ABSTRACT. A subset \(N \) of a topological space is defined to be a \(\theta \)-neighborhood of \(x \) if there exists an open set \(U \) such that \(x \in U \subseteq \text{Cl} U \subseteq N \). This concept is used to characterize the following types of functions: weakly continuous, \(\theta \)-continuous, strongly \(\theta \)-continuous, almost strongly \(\theta \)-continuous, weakly \(\delta \)-continuous, weakly open and almost open functions. Additional characterizations are given for weakly \(\delta \)-continuous functions. The concept of \(\theta \)-neighborhood is also used to define the following types of open maps: \(\theta \)-open, strongly \(\theta \)-open, almost strongly \(\theta \)-open, and weakly \(\delta \)-open functions.

KEY WORDS AND PHRASES. \(\theta \)-neighborhood, weakly continuous function, \(\theta \)-continuous function, strongly \(\theta \)-continuous function, almost strongly \(\theta \)-continuous function, weakly \(\delta \)-continuous function, weakly open function, almost open function, \(\theta \)-open function, strongly \(\theta \)-open function, almost strongly \(\theta \)-open function, weakly \(\delta \)-open function.

1980 AMS SUBJECT CLASSIFICATION CODE. 54C10.

1. INTRODUCTION.

Near-continuity has been investigated by many authors including Levine [1], Long and Herrington [2], Noiri [3], and Rose [4]. Near-openness has been developed by Rose [5] and Singal and Singal [6]. The purpose of this note is to characterize several types of near-continuity and near-openness in terms of the concept of \(\theta \)-neighborhood. These characterizations clarify both the nature of these functions and the relationships among them. Additional characterizations of weak \(\delta \)-continuity are given. The concept of \(\theta \)-neighborhood also leads to the definition of several new types of near-open functions.

2. DEFINITIONS AND NOTATION.

The symbols \(X \) and \(Y \) denote topological spaces with no separation axioms assumed unless explicitly stated. Let \(U \) be a subset of a space \(X \). The closure of \(U \) and the interior of \(U \) are denoted by \(\text{Cl} U \) and \(\text{Int} U \) respectively. The set \(U \) is said to be regular open (regular closed) if \(U = \text{Int} \text{Cl} U \) (\(U = \text{Cl} \text{Int} U \)). The \(\theta \)-closure (\(\delta \)-closure) (Velicko [7]) of \(U \) is the set of all \(x \) in \(X \) such that every closed neighborhood (the interior of every closed neighborhood) of \(x \) intersects
U. The θ-closure and the δ-closure of U are denoted by $\text{Cl}_\theta U$ and $\text{Cl}_\delta U$ respectively. The set U is called θ-closed (δ-closed) if $U = \text{Cl}_\theta U$ ($U = \text{Cl}_\delta U$). A set is said to be θ-open (δ-open) if its complement is θ-closed (δ-closed). For a given space X the collection of all θ-open sets and the collection of all δ-open sets both form topologies. The space X with the θ-open (δ-open) topology will be signified by X_θ (X_δ).

DEFINITION 1. A function $f: X \to Y$ is said to be weakly continuous (Levine [1]) (θ-continuous (Fomin [8]), strongly θ-continuous (Long and Herrington [2]), almost strongly θ-continuous (Noiri and Kang [9]), weakly δ-continuous (Baker [10]) if for each $x \in X$ and each open neighborhood V of $f(x)$, there exists an open neighborhood U of x such that $f(U) \subseteq \text{Cl}_\theta V$ ($f(\text{Cl}_\delta U) \subseteq \text{Cl}_\theta V$, $f(\text{Cl}_\delta U) \subseteq V$, $f(\text{Cl}_\delta U) \subseteq \text{Int Cl}_\delta V$, $f(\text{Int Cl}_\delta U) \subseteq \text{Cl}_\delta V$).

DEFINITION 2. A function $f: X \to Y$ is said to be weakly open (Rose [5]) (almost open (Rose [5])) provided that for each open subset U of X, $f(U) \subseteq \text{Int f(Cl}_\delta U$ ($f(U) \subseteq \text{Int Cl}_\theta f(U)$).

DEFINITION 3. A subset N of a space X is said to be a θ-neighborhood (δ-neighborhood) of a point x in X if there exists an open set U such that $x \in U \subseteq \text{Cl}_\theta U \subseteq N$ ($x \in U \subseteq \text{Int Cl}_\theta U \subseteq N$).

Note that a θ-neighborhood is not necessarily a neighborhood in the θ-topology, but a δ-neighborhood is a neighborhood in the δ-topology.

3. NEAR-CONTINUOUS FUNCTIONS.

The main results can be paraphrased as follows: weak continuity corresponds to "f^{-1} (θ-neighborhood) = neighborhood"; θ-continuity corresponds to "f^{-1} (θ-neighborhood) = θ-neighborhood"; strong θ-continuity corresponds to "f^{-1} (neighborhood) = θ-neighborhood"; almost strong θ-continuity corresponds to "f^{-1} (δ-neighborhood) = θ-neighborhood"; and weak δ-continuity corresponds to "f^{-1} (θ-neighborhood) = δ-neighborhood".

THEOREM 1. A function $f: X \to Y$ is weakly continuous if and only if for each x in X and each θ-neighborhood N of $f(x)$, $f^{-1}(N)$ is a neighborhood of x.

PROOF. Assume f is weakly continuous. Let $x \in X$ and let N be a θ-neighborhood of $f(x)$. Then there exists an open set V such that $f(x) \in V \subseteq \text{Cl}_\theta V \subseteq N$. Since f is weakly continuous, there exists an open neighborhood U of x such that $f(U) \subseteq \text{Cl}_\theta V \subseteq N$. Thus $x \in U \subseteq f^{-1}(N)$ and hence $f^{-1}(N)$ is a neighborhood of x.

Assume for each $x \in X$ and each θ-neighborhood N of x that $f^{-1}(N)$ is a neighborhood of x. Let $x \in X$ and let V be an open neighborhood of $f(x)$. Since $\text{Cl}_\theta V$ is a θ-neighborhood of $f(x)$, $f^{-1}(\text{Cl}_\theta V)$ is a neighborhood of x. Thus there is an open set U for which $x \in U \subseteq f^{-1}(\text{Cl}_\theta V)$ and $f(U) \subseteq \text{Cl}_\theta V$ which proves f is weakly continuous.

THEOREM 2. A function $f: X \to Y$ is θ-continuous if and only if for each x in X and each θ-neighborhood N of $f(x)$, $f^{-1}(N)$ is a θ-neighborhood of x.

CHARACTERIZATIONS OF SOME NEAR-CONTINUOUS FUNCTIONS

PROOF. Assume \(f: X \rightarrow Y \) is \(\theta \)-continuous. Let \(x \in X \) and let \(N \) be a \(\theta \)-neighborhood of \(f(x) \). Then there exists an open set \(V \) for which \(f(x) \in V \subseteq \text{Cl}V \subseteq N \). By the \(\theta \)-continuity of \(f \), there exists an open neighborhood \(U \) of \(x \) such that \(f(\text{Cl} U) \subseteq \text{Cl} V \subseteq N \). Thus \(x \in U \subseteq \text{Cl} U \subseteq f^{-1}(N) \) and hence \(f^{-1}(N) \) is a \(\theta \)-neighborhood of \(x \).

Assume for each \(x \) in \(X \) and for each \(\theta \)-neighborhood \(N \) of \(f(x) \) that \(f^{-1}(N) \) is a \(\theta \)-neighborhood of \(x \). Let \(x \in X \) and let \(V \) be an open neighborhood of \(f(x) \). Since \(\text{Cl} V \) is a \(\theta \)-neighborhood of \(f(x) \), \(f^{-1}(\text{Cl} V) \) is a \(\theta \)-neighborhood of \(x \). Hence there exists an open set \(U \) for which \(x \in U \subseteq \text{Cl} U \subseteq f^{-1}(\text{Cl} V) \). That is, \(f(\text{Cl} U) \subseteq \text{Cl} V \) and thus \(f \) is \(\theta \)-continuous.

The proof of the following theorem is similar to that of Theorem 2 and is omitted.

THEOREM 3. A function \(f: X \rightarrow Y \) is strongly \(\theta \)-continuous if and only if for each \(x \) in \(X \) and each \(\theta \)-neighborhood \(N \) of \(f(x) \), \(f^{-1}(N) \) is a \(\theta \)-neighborhood of \(x \).

THEOREM 4. A function \(f: X \rightarrow Y \) is almost strongly \(\theta \)-continuous if and only if for each \(x \) in \(X \) and each \(\delta \)-neighborhood \(N \) of \(f(x) \), \(f^{-1}(N) \) is a \(\theta \)-neighborhood of \(x \).

PROOF. Assume \(f: X \rightarrow Y \) is almost strongly \(\theta \)-continuous. Let \(x \in X \) and let \(N \) be a \(\delta \)-neighborhood of \(f(x) \). Then there exists an open set \(V \) such that \(f(x) \in V \subseteq \text{Int} \text{Cl} V \subseteq N \). Since \(f \) is almost strongly \(\theta \)-continuous, there exists an open neighborhood \(U \) of \(x \) for which \(f(\text{Cl} U) \subseteq \text{Int} \text{Cl} V \subseteq N \). Then \(x \in U \subseteq \text{Cl} U \subseteq f^{-1}(\text{Cl} V) \) which proves that \(f^{-1}(N) \) is a \(\theta \)-neighborhood of \(x \).

Assume for each \(x \in X \) and each \(\delta \)-neighborhood \(N \) of \(f(x) \) that \(f^{-1}(N) \) is a \(\theta \)-neighborhood of \(x \). Let \(x \in X \) and let \(V \) be an open neighborhood of \(f(x) \). Since \(\text{Int} \text{Cl} V \) is a \(\delta \)-neighborhood of \(f(x) \), \(f^{-1}(\text{Int} \text{Cl} V) \) is a \(\theta \)-neighborhood of \(x \). Hence there is an open set \(U \) such that \(x \in U \subseteq \text{Cl} U \subseteq f^{-1}(\text{Int} \text{Cl} V) \). That is, \(f(\text{Cl} U) \subseteq \text{Int} \text{Cl} V \) and hence \(f \) is almost strongly \(\theta \)-continuous.

THEOREM 5. A function \(f: X \rightarrow Y \) is weakly \(\delta \)-continuous if and only if for each \(x \in X \) and each \(\theta \)-neighborhood \(N \) of \(f(x) \), \(f^{-1}(N) \) is a \(\delta \)-neighborhood of \(x \).

The proof of this theorem is similar to that of Theorem 4. The following theorem gives additional characterizations of weak \(\delta \)-continuity. These results are analogous to those obtained by Noiri and Kang in [9] for almost strongly \(\theta \)-continuous functions.

LEMMA. Let \(X \) be a space and \(H \subseteq X \). Then
(a) \(\text{Cl}_\delta H = \{ x \in X : \text{every } \theta \text{-neighborhood of } x \text{ intersects } H \} \) and
(b) \(\text{Cl}_\delta H = \{ x \in X : \text{every } \delta \text{-neighborhood of } x \text{ intersects } H \} \).

The proof follows easily from the definitions.

THEOREM 6. For \(f: X \rightarrow Y \) the following statements are equivalent:
(a) \(f: X \rightarrow Y \) is weakly \(\delta \)-continuous.
(b) For each \(H \subseteq X \), \(f(\text{Cl}_\delta H) \subseteq \text{Cl}_\delta f(H) \).
(c) For each \(K \subseteq Y \), \(\text{Cl}_\delta f^{-1}(K) \subseteq f^{-1}(\text{Cl}_\delta K) \).
(d) \(f: X \rightarrow Y \) is weakly continuous.
PROOF. (a) => (b). Let $H \subseteq X$ and let $y \in f(Cl_{\delta} H)$. Then there exists an x in $Cl_{\delta} H$ such that $y = f(x)$. Let N be a θ-neighborhood of $f(x)$. By Theorem 5 $f^{-1}(N)$ is a δ-neighborhood of x. Since $x \in Cl_{\delta} H$, $f^{-1}(N) \cap H \neq \emptyset$. That is, $N \cap f(H) \neq \emptyset$. Hence $y \in Cl_{\theta} f(H)$. Thus $f(Cl_{\delta} H) \subseteq Cl_{\theta} f(H)$.

(b) => (c). Let $K \subseteq Y$. By (b) $f(Cl_{\delta} f^{-1}(K)) \subseteq Cl_{\theta} f(f^{-1}(K)) \subseteq Cl_{\theta} K$. Thus $Cl_{\delta} f^{-1}(K) \subseteq f^{-1}(Cl_{\theta} K)$.

(c) => (d). Let $x \in X$ and let V be an open neighborhood of $f(x)$. Since $Cl V$ is a θ-neighborhood of $f(x)$, $f(x) \notin Cl_{\theta} (Y - Cl V)$. Hence $f^{-1}(Cl_{\theta} (Y - Cl V)) \subseteq \emptyset$. By (c) $x \notin Cl_{\delta} f^{-1} (Y - Cl V)$. Thus there is a neighborhood U of x such that $(Int \ Cl U) \cap f^{-1} (Y - Cl V) = \emptyset$. Then $f(Int \ Cl U) \subseteq Cl V$. Since $Int \ Cl U$ is a regular open, $f: X_{\delta} \rightarrow Y$ is weakly continuous.

(d) => (a). Let $x \in X$ and let V be an open neighborhood of $f(x)$. Since $f: X_{\delta} \rightarrow Y$ is weakly continuous, there exists a δ-open set W containing x such that $f(W) \subseteq Cl V$. Then there is a regular open set U for which $x \in U \subseteq W$. Then $f(Int \ Cl U) = f(U) \subseteq f(W) \subseteq Cl V$ and hence f is weakly δ-continuous.

4. NEAR-OPEN FUNCTIONS.

In this section weak openness and almost openness are characterized in terms of the concept of θ-neighborhood.

THEOREM 7. A function $f: X \rightarrow Y$ is weakly open if and only if for each $x \in X$ and each θ-neighborhood N of x, $f(N)$ is a neighborhood of $f(x)$.

PROOF. Assume f is weakly open. Let $x \in X$ and let N be a θ-neighborhood of x. Then there is an open set U such that $x \in U \subseteq Cl U \subseteq N$. Since f is weakly open $f(x) \in f(U) \subseteq Int f(Cl U) \subseteq Int f(N)$. Hence $f(N)$ is a neighborhood of $f(x)$.

Assume for each x in X and each θ-neighborhood N of x that $f(N)$ is a neighborhood of $f(x)$. Let U be an open set in X. Suppose $x \in U$. Since $Cl U$ is a θ-neighborhood of x, $f(Cl U)$ is a neighborhood of $f(x)$. Hence $f(x) \in Int f(Cl U)$. Thus $f(U) \subseteq Int f(Cl U)$ and f is weakly open.

The proof of the following theorem is similar and is omitted.

THEOREM 8. A function $f: X \rightarrow Y$ is almost open if and only if for each $x \in X$ and each neighborhood N of x, $Cl f(N)$ is a θ-neighborhood of $f(x)$.

Theorem 7 and the characterizations of near-continuous functions in Section 3 suggest the following definitions of near-open functions.

DEFINITION 4. A function $f: X \rightarrow Y$ is said to be θ-open (strongly θ-open, almost strongly θ-open, weakly δ-open) if for each $x \in X$ and each θ-neighborhood (neighborhood, δ-neighborhood, θ-neighborhood) N of x, $f(N)$ is a θ-neighborhood (θ-neighborhood, θ-neighborhood, δ-neighborhood) of $f(x)$.

The following theorems characterize these near-open functions in terms of the closure and interior operators. Since the proofs are all similar, only the first theorem is proved.

THEOREM 9. A function $f: X \rightarrow Y$ is θ-open if and only if for each $x \in X$ and each open neighborhood U of x, there exists an open neighborhood V of $f(x)$ such that $Cl V \subseteq f(Cl U)$.
PROOF. Assume \(f: X \to Y \) is 0-open. Let \(x \in X \) and let \(U \) be an open neighborhood of \(x \). Since \(f(Cl U) \) is a 0-neighborhood of \(f(x) \), there exists an open set \(V \) such that \(f(x) \in V \subseteq Cl V \subseteq f(Cl U) \).

Assume that for each \(x \in X \) and each open neighborhood \(U \) of \(x \) there exists an open neighborhood \(V \) of \(f(x) \) for which \(Cl V \subseteq f(Cl U) \). Let \(x \in X \) and let \(N \) be a 0-neighborhood of \(x \). Then there is an open set \(U \) for which \(x \in U \subseteq Cl U \subseteq N \). There exists an open set \(V \) such that \(f(x) \in V \subseteq Cl V \subseteq f(Cl U) \subseteq f(N) \). Hence \(f(N) \) is a 0-neighborhood of \(f(x) \) and \(f \) is 0-open.

THEOREM 10. A function \(f: X \to Y \) is strongly 0-open if and only if for each \(x \in X \) and each open neighborhood \(U \) of \(x \), there exists an open neighborhood \(V \) of \(f(x) \) such that \(Cl V \subseteq f(U) \).

THEOREM 11. A function \(f: X \to Y \) is almost strongly 0-open if and only if for each \(x \in X \) and each open neighborhood \(U \) of \(x \) there exists an open neighborhood \(V \) of \(f(x) \) such that \(Cl V \subseteq f(Int Cl U) \).

THEOREM 12. A function \(f: X \to Y \) is weakly 0-open if and only if for each \(x \in X \) and each open neighborhood \(U \) of \(x \), there exists an open neighborhood \(V \) of \(f(x) \) such that \(Int Cl V \subseteq f(Cl U) \).

We have the following implications: almost open \(\implies \) st. 0-open \(\implies \) almost st. 0-open \(\implies \) weak 0-open \(\implies \) weak open. The following examples show that these implications are not reversible.

EXAMPLE 1. Let \(X = \{a, b\} \), \(T_1 = \{X, \emptyset, \{a\}\} \), \(Y = \{a, b, c\} \), and \(T_2 = \{Y, \emptyset, \{a\}, \{a, b\}\} \). The inclusion mapping: \((X, T_1) \to (Y, T_2) \) is weak open but not weak 0-open.

In the next example the space \((Y, T_2) \) is from Example 2.2 in Noiri and Kang [9].

EXAMPLE 2. Let \((X, T_1) \) be as in Example 1. Let \(Y = \{a, b, c, d\} \), and \(T_2 = \{Y, \emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\} \). The inclusion mapping: \((X, T_1) \to (Y, T_2) \) is weak 0-open but not 0-open.

EXAMPLE 3. Let \((Y, T_2) \) be as in Example 2. The identity mapping: \((Y, T_2) \to (Y, T_2) \) is 0-open but not almost strongly 0-open.

EXAMPLE 4. Let \(X = \{a, b, c\}, T_1 = \{X, \emptyset, \{a\}, \{a, c\}\} \) and \(T_2 = \{X, \emptyset, \{a\}, \{c\}, \{a, c\}, \{a, b\}\} \). The identity mapping: \((X, T_1) \to (X, T_2) \) is almost strongly 0-open and almost open, but not strongly 0-open.

REFERENCES

Submit your manuscripts at http://www.hindawi.com