MATCHINGS IN HEXAGONAL CACTI

E.J. FARRELL

Department of Mathematics
The University of the West Indies
St. Augustine, Trinidad

(Received June 21, 1983 and in revised form July 18, 1986)

ABSTRACT. Explicit recurrences are derived for the matching polynomials of the basic types of hexagonal cacti, the linear cactus and the star cactus and also for an associated graph, called the hexagonal crown. Tables of the polynomials are given for each type of graph. Explicit formulae are then obtained for the number of defect-\(d\) matchings in the graphs, for various values of \(d\). In particular, formulae are derived for the number of perfect matchings in all three types of graphs. Finally, results are given for the total number of matchings in the graphs.

KEY WORDS AND PHRASES. Cactus, chains, hexagon, linear cactus, star cactus, hexagonal crown, matching, matching polynomials, defect-\(d\) matching, perfect matching, generating function, recurrence relation.

1980 AMS SUBJECT CLASSIFICATION CODE. 05A99, 05C99.

1. INTRODUCTION.

The graphs considered here will be finite and without loops or multiple edges. Let \(G\) be such a graph. A matching in \(G\) is a spanning subgraph of \(G\), whose components are nodes and edges only. If the matching contains \(d\) isolated nodes, then we call it a defect-\(d\) matching as did Berge ([1] and [2]) and Little [3]. Some general results on defect-\(d\) matchings have been given in [1], [2] and [3]. In the case where \(d=0\), i.e. when the matchings has edges only, we call it a perfect or complete matching.

Let us associate with each node and edge of \(G\) the weights \(w_1\) and \(w_2\) respectively, and with each matching \(\alpha\) in \(G\), the weight

\[W(\alpha) = w_1^r w_2^s, \]

where \(r\) and \(s\) are the number of nodes and edges respectively in \(\alpha\). Then the matching polynomial of a graph \(G\) with \(p\) nodes is

\[m(G) = \sum W(\alpha) = \sum a_k w_1^{p-2k} w_2^k, \quad (1.1) \]

where the summation is taken over all the matchings in \(G\), and \(a_k\) is the number of matchings with \(k\) edges. It is clear that \(a_k\) will be the number of defect-(\(p-2k\)) matchings in \(G\).
The general matching polynomial was introduced in Farrell [4]. Since then, it has been shown (See Gutman [5]) that several other well known polynomials in Theoretical Physics are special matching polynomials, i.e. they can be obtained from \(m(G) \) by giving special values to \(w_1 \) and \(w_2 \). Gutman ([6] and [7]) has also established the matching polynomial as a useful device in Mathematical Chemistry. It should be pointed out however that Gutman's "matching polynomial" (previously called the acyclic polynomial) is a special form of \(m(G) \). This was established in Farrell [8].

The \textit{cactus} is a connected graph in which no edge lies in more than one cycle. These graphs were introduced by Uhlenbeck and Ford [9] and Riddell [10], following a paper by Husimi [11]. Hence, they were originally called "Husimi trees". Some of these graphs were enumerated by Harary and Norman [12] and Harary and Uhlenbeck [13]. Some work on the enumeration of triangular cacti (every block is a triangle) can be found in Harary and Palmer ([14], pp. 70-73).

We define a \textit{hexagonal cactus} to be a cactus in which every block is a hexagon. In addition to being interesting mathematical objects, some types of hexagonal cacti represent common chemical structures. Let \(H \) be a hexagon. We will call two nodes of \(H \) opposite, if they are separated by a path of length 3. Therefore \(H \) contains three pairs of opposite nodes. The hexagons which constitute a hexagonal cactus will be called \textit{cells} of the cactus.

In this article, we will derive explicit recurrences for the matching polynomials of two types of hexagonal cacti, which represent the fundamental components of many types of hexagonal cacti. We will also derive similar results for an interesting associated graph, which we call a hexagonal crown. We will give tables of polynomials for all three types of graphs considered here. Following this, we will deduce explicit formulae for the number of defect-d matchings in these graphs, for various values of d. In particular, we will give formulae for the number of perfect matchings in the graphs. Finally, we give explicit formulae for the total number of matchings in each type of graph considered.

In the material which follows, we will sometimes write \(G \) for \(m(G) \), for brevity of notation. Also, we will denote the generating function for \(m(G) \) by \(G(t) \), where \(t \) is the indicator function. Let \(a_1, a_2, \ldots, a_k \) be nodes of a graph \(G \). We will denote by \(G\{a_1,a_2,\ldots,a_k\} \) the graph obtained from \(G \) by removing nodes \(a_1, a_2, \ldots, a_k \). Finally, "cactus" would mean "hexagonal cactus" unless otherwise qualified.

2. THE BASIC THEOREMS.

The first two results given in this section have been proved in the introductory paper [4]. We repeat them here for completeness. The reader can consult [4] for detailed proofs, if necessary.

Let \(G \) be a graph and \(e \) an edge of \(G \). By partitioning the matchings in \(G \) according to whether or not they contain the edge \(e \), we obtain the following result.

\textbf{Theorem 1 (The Fundamental Theorem).} Let \(G \) be a graph containing an edge \(ab \). Let \(G' \) be the graph obtained from \(G \) by deleting \(ab \) and \(G'' \), the graph obtained from \(G \) by removing nodes \(a \) and \(b \). Then

\[m(G) = m(G') + w_2 m(G''). \]
Given a graph \(G \), we could apply Theorem 1 recursively to it, until we obtain graphs \(H_i \) for which \(m(H_i) \) are known. This algorithm is called the fundamental algorithm for matching polynomials. We will refer to it simply as the reduction process. When applying Theorem 1, we will refer to the graph \(G' \) as the reduced graph and to the graph \(G'' \) as the incorporated graph.

The following theorem can be easily proved.

THEOREM 2 (The Component Theorem). Let \(G \) be a graph consisting of components \(H_i (i = 1, 2, \ldots, r) \). Then

\[
m(G) = \prod_{i=1}^{r} m(H_i).
\]

3. SOME ASSOCIATED GENERAL RESULTS.

Let \(G \) be a graph with \(p \) nodes and \(q \) edges. Consider the expression for \(m(G) \) given in Equation (1.1). \(a_0 \) is the number of matchings with no edges. There is only one such matching, viz. the empty graph with \(p \) nodes. Therefore \(a_0 = 1 \). \(a_1 \) is the number of matchings with 1 edge. Therefore \(a_1 = q \), the number of edges in \(G \). Consider the spanning subgraphs of \(G \) with two edges. These will consist of the matchings with two edges and the spanning subgraphs with a path of length 2 and \(p-3 \) isolated nodes. Let \(\epsilon \) be the number of paths of length 2 in \(G \). Then our discussion leads to following theorem.

THEOREM 3. Let \(G \) be a graph with \(q \) edges. Then in \(m(G) \),

(i) \(a_0 = 1 \)

(ii) \(a_1 = q \)

and (iii) \(a_2 = \binom{q}{2} - \epsilon \),

where \(\epsilon \) is the number of paths of length 2 in \(G \).

We define a **chain** to be a tree with nodes of valency 1 and 2 only. The chain with \(n \) nodes will be denoted by \(P_n \). The length of \(P_n \) is the number of edges in \(P_n \) i.e. \(n-1 \).

COROLLARY 1.1. Let \(P_n \) be a chain with \(n \) nodes. Then

\[
P_n = w_1^{P_{n-1}} + w_2^{P_{n-2}}, \text{ with } P_0 = 1.
\]

PROOF. Apply the reduction process to the graph \(P_n \) by deleting a terminal edge. The result then follows from Theorem 1.

Many of our results will be given in terms of matching polynomials of chains. We therefore give a table of values of \(m(P_n) \), for \(n = 1 \), up to \(n = 8 \).
TABLE 1

<table>
<thead>
<tr>
<th>n</th>
<th>m(P_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(w_1)</td>
</tr>
<tr>
<td>2</td>
<td>(w_1^2 + w_2)</td>
</tr>
<tr>
<td>3</td>
<td>(w_1^3 + 2w_1 w_2)</td>
</tr>
<tr>
<td>4</td>
<td>(w_1^4 + 3w_1^2 w_2 + w_2^2)</td>
</tr>
<tr>
<td>5</td>
<td>(w_1^5 + 4w_1^3 w_2 + 3w_1 w_2^2)</td>
</tr>
<tr>
<td>6</td>
<td>(w_1^6 + 5w_1^4 w_2 + 6w_1^2 w_2^2 + w_2^3)</td>
</tr>
<tr>
<td>7</td>
<td>(w_1^7 + 6w_1^5 w_2 + 10w_1^3 w_2^2 + 4w_1 w_2^3)</td>
</tr>
<tr>
<td>8</td>
<td>(w_1^8 + 7w_1^6 w_2 + 15w_1^4 w_2^2 + 10w_1^2 w_2^3 + w_2^4)</td>
</tr>
</tbody>
</table>

By attaching a chain \(P_n\) to a graph \(G\) (both nonempty) we will mean that an end node of \(P_n\) is identified with a node of \(G\), so that \(P_n\) becomes a path in the resulting graph.

Lemma 1. Let \(G\) consist of a graph \(G_1\) with the chain \(P_n\) attached to node \(x\). Then

\[
m(G) = p_{n-1}m(G_1) + w_1 p_{n-2}m(G-x).
\]

Proof. Apply the reduction process to \(G\) by deleting the edge of \(P_n\) which is incident to node \(x\). The reduced graph will consist of two components \(P_{n-1}\) and \(G_1\). The incorporated graph will contain two components, \(P_{n-2}\) and \(G_1-x\). The result follows from Theorems 1 and 2.

4. MATCHING POLYNOMIALS OF LINEAR HEXAGONAL CACTI.

We define the **linear cactus** \(L_n\) to be the cactus consisting of \(n\) cells linked together in such a way that \(n-2\) of them have exactly one pair of opposite nodes of valency 4 and exactly two (terminal) cells, each having a node of valency 2 opposite a node of valency 4. These nodes of valency 2 will be called the **terminal nodes** of \(L_n\) (see Figure 1 (i)). Clearly \(L_n\) contains \(5n+1\) nodes and \(6n\) edges. The graph obtained from \(L_n\) by attaching two chains of length 2 to one of its terminal nodes, will be denoted by \(A_n\) (see Figure 1 (ii)). \(A_n\) occurs as an intermediate graph when the reduction process is applied to \(L_n\).

Lemma 2. \(A_n = p_2^2 L_n + 2w_1 w_2 P_2 A_{n-1}\)

Proof. Apply the reduction process to the graph \(A_n\) by deleting edge \(st\) (see Figure 1 (ii)). The reduced graph \(G'\) will contain two components \(P_2\) and the
MATCHINGS IN HEXAGONAL CACTI

graph A_n with P_3 attached to it. The incorporated graph will contain three components, an isolated node, P_2 and A_{n-1}. Therefore

$$A_n = G' + \omega_1 \omega_2 P_2 A_{n-1}.$$

Apply the reduction process to G by deleting edge tu. This yields

$$G' = P_2^2 \xi_2 + \omega_1 \omega_2 P_2 A_{n-1}. $$

The result follows by substituting for G' in the equation above.

Let us apply the reduction process to the graph L_n by deleting edge cd (see Figure 1 (i)). The reduced graph G' will consist of L_{n-1} with P_6 attached to it. The incorporated graph will contain two components, P_4 and A_{n-2}. Therefore

$$L_n = G' + \omega_2 P_4 A_{n-2}. $$

Using Lemma 1, we get

$$G' = P_5 L_{n-1} + \omega_2 P_4 A_{n-2}. $$

Hence from Equation (4.1),

$$L_n = P_5 L_{n-1} + 2 \omega_2 P_4 A_{n-2}. $$

From Lemma 2, we get

$$A_{n-2} = P_2^2 \xi_2 - 2 \omega_1 \omega_2 P_2 A_{n-3}. $$

By substituting the expression for $2 \omega_2 P_4 A_{n-2}$ obtained from Equation (4.2) we obtain the following explicit recurrence for L_n.

$$L_n = (P_5 + 2 \omega_1 \omega_2 P_2) L_{n-1} + (2 \omega_2 P_4 A_{n-2} - 2 \omega_1 \omega_2 P_2 P_5) L_{n-2}$$

Hence by using the expressions for P_2 and P_5 obtained from Table 1 and then simplifying, we obtain the following theorem.

THEOREM 4. $L_n = (\xi_1^5 + 6 \omega_1^3 + 5 \omega_1^2 \omega_2) L_{n-1} + (2 \omega_2^3 + 4 \omega_1^2 \omega_2^2 + 2 \omega_2^5) L_{n-2} (n>1)$, with $L_0 = \omega_1$ (by convention) and $L_1 = \omega_1^6 + 6 \omega_1^4 \omega_2 + 9 \omega_1^2 \omega_2^2 + 2 \omega_2^3$.

Let us put $\alpha = \xi_1^5 + 6 \omega_1^3 + 5 \omega_1^2 \omega_2$ and $\beta = 2 \omega_2^3 + 4 \omega_1^2 \omega_2^2 + 2 \omega_2^5$. Then the recurrence given in Theorem 4 becomes

$$L_n = \alpha L_{n-1} + \beta L_{n-2}. $$

By multiplying both sides of this equation by t^n, and summing from $n = 2$ to ∞, we obtain the following generating function $L(t)$ for $m(L_n)$.

COROLLARY 4.1. $L(t) = \frac{L_0 + (L_1 - a_0) t}{1 - \alpha t - \beta t^2}$, where L_0 and L_1 are as given in Theorem 4.
The following table gives values of \(m(L_n) \) for \(n = 1 \), up to \(n = 6 \).

TABLE 2

Matching Polynomials of Linear Hexagonal Cacti

<table>
<thead>
<tr>
<th>(n)</th>
<th>(m(L_n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(w_1^6 + 6w_1^4w_2 + 9w_1^2w_2^2 + 2w_2^3)</td>
</tr>
<tr>
<td>2</td>
<td>(w_1^{11} + 12w_1^9w_2 + 50w_1^7w_2^2 + 88w_1^5w_2^3 + 61w_1^3w_2^4 + 12w_1w_2^5)</td>
</tr>
<tr>
<td>3</td>
<td>(w_1^{16} + 18w_1^{14}w_2 + 127w_1^{12}w_2^2 + 450w_1^{10}w_2^3 + 855w_1^8w_2^4 + 6w_1^6w_2^5)</td>
</tr>
<tr>
<td>4</td>
<td>(w_1^{21} + 24w_1^{19}w_2 + 240w_1^{17}w_2^2 + 1304w_1^{15}w_2^3 + 4218w_1^{13}w_2^4)</td>
</tr>
<tr>
<td>5</td>
<td>(w_1^{26} + 30w_1^{24}w_2 + 389w_1^{22}w_2^2 + 2866w_1^{20}w_2^3 + 13282w_1^{18}w_2^4)</td>
</tr>
<tr>
<td>6</td>
<td>(w_1^{31} + 36w_1^{29}w_2 + 254w_1^{27}w_2^2 + 5352w_1^{25}w_2^3 + 32475w_1^{23}w_2^4)</td>
</tr>
</tbody>
</table>

We will obtain some results for the graph \(A_n \). These will be useful in the material which follows.

From Lemma 1, we have

\[
P_{2^n}^L = A_n - 2w_1w_2^2A_{n-1}.
\] (4.5)

Multiplying Equation (4.2) by \(P_{2^n}^L \), yields

\[
P_{2^n}^L = P_{2^n}^L + P_{2^n}P_{2^n}A_{n-1} + 2w_1w_2P_{2^n}A_{n-1}.
\]

By substituting for \(P_{2^n}^L \) and \(P_{2^n}^L \), using Equation (4.5), we get the following recurrence for \(A_n \).

\[
A_n = (2w_1w_2^2 + P_5)A_{n-1} + (2w_1w_2^4 - 2w_1w_2^2)A_{n-2}.
\]

Hence by comparing with Equation (4.4) and Corollary 4.1, we obtain the following lemma.
LEMMA 5.

(i) \(A_n = \alpha A_{n-1} + \beta A_{n-2} \) \((n>2) \),
with \(A_1 = w_1^2 + 10w_1^8w_2^4 + 32w_1^6w_2^2 + 40w_1^4w_2 + 19w_1^2w_2 + 2w_2^5 \).

(ii) \(A(t) = \mu (1-\alpha t^2)^{-1} \);
where \(\mu = \alpha + (A_1-\alpha^2)t \).

(N.B. We take \(A_0 \) to be 0).

5. MATCHING POLYNOMIALS OF HEXAGONAL STAR CACTI.

We define the star cactus \(S_n \) to be the cactus consisting of \(n \) cells attached to a single node. It is clear that \(S_n \) contains \(5n+1 \) nodes and \(6n \) edges. \(S_4 \) is shown below in Figure 2.

![Figure 2](image)

Let us apply the reduction process to \(S_n \) by deleting the edge ab (see Figure 2). The reduced graph \(G' \) will consist of \(S_{n-1} \) with \(P_5 \) attached to it. The incorporated graph will contain \(n \) components, \(P_4 \) and \(n-1 \) copies of \(P_5 \). Therefore

\[
S_n = G' + W_2P_4P_5^{n-1}.
\]

By applying Lemma 1 to the graph \(G' \), we get

\[
G' = P_5S_{n-1} + W_2P_4P_5^{n-1}.
\]

Hence by substituting for \(G' \) in Equation (5.1), we get the recurrence for \(m(S_n) \), given in the following lemma.

LEMMA 6. \(S_n = P_5S_{n-1} + 2W_2P_4P_5^{n-1} \) \((n>1) \),
with \(S_1 = L_1 \).

We can use Lemma 6 in order to obtain an explicit formula for \(m(S_n) \). However, we will obtain the result by using a simple combinatorial argument.

THEOREM 5. \(S_n = W_1P_5^n + 2w_2P_4P_5^{n-1} \) \((n>0) \).

PROOF. Partition the matchings in the graph \(S_n \), into two classes (i) those in which node \(x \) (see Figure 3) is isolated and (ii) those in which it is not. The matchings in (i) are matchings in the graph \(S_n - \{x\} \). Therefore the contribution of these matchings to \(m(S_n) \) is \(W_1P_5^n \). If node \(x \) is not isolated, then it is joined to an edge. There are \(2n \) edges incident to node \(x \). Hence an edge can be chosen in \(2n \) ways. Once an edge is chosen, the \(2n \) edges adjacent to it cannot be used in any matching. Therefore the contribution of the matchings in class (ii) is
2nPnP_5^{n-1}. Hence the result follows.

The following table gives values of \(m(S_n) \) for \(n=1, \) up to \(n=7. \)

TABLE 3

Matching Polynomials of Hexagonal Star Cacti

<table>
<thead>
<tr>
<th>(n)</th>
<th>(m(S_n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(w_1^5 + 6w_1^4w_2 + 9w_1^2w_2^2 + 2w_2^3)</td>
</tr>
<tr>
<td>2</td>
<td>(w_1^{11} + 12w_1^9w_2 + 50w_1^7w_2^2 + 88w_1^5w_2^3 + 61w_1^3w_2^4 + 12w_1w_2^5)</td>
</tr>
<tr>
<td>3</td>
<td>(w_1^{16} + 18w_1^{14}w_2 + 123w_1^{12}w_2^2 + 418w_1^{10}w_2^3 + 759w_1^8w_2^4 + 726w_1^6w_2^5 + 333w_1^4w_2^6 + 54w_1^2w_2^7)</td>
</tr>
<tr>
<td>4</td>
<td>(w_1^{21} + 2w_1^{19}w_2 + 228w_1^{17}w_2^2 + 1152w_1^{15}w_2^3 + 3w_1^{13}w_2^{14} + 2w_1w_2^{15})</td>
</tr>
<tr>
<td>5</td>
<td>(w_1^{26} + 30w_1^{24}w_2 + 365w_1^{22}w_2^2 + 2450w_1^{20}w_2^3 + 10210w_1^{18}w_2^4)</td>
</tr>
<tr>
<td>6</td>
<td>(w_1^{31} + 36w_1^{29}w_2 + 534w_1^{27}w_2^2 + 4472w_1^{25}w_2^3 + 23955w_1^{23}w_2^4)</td>
</tr>
<tr>
<td>7</td>
<td>(w_1^{36} + 42w_1^{34}w_2 + 735w_1^{32}w_2^2 + 7378w_1^{30}w_2^3 + 48321w_1^{28}w_2^4)</td>
</tr>
</tbody>
</table>

6. MATCHING POLYNOMIALS OF HEXAGONAL CROWNS.

We define the hexagonal crown \(C_n \), to be the graph obtained by identifying the two terminal nodes of \(L_n \). We take \(C_5 \) to be the graph shown below in Figure 3 (i). Clearly \(C_n \) contains \(5n \) nodes and \(6n \) edges. \(C_5 \) is shown below in Figure 3(ii).

![Figure 3](image-url)
Let us apply the reduction process to C_n by deleting edge ab (see Figure 3). Let the reduced graph be G'_1 and the incorporated graph G''. Apply the reduction process to G'_1 by deleting edge af; the reduced graph will be A_{n-1} and the incorporated graph will be G''. Therefore we get

$$C_n = A_{n-1} + 2w_2G'' .$$

(6.1)

Let us define the graph B_n to be the graph obtained from L_n by attaching two chains of length 2 to each of its terminal nodes. Then G'' is the graph obtained from B_{n-2} by removing one of its nodes of valency 1. Let x be the associated terminal node. Apply the reduction process to G'' by deleting the edge incident with x and containing a node of valency 1. The reduced graph will consist of a nontrivial component G'_2 and an isolated node. The incorporated graph will contain two components, P_2 and B_{n-3}. Therefore we get

$$G'' = w_1G'_2 + w_2P_2B_{n-3} .$$

(6.2)

Apply the reduction process to G'_2 by deleting the edge of the chain attached to node x, which is incident to x. The reduced graph will contain two components, A_{n-2} and P_2. The incorporated graph will contain two components, B_{n-3} and an isolated node. Therefore

$$G'_2 = P_2A_{n-2} + w_1w_2B_{n-3} .$$

(6.3)

Hence by substituting for G'' in Equation (6.1) using Equations (6.2) and (6.3), we get

$$C_n = A_{n-1} + 2w_1w_2P_2A_{n-2} + 2w_2(w_2^2w_1 + w_2P_2)B_{n-3} .$$

(6.4)

Lemma 7. (i) $B_n = P_2^2A_n + 2w_1w_2P_2B_{n-1}$ ($n > 1$)

and therefore

(ii) $B(t) = P_2^2A(t) [1 - 2w_1w_2P_2t]^{-1}$,

when we take $B_0 = P_2^2a$.

Proof. Apply the reduction process to B_n by deleting one of the edges of an attached chain, which is incident to a terminal node x of L_n. The reduced graph will contain two components, P_2 and a non-trivial component G^-. The incorporated graph will contain three components P_1, P_2 and B_{n-1}. Therefore

$$B_n = P_2G^- + w_1w_2P_2B_{n-1} .$$

(6.5)

By using Equation (6.3) with n replacing $n-2$, we get

$$G^- = P_2A_n + w_1w_2B_{n-1} .$$

Hence (i) follows by substituting for G^- in (6.5). (ii) can be established using standard techniques.
The following lemma can be obtained by multiplying Equation (6.4) by t^n, summing from $n = 3$ to ∞, then using (ii) of Lemma 7. The generating function $C(t)$ for $m(C_n)$ gives correct coefficients of t^n for $n > 2$.

LEMMA 8.

\[
C(t) = \frac{u(y^6 + t)}{y(1 - at - \delta t^2)},
\]

where

\[
\gamma = 1 - 2w_1w_2P_1t, \quad \delta = 1 + 2w_1w_2P_2t^2 \quad \text{and}
\]

\[
\epsilon = 2w_2(w_1^2 w_2^2 + w_2^2 P_2).
\]

The following theorem is immediate from Lemma 8.

THEOREM 6.

\[
C_n = \left(w_1^5 + 8w_1^3w_2 + 7w_1^2 w_2^2\right)C_{n-1} - \left(2w_1^8 + 14w_1^6 w_2 + 4w_1^4 w_2^2 + 6w_1^2 w_2^4 - 2w_2^5\right)C_{n-2}
\]

\[
- 4w_1^4 \left(w_1^2 + 3w_1 w_2 + 3w_2^2 \right)C_{n-3} \quad (n > 3),
\]

with C_1, C_2 and C_3 as given below in Table 4.

The following table gives values of $m(C_n)$ for $n = 1$, up to $n = 6$.

TABLE 4

<table>
<thead>
<tr>
<th>\quad</th>
<th>Matching Polynomials of Hexagonal Crowns</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>$m(C_n)$</td>
</tr>
<tr>
<td>1</td>
<td>$w_1^5 + 6w_1^3 w_2 + 5w_1 w_2^2$</td>
</tr>
<tr>
<td>2</td>
<td>$w_1^{10} + 12w_1^8 w_2 + 46w_1^6 w_2^2 + 64w_1^4 w_2^3 + 33w_1^2 w_2^4 + 4w_1 w_2^5$</td>
</tr>
<tr>
<td>3</td>
<td>$w_1^{15} + 18w_1^{13} w_2 + 123w_1^{11} w_2^2 + 402w_1^9 w_2^3 + 663w_1^7 w_2^4 + 558w_1^5 w_2^5 + 221w_1^3 w_2^6 + 30w_1 w_2^7$</td>
</tr>
<tr>
<td>4</td>
<td>$w_1^{20} + 24w_1^{18} w_2 + 236w_1^{16} w_2^2 + 1232w_1^{14} w_2^3 + 3718w_1^{12} w_2^4 + 6688w_1^{10} w_2^5 + 7220w_1^8 w_2^6 + 4650w_1^6 w_2^7 + 1553w_1^4 w_2^8 + 232w_1^2 w_2^9 + 8w_2^{10}$</td>
</tr>
<tr>
<td>5</td>
<td>$w_1^{25} + 30w_1^{23} w_2 + 385w_1^{21} w_2^2 + 2770w_1^{19} w_2^3 + 12330w_1^{17} w_2^4 + 35476w_1^{15} w_2^5 + 67270w_1^{13} w_2^6 + 84500w_1^{11} w_2^7 + 86955w_1^{09} w_2^8 + 36350w_1^9 w_2^9 + 11225w_1^7 w_2^{10} + 1970w_1^5 w_2^{11} + 100w_1^3 w_2^{12}$</td>
</tr>
<tr>
<td>6</td>
<td>$w_1^{30} + 36w_1^{28} w_2 + 570w_1^{26} w_2^2 + 5232w_1^{24} w_2^3 + 30927w_1^{22} w_2^4 + 123876w_1^{20} w_2^5 + 34532w_1^{18} w_2^6 + 678336w_1^{16} w_2^7 + 943647w_1^{14} w_2^8 + 924988w_1^{12} w_2^9 + 628626w_1^{10} w_2^{10} + 286656w_1^8 w_2^{11} + 82641w_1^6 w_2^{12} + 13500w_1^4 w_2^{13} + 996w_1^2 w_2^{14} + 16w_2^{15}$</td>
</tr>
</tbody>
</table>
7. DEFECT-\(d\) MATCHINGS IN LINEAR HEXAGONAL CACTI.

We will denote the number of defect-\(d\) matchings in a graph \(G\) by \(N_d(G)\). Therefore the number of perfect matchings will be \(N_0(G)\). The total number of matchings in \(G\) will be denoted by \(N_T(G)\). It is clear that \(N_d(G)\) is the coefficient of the term in \(w^d\) in \(m(G)\), and that \(N_0(G)\) is the coefficient of the term in \(w^0\). Also \(N_T(G)\) is obtained from \(m(G)\) by putting \(w_1 = w_2 = 1\).

The following theorem is immediate from Theorem 4, by equating coefficients of the terms in \(w^d\). Notice that \(m(G)\) contains a term in \(w^d\) if and only if \(d\) and \(p\) (the number of nodes in \(G\)) have the same parity, since the edges in a matching are incident to an even number of nodes.

THEOREM 7. \(L_n (n>1)\) has a defect-\(d\) matching if and only if \(d\) and \(n\) have opposite parities and \(0 \leq d \leq 5n+1\), if \(n\) is odd, or \(1 \leq d \leq 5n+1\), if \(n\) is even.

In this case,

\[N_d(L_n) = N_{d-5}(L_{n-1}) + 6N_{d-3}(L_{n-1}) + 5N_{d-1}(L_{n-1}) + 2N_{d-4}(L_{n-2}) + 4N_{d-2}(L_{n-2}) + 2N_d(L_{n-2})\]

with the initial values of \(N_d(L_n)\) as given above in Table 2.

The following corollary of Theorem 3 gives explicit formulae for the first three coefficients of \(m(L_n)\).

COROLLARY 3. (i) \(N_{5n+1}(L_n) = 1\)

(ii) \(N_{5n-1}(L_n) = 6n\)

and (iii) \(N_{5n-3}(L_n) = 18n^2 - 13n + 4\).

PROOF. Since \(L_n\) has \(5n+1\) nodes and \(6n\) edges, (i) and (ii) follow immediately from Theorem 3. \(L_n\) has \(n-1\) nodes of valency 4 and the remaining \(4n+2\) have valency 2. Therefore

\[
e = (n-1) \binom{4}{2} + 4n+2 = 10n-4.
\]

\[
\Rightarrow N_{5n-3}(L_n) = \binom{6n}{2} - (10n-4).
\]

The result follows after simplifications.

Theorem 7 is a useful result, because it can be used to obtain explicit formulae for all the coefficients of \(m(L_n)\). We will illustrate this by finding formulae for the fourth and fifth coefficients of \(m(L_n)\).

Put \(d = 5n-5\) in Theorem 7. This yields

\[
N_{5n-5}(L_n) = N_{5n-10}(L_{n-1}) - 6N_{5n-8}(L_{n-1}) + 5N_{5n-6}(L_{n-1}) + 2N_{5n-9}(L_{n-2}) + 4N_{5n-7}(L_{n-2}) + 2N_{5n-5}(L_{n-2})
\]

(7.1)

Notice that \(N_{5n-10}(L_{n-1}), N_{5n-8}(L_{n-1})\) and \(N_{5n-6}(L_{n-1})\) are the fourth, third and second coefficients of \(m(L_{n-2})\) and that

\[
N_{5n-7}(L_{n-2}) = N_{5n-5}(L_{n-2}) = 0.
\]
Therefore by using Corollary 3.1, we get
\[N_{5n-8}(L_{n-1}) = 18(n-1)^2 - 13(n-1) + 4, \quad N_{5n-6}(L_{n-1}) = 6(n-1) \]
and \[N_{5n-9}(L_{n-2}) = 1. \]

By substituting these values in Equation (7.1), we obtain the following lemma which gives a recurrence for the fourth coefficient of \(m(L_n) \).

Lemma.
\[N_{5n-5}(L_n) = N_{5n-10}(L_{n-1}) + 108n^2 - 264n + 182 \quad (n > 2), \]
with \(N_0(L_1) = 2 \).

By using standard techniques we establish the following theorem.

Theorem 8.
\[N_{5n-5}(L_n) = 2(18n^3 - 39n^2 + 34n - 12) \quad (n > 0) \]

Put \(d = 5n - 7 \) in Theorem 7. This yields
\[N_{5n-7}(L_n) = N_{5n-12}(L_{n-1}) + 6N_{5n-10}(L_{n-1}) + 5N_{5n-8}(L_{n-1}) \]
\[+ 2N_{5n-11}(L_{n-2}) + 4N_{5n-9}(L_{n-2}) + 2N_{5n-7}(L_{n-2}) \]
(7.2)

Using Theorem 8, we get
\[N_{5n-10}(L_{n-1}) = 2 \left[18(n-1)^3 - 39(n-1)^2 + 34(n-1) + 12 \right]. \]

using Corollary 3.1, we get
\[N_{5n-8}(L_{n-1}) = 18(n-1)^2 - 13(n-1) + 4, \quad N_{5n-11}(L_{n-2}) = 6(n-2) \]
and \[N_{5n-9}(L_{n-2}) = 1. \]

It is clear that \(N_{5n-7}(L_{n-2}) = 0 \). By substituting these values in Equation (7.2) and then simplifying, we obtain the following lemma.

Lemma 10.
\[N_{5n-7}(L_n) = N_{5n-12}(L_{n-1}) + (26n^3 - 1026n^2 + 1759n - 1081) \quad (n > 2), \]
with \(N_3(L_2) = 61 \).

By solving the above recurrence, we obtain the following theorem which gives an explicit formula for the fifth coefficient of \(m(L_n) \).

Theorem 9.
\[N_{5n-7}(L_n) = \frac{1}{2} \left(108n^4 - 468n^3 + 841n^2 - 745n + 264 \right) \quad (n > 1). \]

The following theorem gives an explicit formula for the number of perfect matchings in \(L_n \).

Theorem 10. \(L_n \) has a perfect matching if and only if \(n \) is odd, and in this case,
\[N_0(L_n) = 2^{(n+1)/2}. \]

Proof. Suppose that \(n \) is odd. Then from Theorem 7, \(d = 0 \). Put \(d = 0 \) in Theorem 7. This yields
MATCHINGS IN HEXAGONAL CACTI

\[N_0(L_n) = 2 N_0(L_{n-2}) , \text{ with } N_0(L_1) = 2. \]

\[= 2^2 N_0(L_{n-4}) \]

\[\vdots \]

\[= 2^{(n-1)/2} N_0(L_1) = 2^{(n+1)/2} . \]

Conversely, suppose that \(L_n \) has a perfect matching. Then it must have an even number of nodes. \(\iff 5n+1 \) is even. \(\iff n \) is odd.

We will use Theorem 7 in order to derive explicit expressions for the number of defect-\(d \) matchings in \(L_n \), for \(d = 1 \) and \(d = 2 \).

Lemma 11.

\[N_1(L_n) = 2 N_1(L_{n-2}) + 5(2^{n/2}) \quad (n\text{-even}) \]

with \(N_1(L_0) = 1 \)

Proof. Put \(d = 1 \) in Theorem 7. This yields

\[N_1(L_n) = 5 N_0(L_{n-1}) + 2 N_1(L_{n-1}) \]

The result then follows from Theorem 10.

The following theorem gives an explicit formula for the number of defect-1 matchings in \(L_n \) (n-even).

Theorem 11.

\[N_1(L_n) = (5n+2)2^{(n-2)/2} \quad (n\text{-even}) . \]

Proof. From Lemma 11,

\[N_1(L_n) = 2 N_1(L_{n-2}) + \delta_n , \text{ where } \delta_n = 5(2^{n/2}). \]

\[\implies N_1(L_n) = \delta_n + 2 \delta_{n-2} + 2^{2} N_1(L_{n-4}). \]

\[\vdots \]

\[= \sum_{k=0}^{n-4} 2^{k/2} \delta_{n-k} + 2^{(n-2)/2} N_1(L_2) \quad (k\text{-even}) \]

\[= 5.2^{n/2}n-2 + 6.2^{n/2} . \]

The result follows after simplifications.

Lemma 12. \(N_2(L_n) = 2 N_2(L_{n-2}) + (25n-7)2^{(n-3)/2} \quad (n\text{-odd}), \)

with \(N_2(L_1) = 9 \).

Proof. Put \(d = 2 \) in Theorem 7. This yields

\[N_2(L_n) = 5 N_1(L_n) + N_0(L_{n-2}) + 2 N_2(L_{n-2}) \quad (n\text{-odd}) \]

\[= 5(5(n-1)+2)2^{(n-3)/2} + 4(2^{(n-1)/2} + 2 N_2(L_{n-2}) , \]

using Theorems 10 and 11. The result follows after simplifications.
By solving the recurrence given in Lemma 12, using standard techniques (e.g. see Proof of Theorem 11), we obtain the following theorem, which gives an explicit formula for the number of defect-2 matchings in $L_n(n\text{-}\text{odd})$.

THEOREM 12.

$$N_2(L_n) = \frac{(25n^2+36n+11)2^{(n-7)/2}}{(n-7)/2} \quad (n\text{-}\text{odd}).$$

By putting $\omega_1 = \omega_2 = 1$ in Corollary 4.1, we obtain the following generating function $N_{TL}(t)$ for $N_T(L_n)$.

$$N_{TL}(t) = \frac{1+6t}{1-12t-8t^2}.$$

Now $\frac{1+6t}{1-12t-8t^2} = \frac{A}{t-a} + \frac{B}{t-b}$, where a and b are the roots of the equation $t^2 + \frac{3t}{2} - \frac{1}{8} = 0$.

$$N_{TL}(t) = \frac{A/a}{1-t/a} + \frac{-B/b}{1-t/b}.$$

By equating coefficients of t^n, we get

$$N_T(L_n) = -A(1/a)^{n+1} - B(1/b)^{n+1}.$$

By finding A, B, a, and b from the relation above, we obtain the following theorem which gives an explicit formula for the total number of matchings in L_n.

THEOREM 13.

$$N_T(L_n) = c(6-2\sqrt{11})^{n+1} + c(6+2\sqrt{11})^{n+1} \quad (n>0),$$

where $c = \frac{7+3\sqrt{11}}{8\sqrt{11}}$ and \bar{c} is the surd conjugate of c.

8. **DEFECT-d MATCHINGS IN STAR CACTI.**

The following corollary of Theorem 3 gives simplified formulae for the first three coefficients of $m(S_n)$.

COROLLARY 3.2. In $m(S_n)$,

(i) $N_{5n+1}(S_n) = 1$

(ii) $N_{5n-1}(S_n) = 6n$

and (iii) $N_{5n-3}(S_n) = n(16n-7)$.

PROOF. (i) and (ii) are immediate from the theorem. S_n has one node of valency $2n$ and $5n$ nodes of valency 2. It follows that $c = (\frac{2n}{2}) + 5n = 2n^2 + 4n$.

$$\Rightarrow N_{5n-3}(S_n) = \binom{6n}{2} - (2n^2 + 4n).$$

The desired result is obtained after simplifications.

The following result is added for completeness. It can be easily established.

LEMMA 13. $N_0(S_n) = 0$, $\forall n > 0$.

The following theorem gives an explicit formula for the total number of matchings
MATCHINGS IN HEXAGONAL CACTI

THEOREM 14. \(N_n(S_n) = 2(4+5n)8^{n-1} \).

PROOF. Put \(w_1 = w_2 = 1 \) in Theorem 5. This yields
\[N_n(S_n) = 8^n + 2n.5(8^{n-1}) . \]
This reduces to the desired result.

9. DEFECT-\(d \) MATCHINGS IN HEXAGONAL CROWNS.

The following theorem can be obtained from Theorem 6 by equating coefficients of the terms in \(w^d \).

THEOREM 15. \(C_n(n>4) \) has a defect-\(d \) matching if and only if \(n \) and \(d \) have the same parity and \(0 \leq d \leq 5n \) if \(n \) is even or \(1 \leq d \leq 5n \) if \(n \) is odd. In this case,
\[
N_d(C_n) = N_{d-5}(C_{n-1}) + 8N_{d-3}(C_{n-1}) + 7N_{d-1}(C_{n-1})
- 2N_{d-8}(C_{n-2}) - 14N_{d-6}(C_{n-2}) - 20N_{d-4}(C_{n-2})
- 6N_{d-2}(C_{n-2}) + 2N_{d-4}(C_{n-2}) - 4N_{d-7}(C_{n-3})
- 12N_{d-5}(C_{n-3}) - 12N_{d-3}(C_{n-3}) - 4N_{d-1}(C_{n-3}) \quad (n>4),
\]
with the initial values of \(N_d(C_n) \) as given in Table 4.

COROLLARY 3.3. In \(m(C_n) \),
(i) \(N_{5n}(C_n) = 1 \)
(ii) \(N_{5n-2}(C_n) = 6n \)
and (iii) \(N_{5n-4}(C_n) = n(18n-13) \quad (n>1) \).

PROOF. (i) and (ii) follow immediately from the theorem. \(C_n \) has \(n \) nodes of valency 4 and \(4n \) nodes of valency 2. Therefore
\[e = n \binom{4}{2} + 4n = 10n . \]
\[\Rightarrow N_{5n-4}(C_n) = \binom{6n}{2} - 10n . \]
The result therefore follows.

We will use Theorem 15 and Corollary 3.3 in order to obtain explicit formulae for the fourth and fifth coefficients of \(m(C_n) \).

Let us put \(d = 5n - 6 \) in Theorem 15. This yields
\[
N_{5n-6}(C_n) = N_{5n-11}(C_{n-1}) + 8N_{5n-9}(C_{n-1}) + 7N_{5n-7}(C_{n-1})
- 2N_{5n-14}(C_{n-2}) - 14N_{5n-12}(C_{n-2}) - 20N_{5n-10}(C_{n-2})
- 6N_{5n-8}(C_{n-2}) + 2N_{5n-6}(C_{n-2}) - 4N_{5n-13}(C_{n-3})
- 12N_{5n-11}(C_{n-3}) - 12N_{5n-9}(C_{n-3}) - 4N_{5n-7}(C_{n-3}) \quad (9.1)
\]
It is clear that \(N_{5n-7}(C_{n-1}) \) and \(N_{5n-9}(C_{n-1}) \) are the second and third
coefficients respectively of \(m(C_{n-1}) \). \(N_{5n-10}(C_{n-2}) \), \(N_{5n-12}(C_{n-2}) \) and \(N_{5n-14}(C_{n-2}) \) are the first, second and third coefficients respectively of \(m(C_{n-2}) \). Also \(N_{5n-8}(C_{n-2}) = N_{5n-6}(C_{n-2}) = 0 \). It can be easily seen that

\[
N_{5n-13}(C_{n-3}) = N_{5n-11}(C_{n-3}) = N_{5n-9}(C_{n-3}) = N_{5n-7}(C_{n-3}) = 0.
\]

From Corollary 3.3, we have

\[
\begin{align*}
N_{5n-7}(C_{n-1}) &= 6(n-1) \\
N_{5n-9}(C_{n-1}) &= 18(n-1)^2 - 13(n-1) \\
N_{5n-10}(C_{n-2}) &= 1 \\
N_{5n-12}(C_{n-2}) &= 6(n-2)
\end{align*}
\]

and \(N_{5n-14}(C_{n-2}) = 18(n-2)^2 - 13(n-2) \).

By substituting these values into Equation (9.1), and then simplifying, we obtain the following lemma.

Lemma 13. \(N_{5n-6}(C_n) = N_{5n-11}(C_{n-1}) + 2(54n^2 - 132n + 79) \) \((n > 2)\)

with \(N_4(C_2) = 64 \).

The recurrence given in the above lemma can be solved by standard techniques. The solution is given in the following theorem.

Theorem 16. \(N_{5n-6}(C_n) = 2n(18n^2 - 39n + 22) \) \((n > 0)\).

A similar analysis can be done by putting \(d = 5n-8 \) in Theorem 15. This would yield an explicit formula and a recurrence for the fifth coefficient of \(m(C_n) \). We will omit the proofs, since they would be quite similar to those of Lemma 13 and Theorem 16.

Lemma 14. \(N_{5n-8}(C_n) = N_{5n-13}(C_{n-1}) + (216n^3 - 1026n^2 + 1615n - 809) \) \((n > 3)\),

with \(N_7(C_3) = 663 \).

The solution of the recurrence given in the above lemma, is given in the following theorem.

Theorem 17. \(N_{5n-8}(C_n) = \frac{n}{2}(108n^3 - 468n^2 + 697n - 353) \) \((n > 1)\).

The following theorem gives an explicit formula for the number of perfect matchings in \(C_n \).

Theorem 18. \(N_0(C_n) = 2\frac{(n+2)^2}{2} \) \((n\text{-even})\).

Proof. Put \(d = 0 \) in Theorem 15. This yields

\[
N_0(C_n) = 2N_0(C_{n-2}) \quad (n\text{-even})
\]

\[
= 2^2N_0(C_{n-4})
\]

\[
= \vdots
\]

\[
= 2^{n-2}N_0(C_2).
\]

Hence the result follows.
The following lemma is analogous to Lemma II. It can be established by putting $d = 1$ in Theorem 15 and then substituting for $N_0(C_{n-1})$ and $N_0(C_{n-3})$ using Theorem 18.

Lemma 15. $N_1(C_n) = 2N_1(C_{n-2}) + 5.2^{(n+1)/2}$ (n=odd and n>1), with $N_1(C_1) = 5$.

An explicit formula for the number of defect-1 matchings in C_n can now be obtained by solving the above recurrence for $N_1(C_n)$. A solution constructed along the lines of the proof of Lemma II, yields the following result.

Theorem 19. $N_1(C_n) = (5n)2^{(n-1)/2}$ (n=odd).

Put $d = 2$ in Theorem 15. This yields

$$N_2(C_n) = 7N_1(C_{n-1}) - 6N_0(C_{n-2}) + 2N_2(C_{n-2}) - 4N_1(C_{n-3}) = 7.5(n-1)2^{(n-2)/2} - 6.2^{n/2} + 2N_2(C_{n-2}) - 4.5(n-3)2^{(n-4)/2}.$$

On simplification, we obtain the following lemma.

Lemma 16. $N_2(C_n) = 2N_2(C_{n-2}) + (25n-17)2^{(n-2)/2}$ (n=even), with $N_2(C_0) = 0$.

By solving the above recurrence using standard techniques, we obtain the following theorem which gives an explicit formula for the number of defect-2 matchings in C_n (n=even).

Theorem 20. $N_2(C_n) = n(25n+16)2^{(n-6)/2}$ (n=even).

The following lemma gives a recurrence for the total number of matchings in C_n. It can be obtained from Theorem 6 by putting $w_1 = w_2 = 1$.

Lemma 17. $N_T(C_n) = 16N_T(C_{n-1}) - 40N_T(C_{n-2}) - 32N_T(C_{n-3})$ (n>4), with $N_T(C_1) = 18$, $N_T(C_2) = 160$, $N_T(C_3) = 2016$ and $N_T(C_4) = 25472$.

By multiplying the above recurrence by t^n, summing from $n = 0$ to ∞, and then simplifying, using the boundary conditions, we obtain (with $N_T(C_0) = 0$),

$$N_T(C(t)) = \frac{18t-128t^2+176t^3+192t^4}{1-16t+40t^2+32t^3}.$$

$$= 6t^2 + \frac{2(1-6t)}{1-12t-8t^2}.$$

Hence we obtain the following lemma, which gives a generating function $N_T(C(t))$ for $m(C_n)$. (It gives correct coefficients of t^n, for n>1).

Lemma 18.

$$N_T(C(t)) = \frac{2(1-6t)}{1-12t-8t^2}.$$

Hence by using the standard technique illustrated above in establishing Theorem 13, we obtain the following theorem which gives an explicit formula for the total number of matchings in a hexagonal crown.

Theorem 21. $N_T(C_n) = c(6+2\sqrt{11})^{n+1} + \tilde{c}(6-2\sqrt{11})^{n+1}$ (n>1), where $c = \sqrt{11-3}/4$.

10. DISCUSSION.

Our article gives a comprehensive account about matchings in the linear and star cacti, and in the hexagonal crown. As far as other hexagonal cacti are concerned, we
have given results which, together with the theorems given in Sections 2 and 3, can be used to obtain their matching polynomials. It would be virtually impossible to give results from which the matching polynomial any arbitrary hexagonal cactus could be obtained by mere substitution.

Most of our results on defect-d matchings (d>0) can be extended. We have indeed extended some of these results, but have not given them here, since no new techniques are involved. Also, they would have made the article unacceptably long.

REFERENCES
5. GUTMAN, I. The Matching Polynomial, Match. No. 6(1979), 75-91.