 3.6, p. 243]). Herein our extension from the K-adequacy concept to the (n,K)-adequacy concept tacitly allowed us to prove theorem 2.4 which generalized [ibid] since we were in a position to consider subgroups of $M_n(D)$ for a given fixed positive integer n. The mechanism for proving theorem 2.4 was the Q-subalgebra $V(G)$ of $M_n(D)$. This mechanism opened the door for the use of lemma 2.3 and corollary 2.2.

The first result of this section generalizes Schacher [7, Theorem 2.8, p. 455], which is the $n = 1$ case. Also this proves Mollin [8, Theorem 3, p. 135].

Theorem 3.1. Let n be a fixed positive integer dividing $|G|$. Then G is totally n-admissible if and only if every Sylow p-subgroup of G has an element of order $|G|^p/|n|^p$.

Proof. Let $G = G(K/k)$ for a given pair of number fields K and k. Suppose that G_p is a Sylow p-subgroup of G and $\sigma \in G_p$ has order $|G|^p/|n|^p$. Let $H(p)$ be the fixed field of $<\sigma>$; i.e. $G(K/H(p)) = <\sigma>$. Therefore, by class field theory there are distinct $H(p)$-primes \hat{p}_1 and \hat{p}_2 which are inert in K, and $p_1 = \hat{p}_1 \cap k \neq \hat{p}_2 \cap K = p_2$, (see Janusz [9, Chapter IV]). Define $[\Delta(p)] \in B(k)$ by $\inv_{p_1}(\Delta(p)) = (-1)^i/|c|$ for $i = 1,2$, and $\inv_q(\Delta(p)) = 0$ for all $q \neq p_i$.

Now for each $p | |G|$ form such a $\Lambda(p)$ and let Λ be the k-division algebra $\bigotimes_{p | |G|} \Delta(p)$. Then K splits Λ and by Reiner [3, §28, pp. 237-241] n is the smallest positive integer such that K is a self-centralizing maximal subfield of $M_n(\Lambda)$; i.e. K is (n,k)-adequate. Hence G is totally n-admissible.

Conversely suppose that G is totally n-admissible. Then if $G = G(K/k)$ we have that K is embedded in $M_n(D)$ for some k-division ring D, with n being the smallest such positive integer. By Reiner, [3, ibid] we have that $n = |K:k|/\sqrt{|D:k|}$. Moreover, by Artin and Tate [10, p. 75] we may assume that K/k is unramified.

Now by Albert, [11, theorem 33, p. 150] we have $\sqrt{|D:k|}$ is equal to the least common multiple of the degrees $|K_p^\ast:k_p|$ taken over all primes at which D has non-zero Hasse invariant. Thus there exists a K-prime \hat{p} such that $|K_p^\ast:k_p| = |D:k_p|$ for each p dividing $|K:k|$. Since $G(K_p^\ast/k_p)$ is generated by the Frobenius automorphism of \hat{p} in K/k then G must have an element of order $\sqrt{|D:k|} = |K:k|/|n|$ for each p dividing $|G|$. Q.E.D.

Corollary 3.2. Let n divide $|G|$. If G is totally n-admissible then G is metacyclic. In particular G is solvable.
COROLLARY 3.3. For each pair of number fields K and k with K/k normal and $G = G(K/k)$ we have that the following are equivalent:

(1) $|G| = \ell$, the l.c.m. of the inertial degrees of all k-primes in K/k.

(2) All Sylow p-subgroups of G are cyclic.

(3) G is totally ℓ-admissible nilpotent.

(4) Let m, r be two relatively prime integers. Put $s = (r-1, m)$, $t = m/s$ and $n_o = \text{minimal integer satisfying } r^{n_o} \equiv 1 \pmod{m}$. Then $G = \langle a, b : a^m = 1, b^{n_o} = a^t, b^{-1}ab = a^r \rangle$ where $|G| = mn_0$ and $\gcd(n_o, t) = 1$.

Now we consider the case where G is abelian.

THEOREM 3.4. Let G be a finite abelian group. Then G is (n, k)-admissible for some number field k and some positive integer n dividing $|G|$.

PROOF. Schacher [7, Theorem 6.2, p. 465] guarantees that $G = G(K/k)$ for some abelian extension K of k. We must show that K is (n, k)-adequate. Since G is abelian then there exists a subgroup of order n. Let E be the fixed field of this subgroup. Since $H = G(E/k)$ is abelian then H is $(1, k)$-admissible by Schacher [7, ibid]; i.e. E is embedded as a maximal self-centralizing subfield of a k-division algebra A. Since K splits A then by Reiner [3, Chapter 7] K is embedded in $M_n(K)$ as a self-centralizing maximal subfield with n as the least such positive integer. Q.E.D.

Now suppose that G is finite abelian and $M_n(K)$ is a K-central simple algebra with $G = G(L/K)$ where L is a maximal subfield of $M_n(K)$. Thus $M_n(K) \cong (L/K, \beta)$ for a suitable factor set β. Now $G = \langle \sigma_1^i \beta \sigma_2^j \beta \ldots \beta \rangle$ where σ_1^i has order n_1^i, say. It is natural to ask whether $(L/K, \beta)$ has a similar decomposition as a product of cyclic algebras of exponent n_1^i. The following theorem yields a necessary and sufficient condition for such a decomposition to exist. In what follows a symmetric factor set β means one such that $\beta(\sigma, \tau) = \beta(\tau, \sigma)$ for all $\sigma, \tau \in G$. Moreover L_1^i shall denote the fixed field $\frac{\mathbb{J}}{J} \langle \sigma^i \rangle$.

THEOREM 3.5. Let G be a finite abelian group. Then G is (n, K)-admissible for some number field K and some n dividing $|G|$. Suppose that $A = (L/K, \beta)$ is a K-central simple algebra with $G = G(L/K)$. Then $A \cong A_1 \oplus \ldots \oplus A_t$ where each A_i is cyclic K-central simple with maximal subfield L_i if β is symmetric. Conversely we have the weaker result: If $A \cong A_1 \oplus \ldots \oplus A_t$ then β is cohomologous to a symmetric factor set.

PROOF. Assume β is symmetric. Now each $\sigma \in G$ clearly extends to an inner automorphism of $A: \alpha + u_0^\sigma u_0^{-1} \alpha \in A$. Since $\beta(\sigma, \tau) = \beta(\tau, \sigma)$ for each $\sigma, \tau \in G$ then $u_0^\sigma u = u_0^\tau u$ for each $\sigma, \tau \in G$. These two facts imply that $h_i^\sigma = h_i$ for each i and j where $h_i = w_{\sigma_i}$. Therefore $h_i \in K$ for each i, which implies $A_i = (L_i/K, h_i)$ is a cyclic crossed product over maximal subfield L_i.

Now since $L = L_1 \times L_2 \oplus \ldots \oplus L_t$ then $n = n_1 n_2 \ldots n_t$. Since $\sigma = \sigma_1 \ldots \sigma_t$, then $u_\sigma = u_{\sigma_1} \ldots u_{\sigma_t}$. Therefore the map from A to $A_1 \oplus \ldots \oplus A_t$ given by $u_\sigma \mapsto u_{\sigma_1} \oplus \ldots \oplus u_{\sigma_t}$ yields a K-algebra isomorphism.
Conversely assume $A \cong A_1 \otimes \ldots \otimes A_t$. Now by Reiner [3, Theorem (29.16), p. 249] $A_1 \sim (L/K, \text{inf}^{(1)} h_1)$ where $\text{inf}^{(1)}$ denotes the inflation map from L_1 to L. Moreover h_1 is symmetric, so $\text{inf}^{(1)} h_1$ is symmetric. Since the factor set of $\text{inf}^{(1)} A_1 \otimes \ldots \otimes \text{inf}^{(t)} A_t$ is the multiplication of $\text{inf}^{(1)} h_1$ it follows that β is cohomologous to a symmetric factor set. Q.E.D.

ACKNOWLEDGEMENT. The author's research is supported by N.S.E.R.C. Canada.

REFERENCES

