COMMUTATIVITY THEOREMS FOR RINGS AND
GROUPS WITH CONSTRAINTS ON COMMUTATORS

EVANGELOS PSOMOPOULOS
Department of Mathematics
University of Thessaloniki
Thessaloniki, Greece

(Received April 5, 1983 and in revised form April 10, 1984)

ABSTRACT. Let \(n > 1, m, t, s \) be any positive integers, and let \(R \) be an associative ring with identity. Suppose \(x^t[x^n,y] = [x,y^m]y^s \) for all \(x, y \) in \(R \). If, further, \(R \) is \(n \)-torsion free, then \(R \) is commutative. If \(n \)-torsion freeness of \(R \) is replaced by "\(m, n \) are relatively prime," then \(R \) is still commutative. Moreover, an example is given to show that the group theoretic analogue of this theorem is not true in general. However, it is true when \(t = s = 0 \) and \(m = n + 1 \).

KEY WORDS AND PHRASES. Commutative Rings, Torsion free Rings

1980 AMS SUBJECT CLASSIFICATION CODE. 13A

1. INTRODUCTION.

Throughout this note, \(R \) will be an associative ring with identity, \(Z \) the center \(R \), \(N \) the set of all nilpotent elements of \(R \), and \(C(R) \) the commutator ideal of \(R \). We set \([x,y] = xy - yx \).

Our objective is to prove the following

THEOREM 1. Let \(n (> 1), m \) be positive integers and let \(t, s \) be any non-negative integers. Let \(R \) be an associative ring with identity. Suppose \(x^t[x^n,y] = [x,y^m]y^s \) for all \(x, y \) in \(R \). If, further, \(R \) is \(n \)-torsion free, then \(R \) is commutative.

In preparation for the proof of this theorem, we first establish the following lemmas.

LEMMA 1. Let \(R \) be a ring with \(1, k \) any positive integer, and let \(x, y \) be in \(R \).

(i) If \([x,[x,y]] = 0 \), then \([x^k,y] = kx^{k-1}[x,y] \).
(ii) If \(x^ky = 0 = (x+1)^ky \), then \(y = 0 \).
(iii) If \((m,n) = 1 \) and \([x^n,y] = [x^m,y] = 0 \), for all \(x \) in \(R \), then \([x,y] = 0 \).

This lemma is very well-known.
LEMMA 2. Under the hypotheses of the above theorem, every nilpotent element of R is central.

PROOF. It is a triviality to prove that hypothesis
$$x^t[x^n, y] = [x, y^m]^y^s$$ for all x, y in R (1.1)
implies
$$x^t'[x^n, y] = [x, y^m]^y^{s'}$$ for all x, y in R $t' = nt + t$, $s' = 2s$ (1.2)

Let $x \in N$; then there exists a positive integer p, such that
$$a^k \in Z$$ for all $k \geq p$, p minimal. (1.3)

Suppose $p > 1$. In (1.1), replace x by a^{p-1} to get
$$(a^{p-1})^t[(a^{p-1})^n, y] = [a^{p-1}, y^m]^y^s$$
which implies, in view of (1.3),
$$[a^{p-1}, y^m]^y^s = 0$$ (1.4)

Now, in (1.1) replace x by $1 + a^{p-1}$, to obtain
$$(1 + a^{p-1})^t[(1 + a^{p-1})^n, y] = [a^{p-1}, y^m]^y^s.$$ (1.5)

In view of (1.4), and the fact that $1 + a^{p-1}$ is invertible, the last equation implies
$$[(1 + a^{p-1})^n, y] = 0.$$ (1.5)

Combining (1.5) and (1.3), we see that
$$0 = [(1 + a^{p-1})^n, y] = [1 + na^{p-1}, y] = n[a^{p-1}, y].$$

Since R is n-torsion free, the last identity implies $[a^{p-1}, y] = 0$, for all y in R, which contradicts the minimality of p. This contradiction shows that $p = 1$. Therefore, $N \subset Z$.

Now, observe that by [1, Theorem 1], $C(R)$ is a nil ideal, since $x = e_{22}$ and $y = e_{22} - e_{22}$ fail to satisfy (1.1). Hence in view of Lemma 2, we obtain
$$C(R) \subseteq Z$$ (1.6)

PROOF OF THEOREM 1. In (1.1), replace x by $2x$ to get
$$2^n + 2x^t[x^n, y] = 2[x, y^m]^y^s.$$ (1.7)

Combining the last identity with (1.1), we obtain
$$2^n + 2^n t[x, y^m]^y^s = 2[x, y^m]^y^s.$$ (1.7)

In view of (1.6) and Lemma 1, (1.7) yields
$$2^n + t[m, y^m+s-1[x, y] = 2m[y^m+s-1[x, y]]$$
$$(2^n + t)([m, y^m+s-1[x, y]] = 0.$$ (1.8)

Then, if $k = (2^n + t - 2)m(1+s)$, $[x, y^k] = ky^k-1[x, y] = 0$. Therefore,
$$x^k \in Z$$ for all $x \in R$; $k = (2^n + t - 2)m(1+s).$ (1.8)

Next, by (1.1) we obtain
$$x^t[x^n, y] = my^m+s-1[x, y].$$

Replace y by y^m in the above equation to get
$$x^t[x^n, y^m] = my^m+s-1[x, y^m]$$
$$m^n[x^n, y^m] = my^m+s-1[x, y^m].$$ (1.9)

Combining the last identity with (1.1) and (1.6), we obtain
$$m^n[x, y^m] = my^m+s-1(1-y^m)(m+s-1) = 0.$$ (1.9)
Multiply (1.9) by $y^{(m-1)(m+s-1)}$ to obtain
\[m[x,y]y^{m+s-1}(y^{(m-1)(m+s-1)} - y^{2(m-1)(m+s-1)}) = 0. \] (1.10)

Adding together (1.9) and (1.10), we see that
\[m[x,y]y^{m+s-1}(1-y^{2(m-1)(m+s-1)}) = 0. \]

Continue this process \(k \) times (\(k \) being as in (1.8)) to obtain
\[m[x,y]y^{m+s-1}(1-y^{k(m-1)(m+s-1)}) = 0. \] (1.11)

It is well known that \(R \) is isomorphic to a subdirect sum of subdirectly irreducible rings \(R_i \) (i.e.\). Each \(R_i \) satisfies (1.2), (1.6), (1.8), and (1.11), but \(R_i \) is not necessarily \(n \)-torsion free.

We consider the ring \(R_i \) (i.e.\). Let \(S \) be the intersection of all non-zero ideals of \(R_i \). Then, it can be easily verified
\[Sd = 0, \text{ for all central zero divisors } d \] (1.12)

If \(a \) is any zero divisor of \(R_i \), then
\[m[x,a]^{m+s-1}(1-a^{k(m-1)(m+s-1)}) = 0. \]
Thus,
\[m[x,a]a^{m+s-1} = 0 \] (1.13)
For if \(m[x,a]a^{m+s-1} \neq 0 \), then \(a^{k(m-1)(m+s-1)} \) will be a central (see (1.8)) zero divisor and by (1.12), \(0 = S(1-a^{k(m-1)(m+s-1)}) = S \), a contradiction. Combining (1.2) and (1.13), we see that
\[xt'[x^n,a] = [x,a]^{m+s-1} = m[x,a]^{m-1} + s'. \]
Hence by Lemma 1,
\[n^2x^{n^2} + t'^{-1}[x,a] = xt'[x^n,a] = 0. \]
Replacing \(x \) by \(x+1 \) in the last identity and using Lemma 1, we obtain
\[n^2[x,a] = 0, \text{ which yields } [x^n,a] = n^2x^{n^2-1}[x,a] = 0. \] Therefore,
\[[x^n,a] = 0, \text{ for all } x \text{ in } R_i, \text{ and all zero divisors } a \text{ of } R_i. \] (1.14)

Next, let \(c \) be any central element of \(R_i \). In (1.1), replace \(x \) by \(cx \) to get
\[c^{n+t}x^{t}[x^n, y] = c[x,y]^{m}y^{s} = cx^{t}[x^n, y] \]
\[(c^{n+t}-c)x^{t}[x^n, y] = 0. \]
Apply once more Lemma 1 to obtain
\[n(c^{n+t}-c)x^{n+t-1}[x,y] = 0. \]
If we replace \(x \) by \(x+1 \), and apply Lemma 1, we finally get
\[n(c^{n+t}-c)[x,y] = 0, \text{ which implies } \]
\[(c^{n+t}-c)[x^n, y] = 0, \text{ for all } x,y \in R_i, \text{ and any central element } c \text{ of } R_i. \] (1.15)
In particular,
\[(y^{k(n+t)}-y^k)[x^n, y] = 0 \text{ for all } x,y \in R_i. \] (1.16)
Now, let \(y \in R_1 \). If \([y, x^{n^2}] = 0 \), then clearly \([y^q, x^{n^2}] = 0 \) for all positive integers \(q \). If \([y, x^{n^2}] \neq 0 \), then \([y, x^n] \neq 0 \). For \([x^n, y] = 0 \) implies \([y, x^{n^2}] = 0 \), a contradiction. Since \([x^n, y] \neq 0 \), (1.16) implies that \(y^{k(n+t)} \cdot y^k \) is a zero divisor. Therefore, \(y^{k(n+t-1)+1} \cdot y \) is also a zero divisor. Hence, (1.14) implies

\[
[y^p, x^{n^2}] = 0 \quad \text{for all} \quad y \in R_1; \quad p = k(n+t)+1 \tag{1.17}
\]

Since each \(R_i \) (i \(\in \gamma \)) satisfies (1.17), the original ring \(R \) also satisfies (1.17). But \(R \) is n-torsion free. Thus, combining (1.17) and Lemma 1, we finally obtain

\[
[y^p, y, x] = 0, \quad \text{for all} \quad y \in R,
\]

which implies commutativity of \(R \) by Herstein's theorem [3].

2. If we replace, in Theorem 1, hypothesis "\(R \) is n-torsion free" by the condition "\(n \) and \(m \) are relatively prime," the ring \(R \) is still commutative.

THEOREM 2. Let \(n, m \) be relatively prime positive integers, and let \(t, s \) be any non-negative integers. Suppose \(R \) is an associative ring with identity satisfying \(x^t[x^n, y] = x^m y^s \) for all \(x, y \) in \(R \). Then \(R \) is commutative.

PROOF. Here, without loss of generality, we assume that \(R \) is subdirectly irreducible.

Let \(a \in \mathbb{N} \). Following the same argument as in Theorem 1, we prove (see (1.5)) that \(n[a, x^n] = 0 \) for all \(y \in R \); similarly, we can prove that \(m[a, x^m] = 0 \) for all \(y \in R \). Since \((m,n) = 1 \), we obtain

\[
C(R) \subseteq N \subseteq Z. \tag{2.1}
\]

Note that the proof of (1.8) also works in the present situation, so that there exists \(k \) for which

\[
x^k \in Z \quad \text{for all} \quad x \in R. \tag{2.2}
\]

Furthermore, as in the proof of Theorem 1 we obtain \([x^{n^2}, a] = 0 \) for all \(x \in R \) and all zero divisors \(a \) (see (1.14)); similarly \([x^{m^2}, a] = 0 \). Thus, the last part of Lemma 1 yields

\[
[x, a] = 0 \quad \text{for all} \quad x \in R \quad \text{and all zero divisors} \quad a. \tag{2.3}
\]

As we observed in the paragraph following (1.14), we have \(n(c^{n+t})[x, y] = 0 \) for all \(x, y \in R \) and all \(c \in Z \); and a variation of the argument yields \(m(c^{n+t})[x, y] = 0 \) as well. Thus

\[
(c^{n+t})[x, y] = 0 \quad \text{for all} \quad x, y \in R \quad \text{and all} \quad c \in Z. \tag{2.4}
\]

Using (2.2) to substitute \(y^k \) for \(c \), we complete the proof by arguing as in the previous proof that \(y^{k(n+t-1)+1} \cdot y \in Z \) for all \(y \in R \). Hence, \(R \) is commutative by Herstein's theorem [3].
3. A close look at the symmetric group S_3 with $t=s=6$, $n=7$ and $m=1$ shows that S_3 satisfies the identity $x^t[x^n,y] = [x,y]^n y^5$. But, as it is well known, S_3 is not abelian. Hence, Theorem 2 is not true for groups in general. However, we prove the following:

Theorem 3. Let G be a multiplicative group, n an arbitrary positive integer, and suppose $[x^n,y] = [x,y^{n+1}]$ for all x,y in G. Then G is abelian.

Proof: In hypothesis, replace x by xy to obtain

$$[(xy)^n, y] = [xy, y^{n+1}].$$

(3.1)

A direct calculation shows that $[xy, y^{n+1}] = [x, y^{n+1}]$. Combining this with hypothesis and (3.1) we see that $[(xy)^n, y] = [x^n, y]$. Replace y by $x^{-1}y$, in the last equation to get

$$[y^n, x^{-1}y] = [x^n, x^{-1}y].$$

(3.2)

A direct calculation shows that $[y^n, x^{-1}y] = [x^n, x^{-1}]$, and $[y^n, x^{-1}] = x^{-1}[x^n, y]x$. Thus (3.2) yields $[y^n, x^{-1}] = x^{-1}[x^n, y]x$, which yields

$$x[y^n, x^{-1}] = [x^n, y]x = [x, y^{n+1}]x.$$

Hence,

$$xy^{n+1}x^{-1}y^{-n-1}x = xy^n x^{-1}y^{-n}x$$

and after cancellations $yx^{-1}y^{-1} = x^{-1}$, which implies $xy = yx$. Hence, G is abelian.

4. We conclude with the following

Remark. As a corollary to Theorem 1, with $t=s=0$ and $m=n$, we obtain the following result of Bell [2, Theorem 5]:

Corollary. Let R be a ring with 1 and $n>1$ a fixed positive integer. If R is n-torsion free and R satisfies the identity $x^n y - y x^n = x y^n - y^n x$, then R is commutative.

Also, Theorem 1 generalizes a result of E. Psomopoulos, H. Tominaga, and A. Yaqub [4, Theorem 2].

Acknowledgement. I would like to express my gratitude and indebtedness to the referee for his helpful suggestions and valuable comments.

References
