A DIGRAPH EQUATION FOR HOMOMORPHIC IMAGES

ROBERT D. GIRSE and RICHARD A. GILLMAN
Department of Mathematics
Idaho State University
Pocatello, Idaho 83209

(Received November 20, 1985)

ABSTRACT. The definitions of a homomorphism and a contraction of a graph are
generalized to digraphs. Solutions are given to the graph equation $\phi(D) = \theta_\phi(D)$.

KEY WORDS AND PHRASES. Homomorphisms of graphs, contractions of graphs, digraphs.
1980 AMS SUBJECT CLASSIFICATION CODE. 05C20

By a graph G we mean a finite graph with no multiple edges or loops. If graphs
G and H are isomorphic we write $G = H$. An elementary homomorphism of a graph G is
an identification of two non-adjacent vertices of G and a homomorphism is a sequence
of elementary homomorphisms. A homomorphism of G onto H preserves adjacency.
Likewise, an elementary contraction of G is the identification of two adjacent
vertices of G and a contraction is a sequence of elementary contractions\[1]. Thus
for every homomorphism ϕ of G there is a related contraction θ_ϕ of the complement
of G, \overline{G}. This contraction is constructed as follows: ϕ is a sequence of elementary
homomorphisms e_1, e_2, \ldots, e_n so we let θ_ϕ be sequence of elementary contractions
$\theta_1, \theta_2, \ldots, \theta_n$ where θ_i identifies the same vertices in \overline{G} that e_i identifies in G.

Recently [2] the graph equation $\phi(\overline{G}) = \theta_\phi(\overline{G})$ was studied. In this paper, we
generalize the definition of a homomorphism and its related contraction to digraphs
and find general solutions to this graph equation. In doing so, we find an easier
proof of the result given in [2].

A digraph D consists of a finite vertex set $V(D)$ together with a set $E(D)$ of
ordered pairs of distinct elements of $V(D)$, called arcs. Again, if D_1 is isomorphic
to D_2 we write $D_1 = D_2$. By an elementary homomorphism of D we mean an identification
of two mutually non-adjacent vertices of D (neither uv nor vu are in $E(D)$).
Similarly, an elementary contraction is an identification of two mutually adjacent
vertices of D (both uv and vu are in $E(D)$). A homomorphism (contraction) of D is
again a sequence of elementary homomorphisms (contractions). The contraction
θ_ϕ of \overline{D} related to the homomorphism ϕ of D is defined as for undirected graphs.
We will use the following notation as need arises: $I_b(u)$ is the set of vertices v of D such that vu is an arc of D, $O_b(u)$ is the set of vertices v of D such that uv is an arc of D, and $A(u)$ is the adjacency set of u in the graph G.

Theorem 1. Let ϵ be an elementary homomorphism of D identifying vertices u_1 and u_2. Then $\epsilon(D) = \theta_\epsilon(D)$ if and only if $I_b(u_1) = I_b(u_2)$ and $O_b(u_1) = O_b(u_2)$.

Proof. Let $u = \epsilon(u_1) = \theta_\epsilon(u_1)$. First suppose that $O_b(u_1) \neq O_b(u_2)$. Excluding u as a possible endpoint of an arc, we have vv' is an arc of $\epsilon(D)$ if and only if vv' is an arc of $\theta_\epsilon(D)$. Hence there is a one to one correspondence of those arcs in $\epsilon(D)$ without u as an endpoint and those of $\theta_\epsilon(D)$ without u as an endpoint. The vertex v of the arc uv must be in $O_b(u_1) \cap O_b(u_2)$, $(O_b(u_1) \cup O_b(u_2))^c$, or $O_b(u_1) \setminus O_b(u_2)$, the symmetric difference. In the first case, uv is not an arc of $\epsilon(D)$ or $\theta_\epsilon(D)$ and in the second case, uv is an arc of both. The latter case implies that uv is not an arc of $\epsilon(D)$ but is an arc of $\theta_\epsilon(D)$. Thus for every vertex in $O_b(u_1) \setminus O_b(u_2)$, $\theta_\epsilon(D)$ has one more arc than $\epsilon(D)$. The same holds for vertices in $I_b(u_1) \setminus I_b(u_2)$. Thus if $O_b(u_1) \neq O_b(u_2)$ or $I_b(u_1) \neq I_b(u_2)$, $|E(\theta_\epsilon(D))| > |E(\epsilon(D))|$ and hence $\epsilon(D) \neq \theta_\epsilon(D)$. Now let $I_b(u_1) = I_b(u_2)$ and $O_b(u_1) = O_b(u_2)$. We will use the identity map from $V(\epsilon(D))$ onto $V(\theta_\epsilon(D))$ and hence need only consider arcs to and from u. If uv is in $E(\theta_\epsilon(D))$ then u_1v and u_2v are arcs in \bar{D}. Thus u_1v and u_2v are not arc of D and subsequently uv is in $E(\epsilon(D))$. By the same argument, if uv is an arc of $\epsilon(D)$, uv will be an arc of $\theta_\epsilon(D)$. This holds for arcs vu, so $\epsilon(D) = \theta_\epsilon(D)$.

Corollary 1: $\phi(D) = \theta_\phi(D)$ if and only if ϕ is a sequence of elementary homomorphisms, each of which satisfies the conditions of Theorem 1.

A digraph D is pseudo-complete n-partite if there is a partition V_1, V_2, \ldots, V_n such that u, u' in V_i for some i implies u and u' are mutually non-adjacent, if u is an element of V_i and v is an element of V_j, if j, then either uv or vu is an arc of D, and finally if u and u' are in V_i, v and v' are in V_j, if j, and uv is an arc then uv', $u'v$, and $u'v'$ are also.

Theorem 2. $\phi(D) = \theta_\phi(D)$ for all homomorphisms ϕ of D if and only if D is pseudo-complete n-partite.

Proof. If D is pseudo-completely n-partite, every elementary homomorphism identifies two vertices u_1 and u_2 in the same partition set and thus $I_b(u_1) = I_b(u_2)$ and $O_b(u_1) = O_b(u_2)$. Hence $\epsilon(D) = \theta_\epsilon(D)$ for every elementary homomorphism and thus for every homomorphism of D. Conversely, partition $V(D)$ according to the relation: u_1 and u_2 are in V_i if and only if $I_b(u_1) = I_b(u_2)$ and $O_b(u_1) = O_b(u_2)$. We need only show that if u_1 is in V_i and u_2 is in V_j, if j, then either u_1u_2 or u_2u_1 is in $E(D)$. Suppose u_1 and u_2 are mutually non-adjacent and let ϵ be the elementary homomorphism identifying them. Since $\epsilon(D) = \theta_\epsilon(D)$, $O_b(u_1) = O_b(u_2)$ and $I_b(u_1) = I_b(u_2)$ by Theorem 1 and hence u_1 and u_2 are in the same partition set. Thus if u_1 is in V_i and u_2 is in V_j, if j, there is an arc between them and D must be pseudo-complete n-partite.
If, for every vertex \(u \) of \(D \), \(I_b(u) = O_b(u) \), \(D \) is a symmetric digraph and can be represented by a graph \(G \). This leads to the following corollaries to Theorems 1 and 2.

COROLLARY 2. An elementary homomorphism \(\epsilon \) identifying vertices \(u \) and \(v \) of a graph \(G \) satisfies \(\overline{\epsilon(G)} = \overline{\epsilon(G)} \) if and only if \(A(u_1) = A(u_2) \).

COROLLARY 3. A homomorphism \(\phi \) of \(G \) satisfies \(\overline{\phi(G)} = \overline{\phi(G)} \) if and only if \(\phi \) is a sequence of elementary homomorphisms, each satisfying Corollary 2.

COROLLARY 4. \(\overline{\phi(G)} = \overline{\phi(G)} \) for every homomorphism \(\phi \) of \(G \) if and only if \(G \) is complete \(n \)-partite.

A study of the equation \(\phi(D) = \overline{\phi(D)} \) would be interesting, yet is apparently difficult considering the work done in [2] for graphs. We conjecture that if \(D = \overline{D} \) and \(\phi(D) = \overline{\phi(D)} \), \(\phi \) nontrivial, then \(D \) is a symmetric digraph.

REFERENCES

1. HARARY, F. *Graph Theory*, Addison-Wesley, 1969.

Submit your manuscripts at
http://www.hindawi.com