RESEARCH NOTES

PERIODIC RINGS WITH COMMUTING NILPOTENTS

HAZAR ABU-KHUZAM
Department of Mathematics
University of Petroleum and Minerals
Dhahran, Saudi Arabia

ADIL YAQUB
Department of Mathematics
University of California
Santa Barbara, California 93106

(Received August 16, 1983)

ABSTRACT. Let R be a ring (not necessarily with identity) and let N denote the set of nilpotent elements of R. Suppose that (i) N is commutative, (ii) for every x in R, there exists a positive integer $k = k(x)$ and a polynomial $f(\lambda) = f_x(\lambda)$ with integer coefficients such that $x^k = x^{k+1}f(x)$, (iii) the set $I_n = \{x \mid x^n = x\}$ where n is a fixed integer, $n > 1$, is an ideal in R. Then R is a subdirect sum of finite fields of at most n elements and a nil commutative ring. This theorem generalizes the $x^n = x$ theorem of Jacobson, and (taking $n = 2$) also yields the well-known structure of a Boolean ring. An Example is given which shows that this theorem need not be true if we merely assume that I_n is a subring of R.

KEY WORDS AND PHRASES. Boolean ring, subdirect sum, subdirectly irreducible.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODE. 16A70.

1. INTRODUCTION.

A well known theorem of Jacobson [1] states that a ring R satisfying the identity $x^n = x$, $n > 1$ is fixed, is a subdirect sum of finite fields of at most n elements. Such rings, of course, have no nonzero nilpotents. With this as motivation, we consider the structure of a "periodic" ring R with commuting nilpotents and for which the set $I_n = \{x \mid x^n = x\}$ forms an ideal in R. We show that such a ring R has a structure similar to that given in Jacobson's Theorem. As a corollary, we show that by taking $n = 2$, we recover the familiar structure of a Boolean ring (as a subdirect sum of copies of $GF(2)$). Finally, we give an example which shows that this theorem need not be true if we assume that I_n is merely a subring of R (instead of an ideal).
2. MAIN RESULTS.

Our main result is the following

MAIN THEOREM. Let \(R \) be a ring (not necessarily with 1), and let \(N \) be the set of nilpotents of \(R \). Suppose that (i) \(N \) is commutative, (ii) for every \(x \) in \(R \), there exists a positive integer \(k = k(x) \) and a polynomial \(f(\lambda) = f_x(\lambda) \) with integer coefficients such that \(x^k = x^{k+1}f(x) \), (iii) the set
\[
I_n = \{ x \mid x \in R, \ x^n = x \} \quad \text{where} \quad n > 1, \quad \text{is an ideal in} \quad R.
\]
Then \(R \) is commutative and, in fact, \(R \) is a subdirect sum of fields of at most \(n \) elements and a nil commutative ring.

PROOF. The proof will be broken into several claims.

CLAIM 1. The idempotents of \(R \) are all in the center of \(R \).

For, suppose \(e^2 = e \in R \), \(x \in R \). Then \(e \in I_n \) and hence, by (iii),
\[
ex - exe \in I_n; \quad \text{that is},
\]
\[
ex - exe = (ex - exe)^n = 0
\]
and hence \(ex = exe \). Similarly, \(xe = exe \), which proves Claim 1.

CLAIM 2. If \(\phi: R \to R^* \) is an onto homomorphism, then \(\phi(N) \) coincides with the set of all nilpotent elements of \(R^* \).

This was proved by Abu-Khuzam and Yaqub [2] and by Ikehata and Tominaga [3], but for convenience we reproduce the proof. Let \(d^* \) be an arbitrary nilpotent element of \(R^* \) with \((d^*)^m = 0 \). Let \(d \in R \) be such that \(\phi(d) = d^* \). By (ii), \(d^k = d^{k+1}f(d) \) for some positive integer \(k \) (depending on \(d \)) and some polynomial \(f(\lambda) \) with integer coefficients (again depending on \(d \)). The last equation implies that
\[
[d - d^2f(d)]^k = 0 \quad \text{and hence} \quad d - d^2f(d) \in N. \tag{2.1}
\]
Observe that
\[
d - d^{m+1}(f(d))^m = (d - d^2f(d)) + (df(d))(d - d^2f(d)) + ... + (df(d))^{m-1}(d - d^2f(d))
\]
and hence, by (2.1),
\[
d - d^{m+1}(f(d))^m \in N. \tag{2.2}
\]
Recalling that \(\phi(d) = d^* \) and \((d^*)^m = 0 \), (2.2) implies
\[
d^* = \phi(d - d^{m+1}(f(d))^m) \in \phi(N); \quad \text{that is}, \quad d^* \in \phi(N). \quad \text{This proves Claim 2.}
\]

CLAIM 3. Hypothesis (ii) implies that \((xf(x))^k \) is idempotent and, moreover,
\[
x^k = x^{k+1}f(x)^k.
\]
For, \(x^k = x^{k+1}f(x) \) implies (by multiplying both sides by \(xf(x) \) a suitable number of times) \(x^k = x^{k+r}(f(x))^r \) for all positive integers \(r \), and hence, in particular, \(x^k = x^{2k}(f(x))^k \). Note that \((xf(x))^k \) is indempotent, and Claim 3 is proved.

To complete the proof of the Main Theorem, first recall that
\[
R \cong \text{a subdirect sum of rings } R_i(i \in \Omega);
\]
each \(R_i \) is subdirectly irreducible. Let
PERIODIC RINGS WITH COMMUTING NILPOTENTS

\[\phi_i : R \rightarrow R_i \]

be the natural homomorphism of \(R \) onto \(R_i \). We now distinguish two cases.

CASE 1: \(R_i \) does not have an identity. Let \(x_i \in R_i \) and let \(\phi(x) = x_i, x \in R \).

By Claims 3 and 1, \((xf(x))^k\) is a central idempotent in \(R \) and hence \((x_i f(x_i))^k\) is a central idempotent in the subdirectly irreducible ring \(R_i \): Therefore, \((x_i f(x_i))^k = 0\) and hence by Claim 3, \(x_i^k = 0 \). Thus, \(R_i \) is a nil ring. Moreover, by Claim 2,

\[\phi_i(N) = \text{nilpotents of } R_i = R_i (\text{since } R_i \text{ is nil}). \quad (2.3) \]

But, by (i), \(N \) is commutative and hence by (2.3), \(\phi_i(N)[= R_i] \) is commutative. In other words, \(R_i \) is a nil commutative ring in this case.

CASE 2: \(R_i \) has an identity 1.

As we saw in Case 1, for any \(x_i \) in \(R_i \), \((x_i f(x_i))^k\) is a central idempotent and hence (since \(R_i \) is subdirectly irreducible)

\[(x_i f(x_i))^k = 0 \text{ or } (x_i f(x_i))^k = 1. \quad (2.4) \]

If for some \(x_i \) in \(R_i \), \((x_i f(x_i))^k = 0\) then by Claim 3, \(x_i^k = 0 \) and thus \(x_i \) is nilpotent. On the other hand, if \((x_i f(x_i))^k = 1\) then \(x_i \) is a unit. We have thus shown that

\[x_i \text{ is nilpotent or } x_i \text{ is a unit, for all } x_i, i \in R_i. \quad (2.5) \]

Let \(I_i^* = \phi_i(I_n) \). Then \(I_i^* \) is an ideal in \(R_i \). Let \(x_i \in I_i^* \) and thus \(x_i = \phi_i(x) \) for some \(x \in R \) with \(x^n = x \). Therefore,

\[x_i^n = x_i \text{ for all } x_i \in I_i^*. \quad (2.6) \]

Let \(e \in R \) be such that \(\phi_i(e) = 1 \). By (ii), \(e^k = e^{k+1} f(e) \) and hence \(\phi_i(e^k) = \phi_i(e^{k+1} f(e)) \). Thus, \(1 = 1 \cdot \phi_i(f(e)) = f(\phi_i(e)) = f(1) \). Moreover, since \((ef(e))^k\) is idempotent (Claim 3), \((ef(e))^k \in I_n \) and hence

\[(\phi_i(e) \phi_i(f(e)))^k \in I_i^* = \phi_i(I_n). \quad (2.7) \]

Now, since \(\phi_i(e) = 1 \) and \(\phi_i(f(e)) = f(\phi_i(e)) = f(1) = 1 \) (as shown above), (2.7) implies that \(1 \in I_i^* \) and hence \(R_i = I_i^* \) (since \(I_i^* \) is an ideal). Combining this with (2.6), we see that

\[x_i^n = x_i \text{ for all } x_i \in R_i. \quad (2.8) \]

Combining (2.5) and (2.8), we conclude that \(R_i \) is a division ring satisfying the identity in (2.8), and hence by Jacobson's Theorem [1], \(R_i \) is a field with at most \(n \) elements (since \(n \) is fixed). This completes the proof of the Main Theorem.

Taking \(n = 2 \) in our Main Theorem, we get

COROLLARY 1. Let \(R \) be a ring and \(N \) the set of nilpotents of \(R \). Suppose that (i) \(N \) is commutative, (ii) for every \(x \) in \(R \), there exists a positive integer \(k \) and a polynomial \(f(\lambda) \) with integer coefficients such that \(x^k = x^{k+1} f(x) \), (iii) the idempotents of \(R \) form an ideal in \(R \). Then \(R \) is com-
mutative and, in fact, \(R \) is a subdirect sum of copies of \(\text{GF}(2) \) and a nil commutative ring.

As a further corollary of our Main Theorem, we obtain Jacobson's Theorem [1]:

COROLLARY 2. Let \(R \) be a ring satisfying the identity \(x^n = x \), where \(n > 1 \) is a fixed integer. Then \(R \) is a subdirect sum of finite fields each of which has at most \(n \) elements.

Taking \(n = 2 \) in Corollary 2, we also obtain the following

COROLLARY 3. A Boolean ring is a subdirect sum of copies of \(\text{GF}(2) \).

We conclude with the following example which shows that our Main Theorem need not be true if we merely assume that \(I_n \) is a subring of \(R \).

EXAMPLE. Let

\[
R = \begin{pmatrix}
a & b & c \\
0 & a^2 & 0 \\
0 & 0 & a
\end{pmatrix}
\end{pmatrix}, \quad a, b, c \in \text{GF}(4)
\]

Note that the set \(E \) of all idempotents is just \(\{0, 1\} \) and thus \(E \) is a subring of \(R \) (since \(R \) is of characteristic 2). It is readily verified that \(N^2 = \{0\} \) and \(x^2 = x^2 \) for all \(x \) in \(R \), and hence all the hypotheses of our Main Theorem are satisfied except that the subring \(E \) is not an ideal. Observe that \(R \) is not commutative.

REFERENCES

Submit your manuscripts at http://www.hindawi.com