ON THE STRONG MATRIX SUMMABILITY
OF DERIVED FOURIER SERIES

K. N. MISHRA and R. S. L. SRIVASTAVA

Department of Mathematics
Indian Institute of Technology
Kanpur 208016, India

(Received April 5, 1983, and in revised form August 8, 1983)

ABSTRACT. Strong summability with respect to a triangular matrix has been defined
and applied to derived Fourier series yielding a result which extends some known
results under a general criterion.

KEY WORDS AND PHRASES. Strong Summability, Toeplitz matrix, Fourier Series.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODE. 40F05.

1. INTRODUCTION.

The triangular matrix \(A = [a_{n,k}] \), \(n, k = 0,1,\ldots \) and \(a_{n,k} = 0 \) for \(k > n \) is
regular if

\[
\lim_{n \to \infty} a_{n,k} = 0, \quad n \in \mathbb{N}
\]

and

\[
\sum_{k=0}^{n} |a_{n,k}| \leq M, \quad M \text{ is independent of } n
\]

Denoting the sum \(\sum_{r=1}^{n} u_r \) by \(s_n \), Fekete [1], defined that the series \(\sum_{r=1}^{n} u_r \) is
strongly summable to the sum \(s \), provided

\[
\sum_{k=1}^{n} |s_k - s| = o(n).
\]

This type is now known as strong Cesàro summability of order unity with index 1 or
\([C,1]\) summability.

The series \(\sum_{r=1}^{n} u_r \) is said to be strongly summable by Cesàro means, with index \(q \),
or summable \([C,q]\), or summable \(H_q \) to the sum \(s \) if

\[
\sum_{k=1}^{n} |s_k - s|^q = o(n).
\]

A special point of interest in the method of summability \(H_q \) lies in the fact
that it is given neither by Toeplitz matrix nor by a sequence to function transforma-
tion. The relationship between summability H_q and some regular methods of summation given by A-matrices has been investigated by Kuttner, [2], who proved that if A is any regular Toeplitz method of summability then for any $0 < q < 1$ there is a series which is not summable A but summable H_q.

In the present paper we shall define strong summability of series $\sum u_k$ with the help of a matrix.

DEFINITION. The series $\sum u_k$ is said to be strongly summable by the regular method A determined by the matrix $[a_{n,k}]$ with index $q (q > 0)$ to the sum s if

$$\sum_{k=0}^{n} a_{n,k} s_k - s|^q = o(1), \quad n \to \infty.$$

For $a_{n,k} = \frac{1}{n+1}$, $k \leq n$, we get $(C,1)$ matrix.

2. **MAIN RESULTS.**

Let $f(x)$ be a periodic function with period 2π and integrable (L) over $(-\pi, \pi)$. Let

$$f(x) = \frac{1}{2} a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

be the Fourier series of $f(x)$ and

$$\sum_{n=1}^{\infty} n(b_n \cos nx - a_n \sin nx)$$

be the first derived series of (2.1) obtained by term by term differentiation.

Write

$$g(u) = f(x+u) - f(x-u) - 2uf'(x), \quad (2.3)$$

where $f'(x)$ is the derivative of $f(x)$,

$$G(t) = \int_{0}^{t} |dg(u)|. \quad (2.4)$$

Here we shall take $q = 1, 2$. Since the case $q = 1$ is included in the strong summability for $q = 2$, we omit the same. Precisely we prove the following:

THEOREM. Let $g(u), G(t)$ be defined as in (2.3) and (2.4). If $g(u)$ is a continuous function of bounded variation over $[0, \pi]$ and for some $B \geq 1$

$$G(t) = o \left[t \lambda^{\theta}(t) \right], \quad t \to 0, \quad (2.5)$$

where $\lambda^{\theta}(t)$ is a positive function of t such that

$$\lambda^{\theta}(t) \to 0 \quad \text{as} \quad t \to 0, \quad (2.6)$$

it is monotonic in (n^{-1}, δ) (δ being small but fixed) and

$$\int_{n^{-1}}^{\delta} \frac{\lambda^{2\theta}(t)}{t} dt = O(1) \quad (2.7)$$

then the derived series (2.2) is strongly summable to $f'(x)$ by the matrix $(C,1)$ with index 2.

Note (2.7) is equivalent to $\frac{\lambda^{2}(t)}{t} \in L(0, \delta)$.

In order to prove the theorem we need the following lemma.

Lemma. If \(G(t) = o(t) \) as \(t \to 0 \) then for small but fixed \(\delta \)

\[
\int_{n-1}^{\delta} \frac{|dg(t)|}{t} \, dt \int_{n-1}^{\delta} \frac{|dg(u)|}{u} \, du = o(n)
\]

and

\[
\int_{n-1}^{\delta} \frac{|dg(t)|}{t^2} \, dt \int_{n-1}^{\delta} \frac{|dg(u)|}{u} \, du = o(n) .
\]

Proof. Since

\[
\int_{n-1}^{\delta} \frac{|dg(u)|}{u} \, du = \left[\frac{G(u)}{u} \right]_{n-1}^{\delta} + \int_{n-1}^{\delta} \frac{G(u)}{u^2} \, du
\]

\[= o(1) + \int_{n-1}^{\delta} o\left(\frac{1}{u}\right) \, du, \text{ in view of (2.4)}, \]

\[= o(\log n), \]

Therefore

\[
\int_{n-1}^{\delta} \frac{|dg(t)|}{t} \, dt \int_{n-1}^{\delta} \frac{|dg(u)|}{u} \, du = o(\log n)^2 = o(n).
\]

Again

\[
\int_{n-1}^{\delta} \frac{|dg(t)|}{t^2} \, dt \int_{n-1}^{\delta} \frac{|dg(u)|}{u} \, du
\]

\[= \int_{n-1}^{\delta} \frac{|dg(t)|}{t^2} \left\{ \left[\frac{G(u)}{u} \right]_{n-1}^{t} + \int_{n-1}^{t} \frac{G(u)}{u^2} \, du \right\} \, dt
\]

\[= \int_{n-1}^{\delta} \frac{|dg(t)|}{t^2} \left\{ G(t) + o(1) + o(\log n t) \right\} \, dt
\]

\[= o(1) \left\{ \int_{n-1}^{\delta} \frac{dg(t)}{t^2} \log nt \right\}
\]

\[= o \left\{ \int_{n-1}^{\delta} \frac{G(t)}{t^2} \log nt \, dt - \int_{n-1}^{\delta} \frac{G(t)}{t^3} \, dt + 2 \int_{n-1}^{\delta} \frac{G(t)}{t^4} \log nt \, dt \right\}
\]

\[= o(n) + o \left(\int \frac{(1/u^2)}{1} \, du \right) + o \left[\int (\log u/u^2) \, du \right]
\]

\[= o(n).
\]

3. **Proof of Theorem.**

The kth partial sum \(a_k(x) \) of the series (2.2) is given by [3],
Further, simplifying certain steps as given by [3] and [4] we have

\[\sigma_k(x) - f'(x) = \frac{1}{2\pi} \int_{0}^{\pi} \sin \left(\frac{(k+1/2)t}{2}\right) \frac{dt}{\sin \frac{t}{2}}. \]

Therefore

\[\int_{n-1}^{n} \sin \left(\frac{kt}{2}\right) \frac{dt}{t} = \frac{1}{\pi} \left(\int_{n-1}^{n} + \int_{n}^{n+1} \right) \sin \left(\frac{kt}{2}\right) \frac{dt}{t}. \]

On simplifying and using the first part of the lemma we obtain

\[\sum_{k=1}^{n} \left(\sigma_k(x) - f'(x) \right)^2 = \frac{1}{2\pi^2} \int_{n-1}^{n} \left(\int_{n-1}^{n} \sin \left(\frac{nt}{2}\right) \frac{du}{u(u-t)} \right) \sin \left(\frac{nu-t}{2}\right) \frac{du}{u(u-t)} + o(n) \]

and

\[\int_{n-1}^{n} \frac{\sin \left(\frac{nu-t}{2}\right)}{u(u-t)} \frac{du}{u} = \int_{n-1}^{n} \frac{\sin \left(\frac{nu-t}{2}\right)}{(u-t)} \frac{du}{u} \frac{du}{u-t}. \]

Therefore

\[P_1 = \frac{1}{2\pi^2} \int_{n-1}^{n} \frac{\sin \left(\frac{nu-t}{2}\right)}{u(u-t)} \frac{du}{u} + \frac{1}{2\pi^2} \int_{n-1}^{n} \frac{\sin \left(\frac{nu-t}{2}\right)}{u(u-t)} \frac{du}{u}. \]
\[\begin{align*}
&= \frac{1}{\pi} \int_{-\frac{\delta}{2}}^{\frac{\delta}{2}} \frac{1}{t^2} \int_{n-1}^{t} \sin n(u-t) \, dg(u) \\
&= \frac{1}{\pi} \int_{-\frac{\delta}{2}}^{\frac{\delta}{2}} \frac{1}{t^2} \int_{n-1}^{t} \frac{\sin n(u-t)}{u-u(t)} \, dg(u) + o \left(\int_{n-1}^{t} \frac{|dg(t)|}{u} \int_{n-1}^{t} \frac{|dg(u)|}{u} \right) \\
&= \frac{1}{\pi} \int_{-\frac{\delta}{2}}^{\frac{\delta}{2}} \frac{1}{t^2} \int_{n-1}^{t} \frac{\sin n(u-t)}{(u-t)} \, dg(u) + o(n)
\end{align*} \]

by virtue of the second part of the lemma.

Similarly it can be proved that \(P_2 = o(n) \). Thus we get

\[\sum_{k=1}^{n} (a_k(x) - f'(x))^2 = \frac{1}{\pi} \int_{-\frac{\delta}{2}}^{\frac{\delta}{2}} \frac{1}{t^2} \int_{n-1}^{t} \frac{\sin n(u-t)}{u-u(t)} \, dg(u) + o(n). \]

Integration by parts gives

\[\int_{n-1}^{t} \frac{dg(u)}{(u-t)} \sin n(u-t) = \left[\frac{\sin n(u-t)}{(u-t)} \int_{n-1}^{t} \frac{dg(u)}{(u-t)} \right]_{n-1}^{t} - \int_{n-1}^{t} \left[\frac{n \cos n(u-t)}{(u-t)} - \frac{\sin n(u-t)}{(u-t)^2} \right] \, dg(u) \, du. \]

Using (2.5) this is equal to

\[\left[\frac{\sin n(u-t)}{(u-t)} \log \frac{t}{n} \lambda^\beta(t) \right]_{n-1}^{t} - o \left(\int_{n-1}^{t} t \log \frac{t}{n} \lambda^\beta(t) \frac{\cos n(u-t)}{(u-t)} \, du \right) \\
+ o \left(\int_{n-1}^{t} \frac{\sin n(u-t)}{(u-t)^2} \left(t \lambda^\beta(t) \right) \, du \right) = o \left(nt \lambda^\beta(t) \right). \]

Therefore

\[\sum_{k=1}^{n} (a_k(x) - f'(x))^2 = o(n) \left[\int_{n-1}^{t} \frac{dg(t)}{t} \lambda^\beta(g) \right] + o(n) \]

\[= o(n) \left[G(t) \lambda^\beta(t) \right]_{n-1}^{t} + o(n) \left[\int_{n-1}^{t} \frac{dg(t)}{t^2} \lambda^\beta(t) \, dt \right] \\
+ o(n) \left[\int_{n-1}^{t} \frac{G(t)}{t} \left\{ \beta \lambda^{\beta-1}(t) \lambda'(t) \right\} \, dt \right] \\
= o(n) + o(n) \left[\int_{n-1}^{t} \frac{\lambda^{2\beta}(t)}{t} \, dt \right] \\
+ o(n) \left[\int_{n-1}^{t} \beta \lambda^\beta(t) \lambda^{\beta-1}(t) \lambda'(t) \, dt \right]. \]
\[d \sum_{n} \frac{1}{n} \frac{d}{dt} \{ \lambda^{2\theta}(t) \} \, dt \]

\[= o(n) \text{ by the hypothesis (2.7).} \]

Since \(\lambda^{\theta}(t) \) is monotonic, hence its differential coefficient is of constant sign. Thus we get

\[n \sum_{k=1}^{n} |a_{n,k} - f'(x)|^2 = o(n) \]

and therefore

\[n \sum_{k=1}^{n} a_{n,k} |o_{k}(x) - f'(x)|^2 = o(n) \]

This completes the proof of the theorem.

4. SPECIAL CASES.

By way of an application of our theorem, we take \(\theta = 1, \lambda(t) = 1/\log (1/t) \) and \(a_{n,k} = 1 \) then the following result follows, [4]:

THEOREM (Sharma). At a point for which \(f'(x) \) exists and

\[G(t) = o\left(t/\log \frac{1}{t} \right) \text{ as } t \to 0 \]

then

\[n \sum_{k=1}^{n} |o_{k}(x) - f'(x)|^2 = o(n \log \log n) \]

Since the above theorem is an extension of the result from [C, 1] summability to the case of [C, 2] summability, (Prasad and Singh [3]), our theorem further extends that result under a general type of criterion.

ACKNOWLEDGEMENT. We are thankful to the referee for his valuable suggestions.

REFERENCES

1. FEKETE, M. Vizsgalatok a Fourier-Sovokral, Mathematikai es Terniezs Ertesitok 34, (1916), 769-786.